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WELCOME!

This book is designed to help you learn the major concepts of single-variable
calculus, while also concentrating on problem-solving techniques. Whether
this is your first exposure to calculus, or you are studying for a test, or you've
already taken calculus and want to refresh your memory, I hope that this book
will be a useful resource.

The inspiration for this book came from my students at Princeton Univer-
sity. Over the past few years, they have found early drafts to be helpful as a
study guide in conjunction with lectures, review sessions and their textbook.
Here are some of the questions that they’'ve asked along the way, which you
might also be inclined to ask:

e Why is this book so long? I assume that you, the reader, are moti-
vated to the extent that you’d like to master the subject. Not wanting
to get by with the bare minimum, you’re prepared to put in some time
and effort reading—and understanding—these detailed explanations.

¢ What do I need to know before I start reading? You need to
know some basic algebra and how to solve simple equations. Most of
the precalculus you need is covered in the first two chapters.

e Help! The final is in one week, and I don’t know anything!
Where do I start? The next three pages describe how to use this
book to study for an exam.

e Where are all the worked solutions to examples? All I see is
lots of words with a few equations. Looking at a worked solution
doesn’t tell you how to think of it in the first place. So, I usually try to
give a sort of “inner monologue”—what should be going through your
head as you try to solve the problem. You end up with all the pieces of
the solution, but you still need to write it up properly. My advice is to
read the solution, then come back later and try to work it out again by
yourself.

e Where are the proofs of the theorems? Most of the theorems in
this book are justified in some way. More formal proofs can be found in
Appendix A.

e The topics are out of order! What do I do? There’s no standard
order for learning calculus. The order I have chosen works, but you might
have to search the table of contents to find the topics you need and ignore
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the rest for now. I may also have missed out some topics too—why not
try emailing me at adrian@calclifesaver.com and you never know, I just
might write an extra section or chapter for you (and for the next edition,
if there is one!).

e Some of the methods you use are different from the methods
I learned. Who is right—my instructor or you? Hopefully we're
both right! If in doubt, ask your instructor what’s acceptable.

e Where’s all the calculus history and fun facts in the margins?
Look, there’s a little bit of history in this book, but let’s not get too
distracted here. After you get this stuff down, read a book on the
history of calculus. It’s interesting stuff, and deserves more attention
than a couple of sentences here and there.

e Could my school use this book as a textbook? Paired with a
good collection of exercises, this book could function as a textbook, as
well as being a study guide. Your instructor might also find the book
useful to help prepare lectures, particularly in regard to problem-solving
techniques.

e What’s with these videos? You can find videos of a year’s supply of
my review sessions, which reference a lot (but not all!) of the sections
and examples from this book, at this website:

| www.calclifesaver.com |

How to Use This Book fo Study for an Exam

There’s a good chance you have a test or exam coming up soon. I am sympa-
thetic to your plight: you don’t have time to read the whole book! There’s a
table on the next page that identifies the main sections that will help you to
review for the exam. Also, throughout the book, the following icons appear
in the margin to allow you quickly to identify what’s relevant:

e A worked-out example begins on this line.

e Here’s something really important.

e You should try this yourself.

e Beware: this part of the text is mostly for interest. If time is limited,
skip to the next section.

Also, some important formulas or theorems
have boxes around them: learn these well.
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Two all-purpose study Tips

e Write out your own summary of all the important points and formulas to
memorize. Math isn’t about memorization, but there are some key formulas
and methods that you should have at your fingertips. The act of making the
summary is often enough to solidify your understanding. This is the main
reason why I don’t summarize the important points at the end of a chapter:
it’s much more valuable if you do it yourself.

e Try to get your hands on similar exams—maybe your school makes previous
years’ finals available, for example—and take these exams under proper con-
ditions. That means no breaks, no food, no books, no phone calls, no emails,
no messaging, and so on. Then see if you can get a solution key and grade it,
or ask someone (nicely!) to grade it for you.

You’ll be on your way to that A if you do both of these things.

Key sections for exam review (by fopic)

Topic Subtopic Section(s)
Precalculus Lines 1.5
Other common graphs 1.6
Trig basics 2.1
Trig with angles outside [0, 7/2] 2.2
Trig graphs 2.3
Trig identities 2.4
Exponentials and logs 9.1
Limits Sandwich principle 3.6
Polynomial limits all of Chapter 4
Derivatives in disguise 6.5
Trig limits 7.1 (skip 7.1.5)
Exponential and log limits 9.4
L’Hopital’s Rule 14.1
Overview of limit problems 14.2
Continuity Definition 5.1
Intermediate Value Theorem 5.1.4
Differentiation Definition 6.1
Rules (e.g., product/quotient/chain rule) 6.2
Finding tangent lines 6.3
Derivatives of piecewise-defined functions 6.6
Sketching the derivative 6.7
Trig functions 72,721
Implicit differentiation 8.1
Exponentials and logs 9.3
Logarithmic differentiation 9.5
Hyperbolic functions 9.7
Inverse functions in general 10.1
Inverse trig functions 10.2
Inverse hyperbolic functions 10.3
Differentiating definite integrals 17.5
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CHAPTER 1

Functions, Graphs, and Lines

1.1

Trying to do calculus without using functions would be one of the most point-
less things you could do. If calculus had an ingredients list, functions would
be first on it, and by some margin too. So, the first two chapters of this book
are designed to jog your memory about the main features of functions. This
chapter contains a review of the following topics:

e functions: their domain, codomain, and range, and the vertical line test;
e inverse functions and the horizontal line test;

e composition of functions;

e odd and even functions;

e graphs of linear functions and polynomials in general, as well as a brief
survey of graphs of rational functions, exponentials, and logarithms; and

e how to deal with absolute values.

Trigonometric functions, or trig functions for short, are dealt with in the next
chapter. So, let’s kick off with a review of what a function actually is.

Functions

A function is a rule for transforming an object into another object. The
object you start with is called the input, and comes from some set called the
domain. What you get back is called the output; it comes from some set
called the codomain.

Here are some examples of functions:

e Suppose you write f(z) = 2. You have just defined a function f which
transforms any number into its square. Since you didn’t say what the
domain or codomain are, it’s assumed that they are both R, the set of all
real numbers. So you can square any real number, and get a real number
back. For example, f transforms 2 into 4; it transforms —1/2 into 1/4;
and it transforms 1 into 1. This last one isn’t much of a change at all, but
that’s no problem: the transformed object doesn’t have to be different
from the original one. When you write f(2) = 4, what you really mean
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is that f transforms 2 into 4. By the way, f is the transformation
rule, while f(x) is the result of applying the transformation rule to the
variable z. So it’s technically not correct to say “f(z) is a function”; it
should be “f is a function.”

e Now, let g(x) = 22 with domain consisting only of numbers greater than
or equal to 0. (Such numbers are called nonnegative.) This seems like
the same function as f, but it’s not: the domains are different. For
example, f(—1/2) =1/4, but g(—1/2) isn’t defined. The function g just
chokes on anything not in the domain, refusing even to touch it. Since
g and f have the same rule, but the domain of g is smaller than the
domain of f, we say that g is formed by restricting the domain of f.

