
Decentralised Persistent
Communication

matthew@matrix.org
http://www.matrix.org

mailto:matthew@matrix.org
http://www.matrix.org
http://www.matrix.org

 Open
 Decentralised
 Persistent
 Eventually Consistent
 Cryptographically Secure
 Messaging Database
 with JSON-over-HTTP API.

2

Matrix is for:
 Group Chat (and 1:1)
 WebRTC Signalling
 Bridging Comms Silos
 Internet of Things Data

…and anything else which needs to
pubsub persistent data to the world.

3

1st law of Matrix:
Conversation history and Group
comms are the 1st class citizens.

4

2nd law of Matrix:
No single party own your

conversations – they are shared
over all participants.

5

SIP was built to initiate 1:1 sessions.

(inspired by the use cases
of the PSTN)

6

XMPP was built to pass messages.

(inspired by the use cases
of AIM, ICQ, MSN)

7

Matrix was built to liberate and
synchronize conversation history.

(inspired by the use cases

of Slack, Hangouts, Lync, FB, WhatsApp)

8

Why?

10

The Matrix Ecosystem

The Matrix Specification (Client/Server API)

clien
t-sid

e

se
rver-sid

e

Other Servers and
Services

Synapse
(Reference Matrix

Server)

Matrix Application
Services

Other Clients

Matrix iOS
Console

MatrixKit (iOS)

matrix-ios-sdk

Matrix Web
Console

matrix-angular-
sdk

matrix-js-sdk

Android Console

matrix-android-
sdk

Matrix is:
• Non-profit Open Source Project
• De-facto Open Standard HTTP APIs:

– Client <-> Server
– Server <-> Server
– Application Services <-> Server

• Apache-Licensed Open Source Reference Impls
– Server (Python/Twisted)
– Client SDKs (iOS, Android, JS, Angular, Python, Perl)
– Clients (Web, iOS, Android)
– Application Services (IRC, SIP, XMPP, Lync bridges)

• A whole ecosystem of 3rd party servers, clients & services
12

What does it look like?

13

Demo time!

http://matrix.org/beta

14

http://matrix.org/beta
http://matrix.org/beta
http://matrix.org/beta

Matrix Architecture

Clients

Home
Servers

Identity
Servers

Application
Servers

Functional Responsibility
• Clients: Talks simple HTTP APIs to homeservers to push and

pull messages and metadata. May be as thin or thick a
client as desired.

• Homeservers: Stores all the data for a user - the history of
the rooms in which they participate; their public profile
data.

• Identity Servers: Trusted clique of servers (think DNS root
servers): maps 3rd party IDs to matrix IDs.

• Application Services: Optional; delivers application layer
logic on top of Matrix (Gateways, Conferencing, Archiving,
Search etc). Can actively intercept messages if required.

16

How does it work?

17

http://matrix.org/#about

The client-server API
To send a message:

curl -XPOST -d '{"msgtype":"m.text", "body":"hello"}'
"https://alice.com:8448/_matrix/client/api/v1/rooms/ROOM_
ID/send/m.room.message?access_token=ACCESS_TOKEN"

{

 "event_id": "YUwRidLecu"

}

18

The client-server API
To set up a WebRTC call:

curl -XPOST –d '{\

 "version": 0, \

 "call_id": "12345”, \

 "offer": {

 "type" : "offer”,

 "sdp" : "v=0\r\no=- 658458 2 IN IP4 127.0.0.1…"

 }

}'
"https://alice.com:8448/_matrix/client/api/v1/rooms/ROOM_
ID/send/m.call.invite?access_token=ACCESS_TOKEN"

{ "event_id": "ZruiCZBu” } 19

Basic 1:1 VoIP Matrix Signalling

 Caller Callee

m.call.invite ----------->

m.call.candidate -------->

[more candidates events]

 User answers call

 <------ m.call.answer

 [media flows]

 <------ m.call.hangup

20

The client-server API
To persist some MIDI:

curl -XPOST –d '{\

 "note": "71",\

 "velocity": 68,\

 "state": "on",\

 "channel": 1,\

 "midi_ts": 374023441\

}'
"https://alice.com:8448/_matrix/client/api/v1/rooms/ROOM_
ID/send/org.matrix.midi?access_token=ACCESS_TOKEN"

