[matrix]

loT through Matrix

matthew@matrix.org




What's the problem with loT?



The past: matrix|

Cloud loT
¥ Service? s

~——

Network Music

Personal Video
Recorder

Hub

Network Music

Player Bluray Player

Connected Car

Sensors Refrigerator Set Top Box

Temperature
Sensors

Security Camera




The present:

PROCOULUUU UL OO U OUUUDUUURLTN

Vendor Silo 1

PROCOULUUU UL U U OUUUDUUURLTN

Vendor Silo 2

*

Data Management Apps

Data Management Apps

loT Service Vendor
p)

loT Service Vendor
1

ST EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEy
YasssssEsEEsEEEEEEEEEEEEEEEEEEEEEEEEEn®
ST EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

-
“sunmmmnmnnn

L]
[
[
L]
L]
-
\J

-
‘susssEEEEEEEEEEEE

*

asssssEssEsEEEEEEEEEEEEEEEEEEEEEEEEEn®

‘0
EEEEEEEEEEEEEEEEERS

Personal Video
Recorder

Bluray Player

Refrigerator Set Top Box

Temperature
Sensors

Network Music
Player

Connected Car
Sensors

Security Camera




[matrix]

The Problem:

- Data stored in vendor silos
(even for open protocols like XMPP,

MQTT, COAP...)

* Device/data management apps locked
to vendor silos...

* Devices locked to specific vendor
services...

=> Vendor Lock In and Fragmentation.



[matrix]

Introducing Matrix



[matrix]

Introducing Matrix

 New Open Source project (launched Sept 2014)
« Setting up as not-for-profit org (matrix.org)

* Publishing pragmatic simple HT TP API| standard
for persistent decentralised messaging.

* Defines client-server, server-server and
application-service APls

* Provides Apache-Licensed reference
implementations of the server (Python/Twisted)
and clients (web, iOS, Android, Python, Perl...)



[matrix]

Open

Decentralised

Persistent

Eventually Consistent
Cryptographically Secure
Messaging Database

with JSON-over-HTTP API.



[matrix]

Key Characteristics

* Entirely open:
— open standard; open source;
open project; open federation.

 Message History as first-class citizen

* Group communication as first-class citizen

— Fully distributed room state (cryptographically signed)
- no SPOFs or SPOCs.

« Strong cryptographic identity to prevent
spoofing

 |dentity agnhostic

« End-to-end encryption (RSN)



Demo time!

http://matrix.org/beta

10



'matrix|

Architecture

. Clients

Home
Servers

Identity
Servers

Application
Services




[matrix]
Functional Responsibility

« Clients: Talks simple HTTP APIs to homeservers to
push and pull messages and metadata. May be as
thin or thick a client as desired.

« Homeservers: Stores all the data for a user - the
history of the rooms in which they participate; their
public profile data.

 ldentity Servers: Trusted clique of servers (think DNS
root servers): maps 3" party IDs to matrix IDs.

« Application Services: Optional; delivers application
layer logic on top of Matrix (Gateways, Conferencing,
Archiving, Search etc). Can actively intercept
messages if required.

12



Federation Demo

http://matrix.org/matrix-
graph.html

13



[matrix]
Federation Design #1

* No single point of control for chat rooms.

* Any homeserver can publish a reference to a chat
room (although typically the address is the
homeserver of the user who created the room).

e Room addresses look like:

#matrix:matrix.org

(pronounced hash-matrix-on-matrix-dot-org)

* The IP of the matrix.org homeserver is discovered
through DNS (SRV _matrix record if available,
otherwise looks for port 8448 of the A record).

14



[matrix]

Federation Design #2

When a user joins a room, his HS queries the HS specified in
the room name to find a list of participating homeservers via
a simple GET

Messages form a directed acyclic graph (DAG) of
chronologicity, each crypto-signed by the origin HS

The user's HS pulls in messages via GETs from participating
HSs by attempting to walk the DAG

Each HS caches as much history as its users (or admin)
desires

When sending a message, the HS PUTs to participating
homeservers (currently full mesh, but fan-out semantics using

cyclical hashing in development)

15



[matrix]
Identity Design

« We don't want to be yet another identity system (e.g.
JIDs)

« So we aggregate existing 3 party IDs (3PID) and map
them to matrix IDs (MXIDs) by Identity Servers,
whose use in public is strictly optional.