e Still letting f(x) = 22, what do you make of f(horse)? Obviously this is
undefined, since you can’t square a horse. On the other hand, let’s set

h(z) = number of legs x has,

where the domain of h is the set of all animals. So h(horse) = 4, while
h(ant) = 6 and h(salmon) = 0. The codomain could be the set of
all nonnegative integers, since animals don’t have negative or fractional
numbers of legs. By the way, what is h(2)? This isn’t defined, of course,
since 2 isn’t in the domain. How many legs does a “2” have, after
all? The question doesn’t really make sense. You might also think that
h(chair) = 4, since most chairs have four legs, but that doesn’t work
either, since a chair isn’t an animal, and so “chair” is not in the domain
of h. That is, h(chair) is undefined.

e Suppose you have a dog called Junkster. Unfortunately, poor Junkster
has indigestion. He eats something, then chews on it for a while and
tries to digest it, fails, and hurls. Junkster has transformed the food
into ... something else altogether. We could let

j(x) = color of barf when Junkster eats z,

where the domain of j is the set of foods that Junkster will eat. The
codomain is the set of all colors. For this to work, we have to be confident
that whenever Junkster eats a taco, his barf is always the same color
(say, red). If it’s sometimes red and sometimes green, that’s no good: a
function must assign a unique output for each valid input.

Now we have to look at the concept of the range of a function. The range is
the set of all outputs that could possibly occur. You can think of the function
working on transforming everything in the domain, one object at a time; the
collection of transformed objects is the range. You might get duplicates, but
that’s OK.

So why isn’t the range the same thing as the codomain? Well, the range
is actually a subset of the codomain. The codomain is a set of possible
outputs, while the range is the set of actual outputs. Here are the ranges of
the functions we looked at above:
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e If f(z) = 2% with domain R and codomain R, the range is the set of
nonnegative numbers. After all, when you square a number, the result
cannot be negative. How do you know the range is all the nonnegative
numbers? Well, if you square every number, you definitely cover all
nonnegative numbers. For example, you get 2 by squaring v/2 (or —v/2).

e If g(z) = 2%, where the domain of g is only the nonnegative numbers
but the codomain is still all of R, the range will again be the set of
nonnegative numbers. When you square every nonnegative number, you
still cover all the nonnegative numbers.

o If h(z) is the number of legs the animal z has, then the range is all
the possible numbers of legs that any animal can have. I can think of
animals that have 0, 2, 4, 6, and 8 legs, as well as some creepy-crawlies
with more legs. If you include individual animals which have lost one or
more legs, you can also include 1, 3, 5, and 7 in the mix, as well as other
possibilities. In any case, the range of this function isn’t so clear-cut;
you probably have to be a biologist to know the real answer.

e Finally, if j(x) is the color of Junkster’s barf when he eats z, then the
range consists of all possible barf-colors. I dread to think what these
are, but probably bright blue isn’t among them.

INnferval notation

In the rest of this book, our functions will always have codomain R, and the
domain will always be as much of R as possible (unless stated otherwise).
So we’ll often be dealing with subsets of the real line, especially connected
intervals such as {z : 2 <z < 5}. It’s a bit of a pain to write out the full set
notation like this, but it sure beats having to say “all the numbers between 2
and 5, including 2 but not 5.” We can do even better using interval notation.

We'll write [a, b] to mean the set of all numbers between a and b, including
a and b themselves. So [a,b] means the set of all x such that a <z < b. For
example, [2, 5] is the set of all real numbers between 2 and 5, including 2 and
5. (It’s not just the set consisting of 2, 3, 4, and 5: don’t forget that there are
loads of fractions and irrational numbers between 2 and 5, such as 5/2, /7,
and 7.) An interval such as [a, b] is called closed.

If you don’t want the endpoints, change the square brackets to parentheses.
In particular, (a,b) is the set of all numbers between a and b, not including a
or b. So if z is in the interval (a,b), we know that a < = < b. The set (2,5)
includes all real numbers between 2 and 5, but not 2 or 5. An interval of the
form (a,b) is called open.

You can mix and match: [a,b) consists of all numbers between a and b,
including a but not b. And (a,b] includes b but not a. These intervals are
closed at one end and open at the other. Sometimes such intervals are called
half-open. An example is the set {z : 2 < z < 5} from above, which can also
be written as [2,5).

There’s also the useful notation (a, c0) for all the numbers greater than a
not including a; [a, c0) is the same thing but with a included. There are three
other possibilities which involve —oo; all in all, the situation looks like this:
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(a,b) {r:a<z<b} = >
a b
[a, b] {r:a<z<b} <= >
a b
(a, b] {z:a<z<b} <= >
a b
[a, b) {z:a<z<b} = . >
a b
(a,00) {z:z>a} <
a
[a, 00) {r:z>a} -«
a
(—o0,b)  {x:z<b} >
b
(—o00, b] {z:2 <b} >
b

(—00,00) R

1.1.2 Finding the domain

Sometimes the definition of a function will include the domain. (This was
the case, for example, with our function g from Section 1.1 above.) Most of
the time, however, the domain is not provided. The basic convention is that
the domain consists of as much of the set of real numbers as possible. For
example, if k(x) = v/z, the domain can’t be all of R, since you can’t take the
square root of a negative number. The domain must be [0, c0), which is just
the set of all numbers greater than or equal to 0.

OK, so square roots of negative numbers are bad. What else can cause a
screw-up? Here’s a list of the three most common possibilities:

1. The denominator of a fraction can’t be zero.

2. You can’t take the square root (or fourth root, sixth root, and so on) of
a negative number.

3. You can’t take the logarithm of a negative number or of 0. (Remember
logs? If not, see Chapter 9!)

You might recall that tan(90°) is also a problem, but this is really a special
case of the first item above. You see,

sin(90°) 1
tan(90°) = v ) -
an(90%) = Z 5907 0

so the reason tan(90°) is undefined is really that a hidden denominator is zero.
Here’s another example: if we try to define

_ logyg(z + 8)v/26 — 2z
(=2 (x+19)

f(x)

then what is the domain of f? Well, for f(x) to make sense, here’s what needs
to happen:

e We need to take the square root of (26 —2x), so this quantity had better
be nonnegative. That is, 26 — 2z > 0. This can be rewritten as x < 13.
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e We also need to take the logarithm of (z + 8), so this quantity needs to
be positive. (Notice the difference between logs and square roots: you
can take the square root of 0, but you can’t take the log of 0.) Anyway,
we need x + 8 > 0, so x > —8. So far, we know that —8 < x < 13, so
the domain is at most (—8,13].

e The denominator can’t be 0; this means that (x—2) # 0 and (x+19) # 0.
In other words, x # 2 and = # —19. This last one isn’t a problem, since
we already know that x lies in (—8,13], so x can’t possibly be —19. We
do have to exclude 2, though.

So we have found that the domain is the set (—8,13] except for the number
2. This set could be written as (—8,13]\{2}. Here the backslash means “not
including.”

Finding the range using the groph

Let’s define a new function F by specifying that its domain is [—2, 1] and that
F(x) = 2% on this domain. (Remember, the codomain of any function we
look at will always be the set of all real numbers.) Is F' the same function as
f, where f(x) = x? for all real numbers z? The answer is no, since the two
functions have different domains (even though they have the same rule). As
in the case of the function g from Section 1.1 above, the function F' is formed
by restricting the domain of f.

