
Decentralised Communication:
The challenge of balancing
interoperability and privacy.

matthew@matrix.org
http://www.matrix.org

Privacy in Matrix

2

Two basic types of privacy:

1. Can attackers see what
you're saying?

2. Can attackers see who
you're talking to, and when?

3

Matrix can protect the
contents of what you're
saying using end-to-end
encryption.

Neither the servers nor the
network can decrypt the data;
only invited clients.

4

End to End Crypto with Olm

5

https://matrix.org/git/olm

End to End Encryption
• Based on Open Whisper Systems’ “Double

Ratchet” algorithm as used in Signal etc.
• Public audit by NCC Group
• Started beta roll-out in Sept 2016 on Web
• Beta launched Nov 21 2016 on iOS+Android
• Keys are per-device, not per-user (currently)
• So encryption is per-device.
• Supports flexible history privacy per-room.

6

Olm
• Apache License C++11 implementation of

Double Ratchet, exposing a C API.

• Supports encrypted asynchronous 1:1
communication.

• “Megolm” layer adds group
communication too.

• ~150KB x86-64 .so, or ~250KB of asm.js

7

8

Olm	+	Megolm C	API

Account
• Keys

Session
• Initial	Key	Exchange

Ratchet

• Encrypt
• Decrypt

Crypto

• Curve25519
• AES
• SHA256

Megolm Group	
Ratchet

Alice Bob
Alice and Bob both generate identity (I) &
ephemeral (E) elliptic curve key pairs

Initial Shared Secret (ISS) =
ECDH(Ea, Ib) +
ECDH(Ia, Eb) +
ECDH(Ea, Eb)

Discard Ea
Derive chain key from ISS (HMAC)
Derive message key (K0) from chain key
(HMAC)
Derive new chain key ß hash ratchet
M0 = Message plaintext
C0 = Authenticated Encryption of (M0, K0)
Ra0 = generate random ratchet key pair
Ja0 = incremental counter for each hash
ratchet advancement

Ia, Ea, Eb, Ra0, Ja0, C0

A Double ratchet.
Kinda sorta.

Alice Bob
Compute same Initial Shared Secret =

ECDH(Ea, Ib) +
ECDH(Ia, Eb) +
ECDH(Ea, Eb)

Compute same K0
M0 = Authenticated decryption of (C0, K0)

To respond, B starts new ratchet chain:
Rb1 = generate random ratchet key pair
New Initial Shared Secret =

ECDH(Ra0, Rb1) ß ECDH Ratchet

C0 = Authenticated Encryption of (M, K0)
Ra0 = generate random ratchet key
Ja0 = incremental counter for each hash
ratchet advancement

Rb1, Jb1, C1

A Double ratchet.
Kinda sorta.

11

Alice

Sending | Receiving

MK CK RK CK MK
-- -- -- -- --

ECDH(A0,B0)
|
|

ECDH(A1,B0) +
/|

/ |
/ + ECDH(A1,B1)

CK-A1-B0 |\
| | \

MK-0 ----+ | \
| | CK-A1-B1

MK-1 ----+ | |
| | +---- MK-0

MK-2 ----+ | |
| +---- MK-1

ECDH(A2,B1) +
/|

/ |
/ |

CK-A2-B1 |
| + ECDH(A2,B2)

MK-0 ----+ \
\
\
CK-A2-B2

|
+---- MK-0
|
+---- MK-1

Group chat
• Adds a 3rd type of ratchet: “Megolm”, used to

encrypt group messages.
• Simple hash ratchet, which can be fast-forwarded

to ease sharing ratchet details.
• Each sender maintains its own ratchet per room
• Establish 'normal' 1:1 ratchets between all

participant devices in order to share the initial
secret for a sender’s group ratchet session.

• Ratchets are replaced when users leave, on
demand, or every N messages

12

Flexible privacy with Megolm
• Rooms can be configured to have:
– No ratchet (i.e. no crypto)

– Full PFS ratchet

– Selective ratchet
• Deliberately share megolm ”session keys” to

support paginating partial eras of history.

• Up to participants to trigger the ratchet (e.g. when
a member joins or leaves the room)

13

• Debugging!
• Backing up & restoring megolm session ratchet data
• Sharing session ratchet data with new devices or new

room participants
• Cross-signing device keys?
• Better device verification
• Better push notification UX for E2E rooms
• Better primitives & performance
• Turning on E2E by default for rooms with private history
• Negotiating E2E with legacy clients(?)

14

Olm: What’s next?

So, what about protecting
metadata?

(i.e. hiding who's talking to who and when?)

15

Matrix is all about
pragmatically fixing today's

vendor lock-in problem.

You can't bridge existing
networks without exposing

who's talking to who.
16

17

Bridges expose metadata

Existing App

Unavoidable
Metadata leak!

That said, Matrix also
exposes metadata on Home

Servers:

18

19

Home Servers expose
metadata too

Can we do better?

Apps like Pond show that you
can obfuscate metadata quite

effectively:

20

21

Pond

Tor

Pond servers
(Tor hidden services)

Pond clients,
storing encrypted
history

Pond preserves sender privacy
through Group Signatures – only the
client can decrypt who the message
was from.

Matrix was designed to
evolve and support future
network architectures and

privacy strategies.

22

Thought Experiment:
Could Matrix adopt a
Pond-like strategy?

23

• Move home servers onto the
client.
• Use pond-style Tor hidden

services for store-and-forward
of encrypted messages.
• Migrate incrementally from

'classic' DAG federation.

24

25

Matrix with Pond strategy

Existing App

Tor

Advantages over pure Pond
• Supports any and all Matrix clients via the

existing standard client-server API

• Supports decentralised conversation history
by tunnelling HS federation over Pond

• Supports bridging to other networks via
existing Matrix AS API or classic Matrix
Federation – at expense of privacy. Mitigated
by disabling bridging/federation per-room.

26

Thank you!
matthew@matrix.org

http://matrix.org
@matrixdotorg

27

