
The missing signalling layer

for WebRTC?

matthew@matrix.org

WebRTC deliberately

specifies no specific

signaling protocol.

2

3

 It makes interoperability

and federation hard.

 It creates silos.

As a user:

4

5

I want to use my preferred

apps and services to

communicate

6

Not be forced into specific

services chosen by my

contacts.

7

If email gives me that

flexibility, why not VoIP and

IM?

8

Current signaling protocol

options include:

9

• SIP

• XMPP

• WebRTC Data Channel

(e.g. Open Peer)

• Assorted HTTP APIs

SIP:

10

• Heavyweight

• Complicated specification

• Complicated stack

• Buys little over HTTP

XMPP/Jingle:

11

• Streamed XML is debatable

• Relatively complicated spec

• Jingle has relatively little

uptake

• Custom stack

HTTP APIs:

12

• Simple

• But fragmented

• And often proprietary

• Or closed (Firebase, Pusher,

PubNub...)

Introducing Matrix

13

Introducing Matrix

• New Open Source project (launched Sept 2014)

14

Introducing Matrix

• New Open Source project (launched Sept 2014)

• Setting up as non-profit org (matrix.org)

15

Introducing Matrix

• New Open Source project (launched Sept 2014)

• Setting up as non-profit org (matrix.org)

• Publishing pragmatic simple HTTP API standard

for federated VoIP (WebRTC), IM and generic

messaging.

16

Introducing Matrix

• New Open Source project (launched Sept 2014)

• Setting up as non-profit org (matrix.org)

• Publishing pragmatic simple HTTP API standard

for federated VoIP (WebRTC), IM and generic

messaging.

• Defines client-server and server-server APIs

(and, shortly, server<->application-server APIs).

17

Introducing Matrix

• New Open Source project (launched Sept 2014)

• Setting up as non-profit org (matrix.org)

• Publishing pragmatic simple HTTP API standard

for federated VoIP (WebRTC), IM and generic

messaging.

• Defines client-server and server-server APIs

(and, shortly, server<->application-server APIs).

• Provides Apache-Licensed reference

implementations of the server and clients (web,

iOS, Android, Python, Perl...)

18

Who is Matrix?

Matthew Hodgson

• Technical Leader of matrix.org

• Set up and runs the Unified

Communications line of business

within Amdocs (formerly MX Telecom)

• 11 years of experience building IP

telephony solutions and leading units

Amandine Le Pape

• Business Leader of matrix.org

• Set up and co-runs the Unified

Communications line of business

within Amdocs as a Product Manager

• 10 years of experience in mobile

services and telecommunications

19

The Dev Team

• A dozen of experienced developers specialized in VoIP and IM mobile app

development

• Most of them originally from the Amdocs Unified Communications team (flagship

deployment: blah.com)

Matrix comes from realising that VoIP and IM fragmentation is

holding back the whole industry - we didn't want to be part of the

problem, but try to solve it.

Key Characteristics

• Entirely open:

– open standard; open source; open project.

• Message History as first-class citizen

• Group communication as first-class citizen

– Fully distributed room state (cryptographically

signed) - no SPOFs or SPOCs.

• Strong cryptographic identity to prevent

spoofing

• Identity agnostic

• End-to-end encryption (RSN)

 20

Demo time!

21

22

Architecture

Clients

Home

Servers

Identity

Servers

Application

Servers

Federation Demo

23

The client-server API

To send a message:

curl -XPOST -d '{"msgtype":"m.text", "body":"hello"}'
"https://alice.com:8448/_matrix/client/api/v1/rooms/ROOM_
ID/send/m.room.message?access_token=ACCESS_TOKEN"

{

 "event_id": "YUwRidLecu"

}

24

The client-server API

To set up a WebRTC call:

curl -XPOST –d '{\

 "version": 0, \

 "call_id": "12345”, \

 "offer": {

 "type" : "offer”,

 "sdp" : "v=0\r\no=- 658458 2 IN IP4 127.0.0.1…"

 }

}'
"https://alice.com:8448/_matrix/client/api/v1/rooms/ROOM_
ID/send/m.call.invite?access_token=ACCESS_TOKEN"

{ "event_id": "ZruiCZBu” } 25

The client-server API

To persist some MIDI:

curl -XPOST –d '{\

 "note": "71",\

 "velocity": 68,\

 "state": "on",\

 "channel": 1,\

 "midi_ts": 374023441\

}'
"https://alice.com:8448/_matrix/client/api/v1/rooms/ROOM_
ID/send/org.matrix.midi?access_token=ACCESS_TOKEN"

{ "event_id": “ORzcZn2” }

26

The client-server API

…or to persist some tap gestures for animating an Avatar…

curl -XPOST –d '{

 "thumbnail":
"http://matrix.org:8080/_matrix/content/QGtlZ2FuOm1hdHJpeC5vcmcvNupjfhmFhjxDPquSZGaGlYj.aW1hZ2U
vcG5n.png",

 "actions": [

 {"x": "0.5521607", "y": "6.224353", "t": "0.9479785"},

 {"x": "0.5511537", "y": "6.220354", "t": "0.9701037"},

 {"x": "0.5510949", "y": "6.214756", "t": "0.9804187"},

 {"x": "0.5499267", "y": "6.213634", "t": "0.9972034"},

 {"x": "0.5492241", "y": "6.210211", "t": "1.013744"},

 {"x": "0.5486694", "y": "6.206304", "t": "1.030284"},

 {"x": "0.5482137", "y": "6.201648", "t": "1.046764"},

...