Now, what is the range of F'7 Well, what happens if you square every
number between —2 and 1 inclusive? You should be able to work this out
directly, but this is a good opportunity to see how to use a graph to find the
range of a function. The idea is to sketch the graph of the function, then
imagine two rows of lights shining from the far left and far right of the graph
horizontally toward the y-axis. The curve will cast two shadows, one on the
left side and one on the right side of the y-axis. The range is the union of
both shadows: that is, if any point on the y-axis lies in either the left-hand or
the right-hand shadow, it is in the range of the function. Let’s see how this
works with our function F"
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The left-hand shadow covers all the points on the y-axis between 0 and 4
inclusive, which is [0,4]; on the other hand, the right-hand shadow covers
the points between 0 and 1 inclusive, which is [0, 1]. The right-hand shadow
doesn’t contribute anything extra: the total coverage is still [0, 4]. This is the
range of F.

The vertical line test

In the last section, we used the graph of a function to find its range. The graph
of a function is very important: it really shows you what the function “looks
like.” We'll be looking at techniques for sketching graphs in Chapter 12, but
for now I'd like to remind you about the vertical line test.

You can draw any figure you like on a coordinate plane, but the result
may not be the graph of a function. So what’s special about the graph of a
function? What is the graph of a function f, anyway? Well, it’s the collection
of all points with coordinates (z, f(x)), where x is in the domain of f. Here’s
another way of looking at this: start with some number z. If z is in the
domain, you plot the point (z, f(z)), which of course is at a height of f(x)
units above the point = on the z-axis. If x isn’t in the domain, you don’t plot
anything. Now repeat for every real number x to build up the graph.

Here’s the key idea: you can’t have two points with the same x-coordinate.
In other words, no two points on the graph can lie on the same vertical line.
Otherwise, how would you know which of the two or more heights above the
point x on the x-axis corresponds to the value of f(x)? So, this leads us to
the wvertical line test: if you have some graph and you want to know whether
it’s the graph of a function, see whether any vertical line intersects the graph
more than once. If so, it’s not the graph of a function; but if no vertical line
intersects the graph more than once, you are indeed dealing with the graph
of a function. For example, the circle of radius 3 units centered at the origin
has a graph like this:

Such a commonplace object should be a function, right? No, check the vertical
lines that are shown in the diagram. Sure, to the left of —3 or to the right
of 3, there’s no problem—the vertical lines don’t even hit the graph, which is
fine. Even at —3 or 3, the vertical lines only intersect the curve in one point
each, which is also fine. The problem is when z is in the interval (—3, 3). For
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any of these values of x, the vertical line through (z,0) intersects the circle
twice, which screws up the circle’s potential function-status. You just don’t
know whether f(z) is the top point or the bottom point.

The best way to salvage the situation is to chop the circle in half hori-
zontally and choose only the top or the bottom half. The equation for the
whole circle is 22 + 2 = 9, whereas the equation for the top semicircle is
y =9 — x2. The bottom semicircle has equation y = —v/9 — 22. These last
two are functions, both with domain [—3,3]. If you felt like chopping in a
different way, you wouldn’t actually have to take semicircles—you could chop
and change between the upper and lower semicircles, as long as you don’t vi-
olate the vertical line test. For example, here’s the graph of a function which
also has domain [—3, 3]:

The vertical line test checks out, so this is indeed the graph of a function.

INverse Functions

Let’s say you have a function f. You present it with an input x; provided that
x is in the domain of f, you get back an output, which we call f(z). Now we
try to do things all backward and ask this question: if you pick a number y,
what input can you give to f in order to get back y as your output?

Here’s how to state the problem in math-speak: given a number y, what
x in the domain of f satisfies f(x) = y? The first thing to notice is that y
has to be in the range of f. Otherwise, by definition there are no values of
x such that f(z) = y. There would be nothing in the domain that f would
transform into y, since the range is all the possible outputs.

On the other hand, if y is in the range, there might be many values that
work. For example, if f(z) = 2% (with domain R), and we ask what value
of z transforms into 64, there are obviously two values of x: 8 and —8. On
the other hand, if g(x) = 2%, and we ask the same question, there’s only one
value of x, which is 4. The same would be true for any number we give to g
to transform, because any number has only one (real) cube root.

So, here’s the situation: we’re given a function f, and we pick y in the range
of f. Ideally, there will be exactly one value of x which satisfies f(z) = y.
If this is true for every value of y in the range, then we can define a new
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function which reverses the transformation. Starting with the output y, the
new function finds the one and only input x which leads to the output. The
new function is called the inverse function of f, and is written as f~!. Here’s
a summary of the situation in mathematical language:

1. Start with a function f such that for any y in the range of f, there is
exactly one number z such that f(z) = y. That is, different inputs give
different outputs. Now we will define the inverse function f—'.

2. The domain of f~! is the same as the range of f.
3. The range of f~! is the same as the domain of f.
4. The value of f~!(y) is the number z such that f(z) = y. So,

it f(z) =y, then f~'(y) = .

The transformation f~! acts like an undo button for f: if you start with
and transform it into y using the function f, then you can undo the effect of
the transformation by using the inverse function f~! on y to get x back.

This raises some questions: how do you see if there’s only one value of z
that satisfies the equation f(z) = y? If so, how do you find the inverse, and
what does its graph look like? If not, how do you salvage the situation? We’ll
answer these questions in the next three sections.

The horizontal line test

For the first question—how to see that there’s only one value of = that works
for any y in the range—perhaps the best way is to look at the graph of your
function. We want to pick y in the range of f and hopefully only have one value
of = such that f(z) =y. What this means is that the horizontal line through
the point (0,y) should intersect the graph exactly once, at some point (z,y).
That x is the one we want. If the horizontal line intersects the curve more
than once, there would be multiple potential inverses x, which is bad. In that
case, the only way to get an inverse function is to restrict the domain; we’ll
come back to this very shortly. What if the horizontal line doesn’t intersect
the curve at all? Then y isn’t in the range after all, which is OK.

So, we have just described the horizontal line test: if every horizontal line
intersects the graph of a function at most once, the function has an inverse.
If even one horizontal line intersects the graph more than once, there isn’t an

inverse function. For example, look at the graphs of f(z) = 2% and g(x) = 2%
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No horizontal line hits y = f(z) more than once, so f has an inverse. On the
other hand, some of the horizontal lines hit the curve y = g(x) twice, so g
has no inverse. Here’s the problem: if you want to solve y = z2 for z, where
y is positive, then there are two solutions, z = /y and x = —,/y. You don’t
know which one to take!

Finding the inverse

Now let’s move on to the second of our questions: how do you find the inverse
of a function f? Well, you write down y = f(z) and try to solve for x. In
our example of f(z) = 2%, we have y = 27, so # = . This means that
f~(y) = ¥y. If the variable y here offends you, by all means switch it to
x: you can write f~!(z) = ¥z if you prefer. Of course, solving for z is not
always easy and in fact is often impossible. On the other hand, if you know
what the graph of your function looks like, the graph of the inverse function
is easy to find. The idea is to draw the line y = x on the graph, then pretend
that this line is a two-sided mirror. The inverse function is the reflection of
the original function in this mirror. When f(z) = 23, here’s what f~! looks
like:

L @)=

~mirror (y = x)

The original function f is reflected in the mirror y = = to get the inverse
function. Note that the domain and range of both f and f~! are the whole
real line.