* And so login and user discovery is typically done
entirely with 3@ party IDs.

 |ID servers validate 3" party IDs (e.g. email, MSISDN,
Facebook, G+) and map them to MXIDs. MXIDs look
like:

@matthew:matrix.org

16



[matrix]

Security Design #1

« Server-server traffic is mandatorily TLS from the outset

« (Can use official CA certs, but automagically self-sign and submit
certs to matrix ID servers as a free but secure alternative

« Server-client traffic mandates transport layer encryption other than
for tinkering

« (Clients that support PKI publish their public keys, and may encrypt
and sign their messages for E2E security.

 "Well behaved" clients should participate in key escrow servers to
allow private key submission for law enforcement.

« End-to-end encryption for group chat is supported through a per-
room encryption key which is shared 1:1 between participating
members

17



[matrix]

Security Design #2

 SPAM is contained by mandating invite
nandshake before communication

* |Invite handshakes are throttled per user

 Homeservers and users may be blacklisted on
identity servers

* |D servers authenticating 3PIDs are obligated to
mitigate bulk registration of users via CAPTCHAs
or domain-specific techniques (e.g. 2FA SMS for
MSISDNSs)

18



[matrix]

Application Services (AS)

...are Bots on steroids (with a hint of IRC services)

* They have privileged access to the server (granted
by the admin).

* They can subscribe to wide ranges of server
traffic (e.g. events which match a range of rooms,
or a range of users)

 They can masquerade as 'virtual users'.

* They can lazy-create 'virtual rooms'

* They can receive traffic by push.

19



[matrix]

Uses for AS API

« Gateways to other worlds

» Data manipulation
— Filtering
— Translation
— Indexing
— Mining
* Application Logic (e.g. bots, IVR services)

20



[matrix]

The client-server API

To send a message:

curl -XPOST -d '"{"msgtype":"m.text", "body":"hello"}'
"https://alice.com:8448/ matrix/client/api/v1l/rooms/
ROOM _ID/send/ ?access_token=ACCESS TOKEN"

"event_id": "YUwRidLecu"

21



[matrix]
The client-server API
To set up a WebRTC call:
curl -XPOST -d '{\

"version": 0, \
"call id": "12345”, \

"offer": {
"type" : "offer”,
"sdp" : "v=0\r\no=- 658458 2 IN IP4 127.0.0.1.."
}
}' "https://alice.com:8448/ matrix/client/api/v1l/rooms/
ROOM_ID/send/ ?access_token=ACCESS_TOKEN"

{ "event id": "ZruiCZBu” }

22



[matrix]

The client-server API

To persist some MIDI:

curl -XPOST -d "{\
"note": "71",\
"velocity": 68,\
"state": "on",\
"channel”: 1,\
"midi ts": 374023441\

1" "https://alice.com:8448/ matrix/client/api/vl/rooms/
ROOM_ID/send/ ?access_token=ACCESS TOKEN"

{ "event _id": “ORzczZn2” }

23



[matrix]

The client-server API

...or to persist some tap gestures for animating an Avatar...

curl -XPOST -d '{

"thumbnail®: "http://matrix.org:8080/_matrix/content/
QGt1Z2FuOmihdHIpeC5vcmcvNupjfhmFhjxDPquSZGaGlYj.aWlhZ2UvcG5n.png",

"actions": [

{"x": "@.5521607", "y": "6.224353", "t": "0.9479785"},
{"x": "@.5511537", "y": "6.220354", "t": "0.9701037"},
{"x": "@.5510949", "y": "6.214756", "t": "0.9804187"},
{"x": "0.5499267", "y": "6.213634", "t": "0.9972034"},
{"x": "0.5492241", "y": "6.210211", "t": "1.013744"},
{"x": "0.5486694", "y": "6.206304", "t": "1.030284"},
{"x": "0.5482137", "y": "6.201648", "t": "1.046764"},

{"x": "@.9997056", "y": "4.022976", "t": "8.970592"},
{"x": "@.9995697", "y": "4.043199", "t": "8.987072"}

]
}' "https://alice.com:8448/ matrix/client/api/v1l/rooms/ROOM _ID/send/
?access_token=ACCESS_TOKEN"