{ "event_id": “ORzcZn2” }

21

The server-server API
curl –XPOST –H ‘Authorization: X-Matrix origin=matrix.org,key=”898be4…”,sig=“j7JXfIcPFDWl1pdJz…”’ –d ‘{

 "ts": 1413414391521,

 "origin": "matrix.org",

 "destination": "alice.com",

 "prev_ids": ["e1da392e61898be4d2009b9fecce5325"],

 "pdus": [{

 "age": 314,

 "content": {

 "body": "hello world",

 "msgtype": "m.text"

 },

 "context": "!fkILCTRBTHhftNYgkP:matrix.org",

 "depth": 26,

 "hashes": {

 "sha256": "MqVORjmjauxBDBzSyN2+Yu+KJxw0oxrrJyuPW8NpELs"

 },

 "is_state": false,

 "origin": "matrix.org",

 "pdu_id": "rKQFuZQawa",

 "pdu_type": "m.room.message",

 "prev_pdus": [

 ["PaBNREEuZj", "matrix.org"]

],

 "signatures": {

 "matrix.org": {

 "ed25519:auto": "jZXTwAH/7EZbjHFhIFg8Xj6HGoSI+j7JXfIcPFDWl1pdJz+JJPMHTDIZRha75oJ7lg7UM+CnhNAayHWZsUY3Ag"

 }

 },

 "origin_server_ts": 1413414391521,

 "user_id": "@matthew:matrix.org"

 }]

}’ https://alice.com:8448/_matrix/federation/v1/send/916d630ea616342b42e98a3be0b74113

22

Application Services (AS)
• Extensible custom application logic
• They have privileged access to the server (granted by

the admin).
• They can subscribe to wide ranges of server traffic

(e.g. events which match a range of rooms, or a range
of users)

• They can masquerade as 'virtual users'.
• They can lazy-create 'virtual rooms'
• They can receive traffic by push.

23

Uses for AS API
• Gateways to other comms platforms
• Data manipulation

– Filtering
– Translation
– Indexing
– Mining
– Visualisation
– Orchestration

• Application Logic (e.g. bots, IVR services)
• …

24

A trivial application service
import json, requests # we will use this later

from flask import Flask, jsonify, request

app = Flask(__name__)

@app.route("/transactions/<transaction>", methods=["PUT"])

def on_receive_events(transaction):

 events = request.get_json()["events"]

 for event in events:

 print "User: %s Room: %s" % (event["user_id"], event["room_id"])

 print "Event Type: %s" % event["type"]

 print "Content: %s" % event["content"]

 return jsonify({})

if __name__ == "__main__":

 app.run()

25

26

Matrix Bridging with ASes

Existing App

Kamailio SIP<->Matrix GW
SIP->Matrix ingress call:

-> SIP INVITE

<- SIP 100

 create Matrix room inviting other party (reuse existing one if available)

 -> PUT m.call.invite

 <- PUT m.call.answer

<- 200 OK

-> ACK

-> SIP BYE

 m.call.hangup

<- SIP 200 OK

<- m.call.hangup

 -> BYE

 <- 200 OK

27

Kamailio SIP<->Matrix GW
• Use utils and json modules with http_query()

or OEJ's curl module to relay to Matrix
• Use xhttp module and

event_route[xhttp:request] to receive traffic
from Matrix and relay to SIP via txm
t_reply_callid() or dlg_bye()?

28

Current Progress
• Funded May 2014
• Launched alpha Sept 2014
• Entered beta Dec 2014
• Stable v0.9 Beta May 2014
• July 2014: v1.0 release?!
• Remaining:

– Build more gateways
– Polish spec
– End-to-End Encryption
– v2 Client-Server API

29

What's next?
• End-to-end encryption
• Reusable web UI components and improving the web client
• Multi-way VoIP
• Lots more Application Services
• Landing V2 APIs
• Use 3rd party IDs by default
• Yet more performance work
• Spec polishing
• New server implementations!

30

We need help!!

31

• We need people to try running their own
servers and join the federation.

• We need people to run gateways to their
existing services

• We need feedback on the APIs.
• Consider native Matrix support for new apps
• Follow @matrixdotorg and spread the word!

32

Thank you!

matthew@matrix.org
http://matrix.org
@matrixdotorg

33

http://matrix.org/

Federation Design #1
• No single point of control for chat rooms.
• Any homeserver can publish a reference to a chat

room (although typically the address is the
homeserver of the user who created the room).