Restricting the domain

Finally, we’ll address our third question: if the horizontal line test fails and
there’s no inverse, what can be done? Our problem is that there are multiple
values of x that give the same y. The only way to get around the problem
is to throw away all but one of these values of x. That is, we have to decide
which one of our values of x we want to keep, and throw the rest away. As we
saw in Section 1.1 above, this is called restricting the domain of our function.
Effectively, we ghost out part of the curve so that what’s left no longer fails
the horizontal line test. For example, if g(x) = 22, we can ghost out the left
half of the graph like this:
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The new (unghosted) curve has the reduced domain [0, c0) and satisfies the
horizontal line test, so there is an inverse function. More precisely, the function
h, which has domain [0, 00) and is defined by h(x) = 22 on this domain, has
an inverse. Let’s play the reflection game to see what it looks like:

i y = h(z)

L ~ mirror (y = z)

I y=h"1(z)

To find the equation of the inverse, we have to solve for = in the equation
y = x2. Clearly the solution is x = Vy or x = —,/y, but which one do we
need? We know that the range of the inverse function is the same as the
domain of the original function, which we have restricted to be [0,00). So
we need a nonnegative number as our answer, and that has to be z = /.
That is, h=1(y) = VY. Of course, we could have ghosted out the right half of
the original graph to restrict the domain to (—oo,0]. In that case, we’d get a
function j which has domain (—oo, 0] and again satisfies j(z) = 2?2, but only
on this domain. This function also has an inverse, but the inverse is now the
negative square root: j'(y) = —,/7.

By the way, if you take the original function g given by g(z) = x? with
domain (—o00, 00), which fails the horizontal line test, and try to reflect it in
the mirror y = x, you get the following picture:
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Notice that the graph fails the vertical line test, so it’s not the graph of a
function. This illustrates the connection between the vertical and horizontal
line tests—when horizontal lines are reflected in the mirror y = z, they become
vertical lines.

INnverses of inverse functions

One more thing about inverse functions: if f has an inverse, it’s true that
f7Y(f(z)) = x for all z in the domain of f, and also that f(f~!(y)) =y for
all y in the range of f. (Remember, the range of f is the same as the domain
of =1, so you can indeed take f~!(y) for y in the range of f without causing
any screwups.)

For example, if f(z) = 2?, then f has an inverse given by f~1(z) = ¥z,
and so f~'(f(x)) = Va® = z for any z. Remember, the inverse function is
like an undo button. We use x as an input to f, and then give the output to
=1 this undoes the transformation and gives us back z, the original number.
Similarly, f(f~'(y)) = (¢¥y)® = y. So f~! is the inverse function of f, and
f is the inverse function of f~!. In other words, the inverse of the inverse is
the original function.

Now, you have to be careful in the case where you restrict the domain. Let
g(x) = x?; we've seen that you need to restrict the domain to get an inverse.
Let’s say we restrict the domain to [0, 00) and carelessly continue to refer to
the function as g instead of h, as in the previous section. We would then say
that g~(z) = \/z. If you calculate g(g~'(x)), you find that this is (y/7)2,
which equals x, provided that 2 > 0. (Otherwise you can’t take the square
root in the first place.)

On the other hand, if you work out g~'(g(z)), you get v/z2, which is not
always the same thing as x. For example, if + = —2, then 22 = 4 and so
Va2 = /4 = 2. So it’s not true in general that ¢~'(g(z)) = . The problem
is that —2 isn’t in the restricted-domain version of g. Technically, you can’t
even compute g(—2), since —2 is no longer in the domain of g. We really
should be working with A, not g, so that we remember to be more careful.
Nevertheless, in practice, mathematicians will often restrict the domain with-
out changing letters! So it will be useful to summarize the situation as follows:

If the domain of a function f can be restricted so that f has an inverse
f~L, then
e f(f~(y)) =y for all y in the range of f; but
e f71(f(x)) may not equal z; in fact, f~*(f(z)) = z only when z is in
the restricted domain.

We’ll be revisiting these important points in the context of inverse trig func-
tions in Section 10.2.6 of Chapter 10.

Composition of Functions

Let’s say we have a function g given by g(r) = 22. You can replace x by

anything you like, as long as it makes sense. For example, you can write
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g(y) = y?, or g(x +5) = (x + 5)2. This last example shows that you need to
be very careful with parentheses. It would be wrong to write g(x+5) = x+52,
since this is just @ + 25, which is not the same thing as (z + 5)2. If in doubt,
use parentheses. That is, if you need to write out f(something), replace every
instance of x by (something), making sure to include the parentheses. Just
about the only time you don’t need to use parentheses is when the function is
an exponential function—for example, if h(z) = 3%, then you can just write
h(z2 + 6) = 37" T6. You don’t need parentheses since you're already writing
the x2 + 6 as a superscript.

Now consider the function f defined by f(x) = cos(x?). If I give you a
number z, how do you compute f(z)? Well, first you square it, then you take
the cosine of the result. Since we can decompose the action of f(z) into these
two separate actions which are performed one after the other, we might as
well describe those actions as functions themselves. So, let g(z) = 2?2 and
h(z) = cos(x). To simulate what f does when you use x as an input, you
could first give x to g to square it, and then instead of taking the result back
you could ask g to give its result to h instead. Then h spits out a number,
which is the final answer. The answer will, of course, be the cosine of what
came out of g, which was the square of the original x. This behavior exactly
mimics f, so we can write f(z) = h(g(z)). Another way of expressing this is
to write f = h o g; here the circle means “composed with.” That is, f is h
composed with g, or in other words, f is the composition of h and g. What’s
tricky is that you write h before g (reading from left to right as usual!) but
you apply g first. I agree that it’s confusing, but what can I say—you just
have to deal with it.

It’s useful to practice composing two or more functions together. For
example, if g(z) = 2%, h(z) = 5z*, and j(z) = 2z — 1, what is a formula for
the function f = go h o j?7 Well, just replace one thing at a time, starting
with j, then A, then g. So:

g(h(2x — 1)) = g(5(2x — 1)1) = 253>~ 1",

~
—
8
~—
I
2
>
[
—~
8
S~—"
S~—"
S~—"
I

You should also practice reversing the process. For example, suppose you
start off with

1
~ tan(5logy(x + 3))°

f(x)

How would you decompose f into simpler functions? Zoom in to where you
see the quantity x. The first thing you do is add 3, so let g(z) = = + 3.
Then you have to take the base 2 logarithm of the resulting quantity, so set
h(z) = log,(x). Next, multiply by 5, so set j(x) = 5x. Then take the tangent,
so put k(z) = tan(z). Finally, take reciprocals, so let m(z) = 1/x. With all
these definitions, you should check that

f(@) = m(k(i(h(g(x)))))-
Using the composition notation, you can write

f=mokojohog.
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This isn’t the only way to break down f. For example, we could have combined
h and j into another function n, where n(xz) = 5log,(x). Then you should
check that n = j o h, and

f=mokonog.

Perhaps the original decomposition (involving j and h) is better because it
breaks down f into more elementary steps, but the second one (involving n)
isn’t wrong. After all, n(z) = 5log,(x) is still a pretty simple function of x.