 {"x": "0.9997056", "y": "4.022976", "t": "8.970592"},

 {"x": "0.9995697", "y": "4.043199", "t": "8.987072"}

]

}'
"https://alice.com:8448/_matrix/client/api/v1/rooms/ROOM_ID/send/org.matrix.demos.unity.stickme
n?access_token=ACCESS_TOKEN"

{ "event_id": “ORzcZn2” } 27

The server-server API
curl –XPOST –H ‘Authorization: X-Matrix origin=matrix.org,key=”898be4…”,sig=“j7JXfIcPFDWl1pdJz…”’ –d ‘{

 "ts": 1413414391521,

 "origin": "matrix.org",

 "destination": "alice.com",

 "prev_ids": ["e1da392e61898be4d2009b9fecce5325"],

 "pdus": [{

 "age": 314,

 "content": {

 "body": "hello world",

 "msgtype": "m.text"

 },

 "context": "!fkILCTRBTHhftNYgkP:matrix.org",

 "depth": 26,

 "hashes": {

 "sha256": "MqVORjmjauxBDBzSyN2+Yu+KJxw0oxrrJyuPW8NpELs"

 },

 "is_state": false,

 "origin": "matrix.org",

 "pdu_id": "rKQFuZQawa",

 "pdu_type": "m.room.message",

 "prev_pdus": [

 ["PaBNREEuZj", "matrix.org"]

],

 "signatures": {

 "matrix.org": {

 "ed25519:auto": "jZXTwAH/7EZbjHFhIFg8Xj6HGoSI+j7JXfIcPFDWl1pdJz+JJPMHTDIZRha75oJ7lg7UM+CnhNAayHWZsUY3Ag"

 }

 },

 "origin_server_ts": 1413414391521,

 "user_id": "@matthew:matrix.org"

 }]

}’ https://alice.com:8448/_matrix/federation/v1/send/916d630ea616342b42e98a3be0b74113

28

What about IoT?

29

30

CoAP:
• REST over UDP (sort of)

• Everything’s a server!

(and a client)

• Maps onto HTTP APIs.

MQTT:

• PubSub over TCP (sort of)

• Everything can pub & sub!

(via a broker).

• Maps onto message passing.

31

Both are very different.

But neither provide:

• Global federated messaging

• Message History

• Message Signing

• E2E Encryption

Matrix to the rescue?

32

echo '{"msgtype":"m.text", "body":"hello"}' |

perl –MCBOR::XS –MJSON –pe '$_=encode_cbor decode_json' |

coap-client –m post \

coaps://alice.com/_m/c/a/v1/r/ROOM_ID/s/m.room.message?a=
ACCESS_TOKEN

is the same as…

curl -XPOST -d '{"msgtype":"m.text", "body":"hello"}'
"https://alice.com:8448/_matrix/client/api/v1/rooms/ROOM_
ID/send/m.room.message?access_token=ACCESS_TOKEN"

Exposing Matrix via CoAP

is trivial:

33

Any CoAP device can persist

data into Matrix, and act on

data pushed from Matrix.

A Matrix-aware MQTT Broker

could similarly store history to

Matrix, and expose Matrix

history and pubsub to MQTT

clients.

Current Progress

• Began May 2014

• First public release in Sept 2014

• Crypto and iOS/Android landed Oct 2014

• Next up:
– Complete the spec

– Complete federation implementation

– Declare reference server production ready

– UX polish for the reference clients

– Define Application Server APIs

– End-to-End Encryption

– IoT implementations!

34

• Run a server
 host your own data or be a trusted provider

for your customers

• Build something (anything!) on top

• Build interoperability gateways
 add a whole new ecosystem to your

community

Get involved!

Check out http://matrix.org!

Follow us at @matrixdotorg!

35

http://matrix.org/

THANK YOU!
 matrix: @matthew:matrix.org

 mail: matthew@matrix.org

twitter: @matrixdotorg

http://matrix.org

36

mailto:matthew@matrix.org
http://matrix.org/

Why not XMPP?

• We used to use XMPP (ejabberd, OpenFire, Spectrum,
psyced, Psi, Pidgin, ASmack, Spark, XMPP.Framework)

• We built an alternative because:
– Single server per MUC is single point of control

– Synchronised history is a very 2nd class citizen

– Stanzas aren't framed or reliably delivered

– XMPP stacks are not easy to implement in a web environment

– Jingle is complicated and exotic

– XML is needlessly verbose and unwieldy

– The baseline feature-set is too minimal

– JIDs haven't taken off like Email or MSISDNs

– Not designed for mobile use cases (e.g. push; low bw)

– Well documented spam and identity/security issues

– ejabberd