{ "event_id": “ORzcZn2” }

24



matrix

The server-server API

curl -XPOST -H ‘Authorization: X-Matrix origin=matrix.org,key="898be4..”,sig="“j7IXfIcPFDWl1lpdJz..”’ -d ‘{
"ts": 1413414391521,

"origin": "matrix.org",
"destination": "alice.com",
"prev_ids": ["elda392e61898bed4d2009b9fecce5325"],
"pdus": [{
"age": 314,
"content": {
"body": "hello world",
"msgtype": "m.text"

¥
"context": "!fkILCTRBTHhftNYgkP:matrix.org",
"depth": 26,
"hashes": {
"sha256": "MqVORjmjauxBDBzSyN2+Yu+KJIxw@oxrrJyuPW8NpELs"
¥
"is state": false,
"origin": "matrix.org",
"pdu_id": "rKQFuzZQawa",
"pdu_type": "m.room.message",

"prev_pdus": [
["PaBNREEuZj", "matrix.org"]
1
"signatures": {
"matrix.org": {
"ed25519:auto": "JZXTwAH/7EZbjHFhIFg8Xj6HGoSI+j7IXfIcPFDW11pdIz+JIPMHTDIZRha750371g7UM+CnhNAayHWZsUY3Ag"

}
})
"origin_server_ts": 1413414391521,
"user_id": "@matthew:matrix.org"

}]
}’ https://alice.com:8448/_matrix/federation/vl/send/916d630ea616342b42e98a3be0b74113 25



[matrix]

Federating loT Data

CoAP:

 REST over UDP (sort of)

 Everything’s a server!
(and a client)

« Maps onto HTTP APIs.

MQTT:

PubSub over TCP (sort of)

 Everything can pub & sub!
(via a broker).

 Maps onto message passing.

26



[matrix]

Exposing Matrix via CoAP
IS trivial:

echo '{"msgtype":"m.text", "body":"hello"}"' |
perl -MCBOR::XS -MJSON -pe '$ =encode cbor decode json'
coap-client -m post \

coaps://alice.com/ _m/c/a/v1/r/ROOM ID/s/ ?
a=ACCESS_TOKEN

is the same as...

curl -XPOST -d '{"msgtype":"m.text”, "body":"hello"}"
"https://alice.com:8448/ matrix/client/api/v1l/rooms/
ROOM _ID/send/ ?access_token=ACCESS TOKEN"

27



[matrix]

Any CoAP device can persist
data into Matrix, and act on
data pushed from Matrix.

A Matrix-aware MQTT Broker
could similarly store history to
Matrix, and expose Matrix
history and pubsub to MQTT
clients.



¢ T NN NN N N N NN R NN M N M N M N M N M N M N M RN M N M N M N M N M M M N M N M N M NN M NN N SN N SN .

S N N R S N S SN N M M N M SN M BN N BN SN N M M N M S Ey,

N o o o o e e e e e e e e e

Global Matrix
Persistent

Messaging
Fabric Custom
Protocol

Matrix
Client/Server API

loT Service Vendor loT Service Vendor 2

Matrix
Server/Server API

Matrix

Matrix loT Gateway Client/Server API
(on-prem or cloud)

Personal Video
Recorder

’--'

Bluray Player

P——

Refrigerator Set Top Box

Network Music Hub Heating

\ %

Television

Network Music
Player

Connected Car
Sensors

Temperature
Sensors

Lights Security Camera

L

| ———




[matrix]

Current Progress

 Funded May 2014

 First public release in Sept 2014

* Crypto and iOS/Android landed Oct 2014
« Exited alpha Nov 2014

 Jan 2014: 60 federated homeservers; 700 end
users.
* Next up:
— Release v2 Client-Server APlIs
— Release Application Server APls
— Build gateways!
— End-to-End Encryption
— Sort out Federated ID & Key Distribution

30



[matrix]
We need help!!
 We need people to try running their
own servers and join the federation.

* We need feedback on the APIs.

* We need more people to actually use it!

— Come talk on #matrix:matrix.org
(http://matrix.org/beta)

— Follow us @matrixdotorg

31



matrix

http://matrix.org

THANK YOU!

matrix: @matthew:matrix.org
mail: matthew@matrix.org
twitter: @matrixdotorg

32