Beware: composition of functions isn’t the same thing as multiplying them
together. For example, if f(z) = z?sin(z), then f is not the composition of
two functions. To calculate f(z) for any given z, you actually have to find
both x? and sin(z) (it doesn’t matter which one you find first, unlike with
composition) and then multiply these two things together. If g(x) = 22 and
h(z) = sin(z), then we’d write f(z) = g(x)h(x), or f = gh. Compare this to
the composition of the two functions, j = g o h, which is given by

j(x) = g(h(2)) = g(sin(z)) = (sin(x))

or simply j(x) = sin®(x). The function j is a completely different function
from the product z?sin(z). It’s also different from the function k = ho g,
which is also a composition of g and h but in the other order:

k(@) = hlg(x)) = h(?) = sin(a?).

This is yet another completely different function. The moral of the story is
that products and compositions are not the same thing, and furthermore, the
order of the functions matters when you compose them, but not when you
multiply them together.

One simple but important example of composition of functions occurs
when you compose some function f with g(z) = & — a, where a is some
constant number. You end up with a new function h given by h(z) = f(z—a).
A useful point to note is that the graph of y = h(z) is the same as the graph
of y = f(z), except that it’s shifted over a units to the right. If a is negative,
then the shift is to the left. (The way to think of this, for example, is that a
shift of —3 units to the right is the same as a shift of 3 units to the left.) So,
how would you sketch the graph of y = (x — 1)2? This is the same as y = 22,
but with z replaced by & — 1. So the graph of y = 22 needs to be shifted to
the right by 1 unit, and looks like this:

y=(z—1)
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1.4

Similarly, the graph of y = (x + 2)? is the graph of y = 22 shifted to the left
by 2 units, since you can interpret (x 4 2) as (z — (—2)).

Odd and Even Functions

Some functions have some symmetry properties that make them easier to deal
with. Consider the function f given by f(x) = x2. Pick any positive number
you like (T'll choose 3) and hit it with f (T get 9). Now take the negative of
that number, —3 in my case, and hit that with f (I get 9 again). You should
get the same answer both times, as I did, regardless of which number you
chose. You can express this phenomenon by writing f(—z) = f(x) for all x.
That is, if you give x to f as an input, you get back the same answer as if
you used the input —z instead. Notice that g(z) = 2* and h(z) = 2% also
have this property—in fact, j(x) = 2™, where n is any even number (n could
in fact be negative), has the same property. Inspired by this, we say that a
function f is even if f(—z) = f(x) for all z in the domain of f. It’s not good
enough for this equation to be true for some values of z; it has to be true for
all z in the domain of f.

Now, let’s say we play the same game with f(z) = 23. Take your favorite
positive number (I'll stick with 3) and hit that with f (I get 27). Now try
again with the negative of your number, —3 in my case; I get —27, and you
should also get the negative of what you got before. You can express this
mathematically as f(—z) = —f(x). Once again, the same property holds for
j(x) = 2™ when n is any odd number (and once again, n could be negative).
So, we say that a function f is odd if f(—x) = —f(z) for all z in the domain
of f.

In general, a function might be odd, it might be even, or it might be
neither odd nor even. Don’t forget this last point! Most functions are neither
odd nor even. On the other hand, there’s only one function that’s both odd
and even, which is the rather boring function given by f(x) = 0 for all 2 (we’ll
call this the “zero function”). Why is this the only odd and even function?
Let’s convince ourselves. If the function f is even, then f(—z) = f(z) for
all z. But if it’s also odd, then f(—z) = —f(x) for all . Take the first of
these equations and subtract the second from it. You should get 0 = 2f(z),
which means that f(z) = 0. This is true for all z, so the function f must
just be the zero function. One other nice observation is that if a function
f is odd, and the number 0 is in its domain, then f(0) = 0. Why is it so?
Because f(—z) = —f(z) is true for all z in the domain of f, so let’s try it for
x = 0. You get f(—0) = —f(0). But —0 is the same thing as 0, so we have
f£(0) = —f(0). This simplifies to 2f(0) = 0, or f(0) = 0 as claimed.

Anyway, starting with a function f, how can you tell if it is odd, even, or
neither? And so what if it is odd or even anyway? Let’s look at this second
question before coming back to the first one. One nice thing about knowing
that a function is odd or even is that it’s easier to graph the function. In fact,
if you can graph the right-hand half of the function, the left-hand half is a
piece of cake! Let’s say that f is an even function. Then since f(z) = f(—x),
the graph of y = f(z) is at the same height above the z-coordinates = and
—x. This is true for all z, so the situation looks something like this:
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Same height

We can conclude that the graph of an even function has mirror sym-
metry about the y-axis. So, if you graph the right half of a function which
you know is even, you can get the left half by reflecting the right half about
the y-axis. Check the graph of y = x? to make sure that it has this mirror
Ssymimetry.

On the other hand, let’s say that f is an odd function. Since we have
f(=z) = —f(x), the graph of y = f(z) is at the same height above the
x-coordinate x as it is below the z-coordinate —z. (Of course, if f(z) is
negative, then you have to switch the words “above” and “below.”) In any
case, the picture looks like this:

Same length,

opposite signs

The symmetry is now a point symmetry about the origin. That is, the graph
of an odd function has 180° point symmetry about the origin. This
means that if you only have the right half of a function which you know is
odd, you can get the left half as follows. Pretend that the curve is sitting
on top of the paper, so you can pick it up if you like but you can’t change
its shape. Instead of picking it up, put a pin through the curve at the origin
(remember, odd functions must pass through the origin if they are defined at
0) and then spin the whole curve around half a revolution. This is what the
left-hand half of the graph looks like. (This doesn’t work so well if the curve
isn’t continuous, that is, if the curve isn’t all in one piece!) Check to see that
the above graph and also the graph of y = x> have this symmetry.

Now, suppose f is defined by the equation f(x) = logs(22°—62%+3). How
do you tell if f is odd, even, or neither? The technique is to calculate f(—x)
by replacing every instance of x with (—z), making sure not to forget the
parentheses around —x, and then simplifying the result. If you end up with
the original expression f(z), then f is even; if you end up with the negative of
the original expression f(—z), then f is odd; if you end up with a mess that
isn’t either f(x) or —f(x), then f is neither (or you didn’t simplify enough!).
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In the example above, you’d write
f(=2) =logs(2(—2)° — 6(—x)? + 3) = logs (22° — 62% + 3),

which is actually equal to the original f(z). So the function f is even. How
about
- 2% 4+ 2

72173—1-1:—17
32245 '

g(z) and h(z) = 52 15

Well, for g, we have

2(—x) + (—2) -22°—u
3(—x)2+5 32245

g(—z) =

Now you have to observe that you can take the minus sign out front and write

223 +x
9(=2) =555
which, you notice, is equal to —g(x). That is, apart from the minus sign, we
get the original function back. So, g is an odd function. How about h? We
have
20—z +(—2) -1 228 —a2—-1

M=t == rss 3215

Once again, we take out the minus sign to get

23 +x+1

L T

Hmm, this doesn’t appear to be the negative of the original function, because
of the +1 term in the numerator. It’s not the original function either, so the
function & is neither odd nor even.