• Room addresses look like:
#matrix:matrix.org

(pronounced hash-matrix-on-matrix-dot-org)

• The IP of the matrix.org homeserver is discovered
through DNS (SRV _matrix record if available,
otherwise looks for port 8448 of the A record).

34

Federation Design #2
• When a user joins a room, his HS queries the HS specified in the

room name to find a list of participating homeservers via a simple
GET

• Messages form a directed acyclic graph (DAG) of chronologicity,
each crypto-signed by the origin HS

• The user's HS pulls in messages via GETs from participating HSs by
attempting to walk the DAG

• Each HS caches as much history as its users (or admin) desires
• When sending a message, the HS PUTs to participating

homeservers (currently full mesh, but fan-out semantics using
cyclical hashing in development)

35

Identity Design
• We don't want to be yet another identity system (e.g. JIDs)
• So we aggregate existing 3rd party IDs (3PID) and map

them to matrix IDs (MXIDs) by Identity Servers, whose use
in public is strictly optional.

• And so login and user discovery is typically done entirely
with 3rd party IDs.

• ID servers validate 3rd party IDs (e.g. email, MSISDN,
Facebook, G+) and map them to MXIDs. MXIDs look like:

@matthew:matrix.org

36

Security Design #1
• Server-server traffic is mandatorily TLS from the outset
• Can use official CA certs, but automagically self-sign and submit certs to

matrix ID servers as a free but secure alternative
• Server-client traffic mandates transport layer encryption other than for

tinkering
• Clients that support PKI publish their public keys, and may encrypt and

sign their messages for E2E security.
• "Well behaved" clients should participate in key escrow servers to allow

private key submission for law enforcement.
• End-to-end encryption for group chat is supported through a per-room

encryption key which is shared 1:1 between participating members

37

Security Design #2
• SPAM is contained by mandating invite handshake

before communication
• Invite handshakes are throttled per user
• Homeservers and users may be blacklisted on identity

servers
• ID servers authenticating 3PIDs are obligated to

mitigate bulk registration of users via CAPTCHAs or
domain-specific techniques (e.g. 2FA SMS for
MSISDNs)

38

• Still in development; some early prototypes

• "Passive AS-API" Builds on the client-server API

– Service registers a URL for inbound events to be PUT to

– Allows a service to register for traffic on behalf of a namespace of
virtual users and virtual rooms

– Adds "superuser" permissions to subscribe to arbitrary filters of events
on the homeserver, and inject arbitrary events

– Modeled loosely after IRC Services

• Also: Active AS API for intercepting inbound events on a HS, and
Storage API for exposing existing conversation DBs to Matrix via a
HS.

Application Services: Spec & API

39

• matrix.org runs a homeserver.

• Matrix/SMS gw AS is registered to the homeserver,
masquerading for the 'sms.matrix.org' domain.

• @447968722968:sms.matrix.org routes to the
homeserver from anywhere in Matrix, which passes
events for *:sms.matrix.org through to the AS

• Matrix/SMS Gateway then relays via SMS aggregators to
send SMS to +447968722968

• The reverse path is symmetrical, with the Matrix/SMS AS
injecting events into the HS on behalf of
@447968722968:sms.matrix.org

AS Example: Matrix/SMS Gateway

40

• Similarly, AS can implement a SIP gateway, posing as a
range of virtual matrix users.

• Events such as 'm.call.invite' and 'm.call.candidates' are
PUT to the AS by the HS

• AS converts directly into SIP signalling (reINVITEing to
advertise new ICE candidates)

• Media flows out-of-band to Matrix as typical WebRTC
SRTP.

• We've already written a basic Matrix/Verto gateway
(using client-service API – see matrix.org/blog)

AS Example: Matrix/SIP Gateway

41

Why not XMPP?
• We used to use XMPP (ejabberd, OpenFire, Spectrum, psyced, Psi,

Pidgin, ASmack, Spark, XMPP.Framework)
• We built an alternative because:

– Single server per MUC is single point of control
– Synchronised history is a very 2nd class citizen
– Stanzas aren't framed or reliably delivered
– XMPP stacks are not easy to implement in a web environment
– Jingle is complicated and exotic
– XML is needlessly verbose and unwieldy
– The baseline feature-set is too minimal
– JIDs haven't taken off like Email or MSISDNs
– Not designed for mobile use cases (e.g. push; low bw)
– Well documented spam and identity/security issues
– ejabberd