Let’s look at one more example. Suppose you want to prove that the
product of two odd functions is always an even function. How would you go
about doing this? Well, it helps to have names for things, so let’s say we have
two odd functions f and g. We need to look at the product of these functions,
so let’s call the product h. That is, we define h(z) = f(x)g(z). So, our task is
to show that h is even. We’ll do this by showing that h(—z) = h(x), as usual.
It will be helpful to note that f(—z) = —f(z) and g(—x) = —g(z), since f
and g are odd. Let’s start with h(—x). Since h is the product of f and g, we
have h(—z) = f(—x)g(—z). Now we use the oddness of f and g to express
this last term as (—f(x)) (—g(z)). The minus signs now come out front and
cancel out, so this is the same thing as f(x)g(z) which of course equals h(x).
We could (and should) express all this text mathematically like this:

Anyway, since h(—z) = h(z), the function h is even. Now you should try to
prove that the product of two even functions is always even, and also that the
product of an odd and an even function must be odd. Go on, do it now!
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Graphs of Linear Functions

Functions of the form f(z) = mx + b are called linear. There’s a good reason
for this: the graphs of these functions are lines. (As far as we’re concerned,
the word “line” always means “straight line.”) The slope of the line is given
by m. Imagine for a moment that you are in the page, climbing the line as
if it were a mountain. You start at the left side of the page and head to the
right, like this:

If the slope m is positive, as it is in the above picture, then you are heading
uphill. The bigger m is, the steeper the climb. On the other hand, if the
slope is negative, then you are heading downhill. The more negative the
slope, the steeper the downhill grade. If the slope is zero, then the line is flat,
or horizontal—you’re going neither uphill nor downhill, just trudging along a
flat line.

To sketch the graph of a linear function, you only need to identify two
points on the graph. This is because there’s only one line that goes through
two different points. You just put your ruler on the points and draw the line.
One point is easy to find, namely, the y-intercept. Set x = 0 in the equation
y = mx + b, and you see that y = m x 0+ b = b. That is, the y-intercept is
equal to b, so the line goes through (0,b). To find another point, you could
find the z-intercept by setting y = 0 and finding what x is. This works pretty
well except in two cases. The first case is when b = 0, in which case we are
just dealing with y = ma. This goes through the origin, so the x-intercept
and the y-intercept are both zero. To get another point, you’ll just have to
substitute in x = 1 and see that y = m. So, the line y = maz goes through
the origin and (1, m). For example, the line y = —2x goes through the origin
and also through (1, —2), so it looks like this:

y=—2z
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The other bad case is when m = 0. But then we just have y = b, which is a
horizontal line through (0, b).

For a more interesting example, consider y = %x — 1. The y-intercept is
—1, and the slope is % To sketch the line, find the z-intercept by setting

y=0. We get 0= %:1: — 1, which simplifies to x = 2. So, the line looks like
this:

y:%x—l

_

2

Now, let’s suppose you know that you have a line in the plane, but you don’t
know its equation. If you know it goes through a certain point, and you know
what its slope is, then you can find the equation of the line. You really, really,
really need to know how to do this, since it comes up a lot. This formula,
called the point-slope form of a linear function, is what you need to know:

If a line goes through (zo,yo) and has slope m,
then its equation is  y — yo = m(x — xg).

For example, what is the equation of the line through (—2,5) which has slope
—3? It is y — 5 = —3(x — (—2)), which you can expand and simplify down to
y=—-3r— 1

Sometimes you don’t know the slope of the line, but you do know two
points that it goes through. How do you find the equation? The technique
is to find the slope, then use the previous idea with one of the points (your
choice) to find the equation. First, you need to know this:

Y2 — Y1

If a line goes through (z1,y1) and (22, y2), its slope is equal to
To — X1

So, what is the equation of the line through (—3,4) and (2,—6)7 Let’s find
the slope first:

) —6—4 -10

slope = Py oy B
We now know that the line goes through (—3,4) and has slope —2, so its
equation is y —4 = —2(z — (—3)), or after simplifying, y = —2x — 2. Alterna-
tively, we could have used the other point (2, —6) with slope —2 to see that the
equation of the line is y — (—6) = —2(z — 2), which simplifies to y = —2z — 2.
Thankfully this is the same equation as before—it doesn’t matter which point
you pick, as long as you have used both points to find the slope.

—2.
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1.6 Common Functions and Graphs
Here are the most important functions you should know about.

1. Polynomials: these are functions built out of nonnegative integer powers
of z. You start with the building blocks 1, z, 22, 23, and so on, and you are
allowed to multiply these basic functions by numbers and add a finite number
of them together. For example, the polynomial f(z) = 5z*—42%+10 is formed
by taking 5 times the building block 2*, and —4 times the building block z?,
and 10 times the building block 1, and adding them together. You might
also want to include the intermediate building blocks 2 and z, but since they
don’t appear, you need to take 0 times of each. The amount that you multiply
the building block x™ by is called the coefficient of ™. For example, in the
polynomial f above, the coefficient of z* is 5, the coefficient of x> is —4, the
coefficients of #? and x are both 0, and the coefficient of 1 is 10. (Why allow
x and 1, by the way? They seem different from the other blocks, but they’re
not really: = 2! and 1 = 2°.) The highest number n such that z" has a
nonzero coefficient is called the degree of the polynomial. For example, the
degree of the above polynomial f is 4, since no power of = greater than 4 is
present. The mathematical way to write a general polynomial of degree n is

p(T) = ant" + an_17" + -+ a22® + @12 + ao,

where a,, is the coefficient of ™, a,_; is the coefficient of 2”1, and so on
down to ag, which is the coefficient of 1.

Since the functions z™ are the building blocks of all polynomials, you
should know what their graphs look like. The even powers mostly look similar
to each other, and the same can be said for the odd powers. Here’s what the
graphs look like, from z° up to z”:
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Sketching the graphs of more general polynomials is more difficult. Even find-
ing the z-intercepts is often impossible unless the polynomial is very simple.
There is one aspect of the graph that is fairly straightforward, which is what
happens at the far left and right sides of the graph. This is determined by
the so-called leading coefficient, which is the coeflicient of the highest-degree
term. This is basically the number a,, defined above. For example, in our
polynomial f(z) = 52* — 423 + 10 from above, the leading coefficient is 5. In
fact, it only matters whether the leading coefficient is positive or negative. It
also matters whether the degree of the polynomial is odd or even; so there are
four possibilities for what the edges of the graph can look like:

n even, a, > 0 n odd, a, >0 n even, a, < 0 n odd, a, <0

The wiggles in the center of these diagrams aren’t relevant—they depend
on the other terms of the polynomial. The diagram is just supposed to show
what the graphs look like near the left and right edges. In this sense, the
graph of our polynomial f(x) = 5% — 423 + 10 looks like the leftmost picture
above, since n = 4 is even and a,, = 5 is positive.

Let’s spend a little time on degree 2 polynomials, which are called quadrat-
ics. Instead of writing p(z) = asx®+a1x+ag, it’s easier to write the coefficients
as a, b, and ¢, so we have p(z) = ax? + bz + c. Quadratics have two, one,
or zero (real) roots, depending on the sign of the discriminant. The discrimi-
nant, which is often written as A, is given by A = b? — 4ac. There are three
possibilities. If A > 0, then there are two roots; if A = 0, there is one root,
which is called a double root; and if A < 0, then there are no roots. In the
first two cases, the roots are given by

—b+Vb? — 4ac
2a '

Notice that the expression in the square root is just the discriminant. An im-
portant technique for dealing with quadratics is completing the square. Here’s
how it works. We’ll use the example of the quadratic 222 — 3z + 10. The
first step is to take out the leading coefficient as a factor. So our quadratic
becomes 2(z* — 3z 4 5). This reduces the situation to dealing with a monic
quadratic, which is a quadratic with leading coefficient equal to 1. So, let’s
worry about 22 — %:C + 5. The main technique now is to take the coefficient
of z, which in our example is —%, divide it by g to get —%, and square it. We

get 19—6. We wish that the constant term were 35 instead of 5, so let’s do some
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mental gymnastics:

2_ Y _ 22 - _

Why on earth would we want to add and subtract %? Because the first three

terms combine to form (z — 3)2. So, we have

3 3 9 9 3\ 9
2__ — 2__ - _ 2 _ v v
x 2x+5 <x 2x+16>—|—5 16 <x 4> +5 16

Now we just have to work out the last little bit, which is just arithmetic:
5 — % = %. Putting it all together, and restoring the factor of 2, we have

2
1
2I2—3I+10—2<x2—gx+5> —2<<x—g> +%>

It turns out that this is a much nicer form to deal with in a number of situa-
tions. Make sure you know how to complete the square, since we’ll be using
this technique a lot in Chapters 18 and 19.

2. Rational functions: these are functions of the form

where p and ¢ are polynomials. Rational functions will pop up in many
different contexts, and the graphs can look very different depending on the
polynomials p and ¢q. The simplest examples of rational functions are poly-
nomials themselves, which arise when ¢(x) is the constant polynomial 1. The
next simplest examples are the functions 1/x™, where n is a positive integer.
Let’s look at some of the graphs of these functions:

The odd powers look similar to each other, and the even powers look
similar to each other. It’s worth knowing what these graphs look like.
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3. Exponentials and logarithms: you need to know what graphs of expo-
nentials look like. For example, here is y = 27:

y=2"

The graph of y = b* for any other base b > 1 looks similar to this. Things
to notice are that the domain is the whole real line, the y-intercept is 1, the
range is (0,00), and there is a horizontal asymptote on the left at y = 0.
In particular, the curve y = b” does not, I repeat, not touch the x-axis, no
matter what it looks like on your graphing calculator! (We’ll be looking at
asymptotes again in Chapter 3.) The graph of y = 277 is just the reflection
of y = 2% in the y-axis:

How about when the base is less than 17 For example, consider the graph of
y = (3)*. Notice that (3)” = 1/2% = 27", so the above graph of y = 277 is
also the graph of y = (%)I, since 27% and (%)I are equal for any x. The same
sort of thing happens for y = b* for any 0 < b < 1, not just b = %

Now, notice that the graph of y = 2% satisfies the horizontal line test,
so there is an inverse function. This is in fact the base 2 logarithm, which is
written y = log,(x). Using the line y = x as a mirror, the graph of y = log,(z)
looks like this:
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i - mirror (y = x)

y = logy()

The domain is (0, 00); note that this backs up what I said earlier about not
being able to take logarithms of a negative number or of 0. The range is all of
(—00,00), and there’s a vertical asymptote at = 0. The graphs of log;,(z),
and indeed log,(x) for any b > 1, are very similar to this one. The log func-
tion is very important in calculus, so you should really know how to draw the
above graph. We'll look at other properties of logarithms in Chapter 9.

4. Trig functions: these are so important that the entire next chapter is
devoted to them.

5. Functions involving absolute values: let’s take a close look at the
absolute value function f given by f(z) = |z|. Here’s the definition of |z|:

T if z >0,
|| =

-z ifz <O0.

Another way of looking at |z| is that it is the distance between 2 and 0 on
the number line. More generally, you should learn this nice fact:

‘ | — y| is the distance between z and y on the number line. ‘

For example, suppose that you need to identify the region |z — 1| < 3 on the
number line. You can interpret the inequality as “the distance between x and
1 is less than or equal to 3.” That is, we are looking for all the points that
are no more than 3 units away from the number 1. So, let’s take a number
line and mark in the number 1 as follows:

The points which are no more than 3 units away extend to —2 on the left and
4 on the right, so the region we want looks like this:

3 units 3 units

So, the region |x — 1| < 3 can also be described as [—2,4].
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It’s also true that |z| = v/z2. To check this, suppose that 2 > 0; then
V#2 = z, no problem. If instead z < 0, then it can’t be true that vz2 = x,
since the left-hand side is positive but the right-hand side is negative. The
correct equation is V#2 = —z; now the right-hand side is positive, since it’s
minus a negative number. If you look back at the definition of |z|, you’ll see
that we have just proved that |z| = v22. Even so, to deal with ||, it’s much
better to use the piecewise definition than to write it as vz2.

Finally, let’s take a look at some graphs. If you know what the graph of a
function looks like, you can get the graph of the absolute value of that function
by reflecting everything below the z-axis up to above the z-axis, using the
x-axis as your mirror. For example, here’s the graph of y = |z|, which comes
from reflecting the bottom portion of y = x in the x-axis:

y = ||

bl bbb mirror (z-axis)

How about the graph of y = [logy(x)|? Using the reflection of the graph of
y = log, () above, this is what the absolute value version looks like:

y = [logy ()]

mirror (z-axis)

Anyway, that’s all I have to say about functions, apart from trig functions
which are the subject of the next chapter. Hopefully you’ve seen a lot of the
stuff in this chapter before. Most of the material in this chapter is used over
and over again in calculus, so make sure you really get on top of it all as soon
as you can!



CHAPTER 2

Review of Trigonometry

2.1

To do calculus, you really need to know trigonometry. Truth be told, we won’t
see much trig at first, but when it comes, it doesn’t let up. So we might as
well do a thorough review of the most important aspects of trig:

e angles in radians and the basics of the trig functions;

e trig functions on the real line (not just angles between 0° and 90°);

e graphs of trig functions; and

e trig identities.

Time to refresh your memory.. ..

The Basics

The first thing I want to remind you about is the notion of radians. Instead of
saying that there are 360 degrees in a full revolution, we’ll say that there are 27
radians. This may seem a bit wacky, but there is a reason: the circumference
of a circle of radius 1 unit is 27 units. In fact, the arc length of a wedge of
this circle is exactly the angle of the wedge:

0 units

0 radians

This picture is pretty and all, but the main thing is to be comfortable with
the most common angles in both degree and radian form. First, you should
become absolutely comfortable with the idea that 90° is the same as /2
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radians, and similarly that 180° is the same as 7w radians and 270° is the same
as 37/2 radians. Once you have that in mind, try to be comfortable converting

all the angles in the following picture back and forth between degrees and
radians:

| ==

>3

3
270° = —
2

More generally, you can also use the formula
angle in radians = % x angle in degrees
if you need to. For example, to see what 57/12 radians is in degrees, solve

oT T lein d
3 = 180 x angle in degrees

to see that 57/12 radians is the same as (180/7) x (57/12) = 75°. In fact,
you can think of this conversion from radians to degrees as a sort of change
of units, like changing from miles to kilometers. The conversion factor is that
7 radians is the same as 180 degrees.

We have only looked at angles so far, so let’s move on to trig functions.
Obviously you have to know how the trig functions are defined in terms of
triangles. Suppose you have a right-angled triangle and one of the angles,
other than the right angle, is labeled 6, like this:

N
&
W opposite
0
adjacent
Then the basic formulas are
sit dj t it
sin(e) — M, COS(G) — w, a,nd tan(@) — w
hypotenuse hypotenuse adjacent
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Of course, if the angle 6 is moved, then the opposite and adjacent have to be
moved as well:

(%]
0P
o
o

Wit adjacent

opposite

The opposite is, unsurprisingly, opposite the angle # and the adjacent is next
to it. The hypotenuse never changes, though: it is the longest side and is
always across from the right angle.
We'll also be using the reciprocal functions csc, sec, and cot, which are
defined as follows:
1 1 1

) sec(z) = and cot(x) = tan(@)’

cso(w) = cos(z)’

sin(x)

Now, a piece of advice if you ever plan to take a calculus exam (or even
if you don’t!): learn the values of the trig functions at the common angles
0, 7/6, 7/4, w/3, and w/2. For example, without thinking, can you simplify
sin(7/3)? How about tan(w/4)? If you can’t, then at best you're wasting
time trying to use a triangle to find the answer, and at worst you’re throwing
away easy points by not simplifying your answer all the way. The solution is
to memorize the following table:

" § 1 5 3
sin 0 % % ? 1
cos 1 ? % % 0
tan 0 % 1 V3 *

The star means that tan(w/2) is undefined. In fact, the tan function has a
vertical asymptote at /2 (this will be clear from the graph, which we’ll look
at in Section 2.3 below). Anyway, you need to be able to quote any of the
entries in this table, both forward and backward! What this means is that
you have to be able to answer two types of questions. Here are examples of
each of these types:

1. What is sin(7/3)? (Using the table, the answer is v/3/2.)
2. What angle between 0 and 7/2 has a sine equal to v/3/2? (The answer
is obviously 7/3.)
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2.2

Of course, you have to be able to answer these two types of questions for each
entry in the table. Please, please, I beg of you, learn this table! Math isn’t
about memorization, but there are a few things that are worth memorizing
and this table is definitely on the list. So make flash cards, get your friends
to quiz you, spend one minute a day, whatever works for you, but learn the
table.

Extending the Domain of Trig Functions

The above table (did you learn it yet?) only covers some angles ranging from
0 to m/2. It’s possible to take sin or cos of any angle at all, even a negative
one. For tan, we have to be a little more careful—for example, we saw above
that tan(7/2) is undefined. Still, we’ll be able to take tan of just about every
angle, even most negative ones.

Let’s first look at angles between 0 and 27 (remember that 27 is the same
as 360°). Suppose you want to calculate sin(6) (or cos(d), or tan(f)), where
0 is between 0 and 2m. To see what this even means, start by drawing a
coordinate plane with some slightly weird labels:

2
II I
m 0 (= 2m)
IT1 IV
3
2

Notice that the axes divide the plane into four quadrants, which are creatively
labeled from 1 to 4 (in Roman numerals), and that the labeling goes coun-
terclockwise. These quadrants are called the first, second, third, and fourth
quadrants, respectively. The next step is to draw a ray (that’s half a line)
starting at the origin. Which ray? It depends on 6. Just imagine yourself
standing at the origin, looking to the right along the positive z-axis. Now
turn counterclockwise an angle of 8, then march forward in a straight line.
Your trail is the ray you're looking for.

Now the other labels on the above picture (and the one on page 26) make
a lot of sense. Indeed, if you turn an angle of /2, you are facing up the page
and you trace out the positive y-axis as you walk along. If you had instead
turned an angle of m, you'd get the negative z-axis; and if you had turned
3w /2, you'd get the negative y-axis. Finally, if you had turned 27, that would
put you back to where you started, facing along the positive z-axis. It’s the
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same as if you hadn’t turned at alll That’s why the picture says 0 = 2w. As
far as angles are concerned, 0 and 27 are equivalent.

OK, let’s take some angle 6 and draw in the appropriate ray. Perhaps it
might be somewhere in the third quadrant, like this:

s
2

11 I

™ /\ 0 (=2m)

111 v
3m

2

Notice that we label the ray as 6, not the angle itself. Anyway, now we pick
some point on the ray and drop a perpendicular from that point to the z-axis:

Ny

11 I

0~ (7,y)
111 IV

We're interested in three quantities: the z- and y-coordinates of the point
(which are called z and y, of course!) and also the distance from the point
to the origin, which is called . Note that  and y could both potentially
be negative—in fact, they both are negative in the above picture—but r is
always positive, since it’s a distance. In fact, by Pythagoras’ Theorem, we

have r = y/x2 + y?2, regardless of the signs of z and y. (The squares kill off
any minus signs around.)

Armed with these three quantities, we can define the three trig functions
as follows:

sin(f) = g, cos(f) = E, and tan(f) = Y
r r T



30 e Review of Trigonometry

These are just the regular formulas from Section 2.1 above, with the quantities
x, y, and 7 interpreted as the adjacent, opposite, and hypotenuse, respectively.
But wait, you say—what happens if you choose a different point on the ray?
It doesn’t matter, because your new triangle will be similar to the old one
and the above ratios are unaffected. In fact, it is often convenient to assume
that » = 1, so that the point (z,y) lies on the so-called unit circle (that’s the
circle of radius 1 centered at the origin).

Now let’s look at an example. Suppose we want to find sin(77/6). Which
quadrant is 77/6 in? We need to decide where 77 /6 fits in the list 0, /2, ,
3m/2, 2. In fact, 7/6 is greater than 1 but less than 3/2, so 77 /6 fits between
7 and 37 /2. In fact, the picture looks pretty much like the above example:

s
2
II I

™ L /\ 0 (= 2n)

111 v

So the angle 77/6 is in the third quadrant. We’ve chosen the point on the
ray which has distance r = 1 from the origin, then dropped a perpendicular.
We know from the above formulas that sin(f) = y/r = y (since r = 1), so we
really need to find y. Well, that little angle between our ray at 77/6 and the
negative z-axis—which itself is at m—must be the difference between these
two angles, 7/6. The little angle is called the reference angle. In general, the
reference angle for 0 is the smallest angle between the ray which represents 6
and the z-axis. It must be between 0 and 7/2. In our example, the closest
route to the z-axis is up, so the reference angle looks like this:

2
11 I

reference angle =

111 v
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So in the little triangle, we know that » = 1 and the angle is 7/6. It looks
like y = sin(7w/6) = 1/2, except that can’t be right! Since we’re below the
x-axis, the quantity y must be negative. That is, y = —1/2. Since sin(d) = y,
we have shown that sin(77/6) = —1/2. We can also repeat this with cosine
instead of sine to see that = — cos(m/6) = —/3/2. After all,  has to be
negative, since the point (z,y) is to the left of the y-axis. This shows that
cos(7m/6) = —/3/2 and we have identified our point (z,y) as (—v/3/2, —1/2).

The ASTC method

The key in the previous example is that sin(77/6) is related to sin(7/6), where
7/6 is the reference angle for 77 /6. In fact, it’s not hard to see that the sine
of any angle is plus or minus the sine of the reference angle! This narrows
it down to just two possibilities, and there’s no need to mess around with z,
y, or r. So in our example, we just needed to find that the reference angle
for 7w /6 is 7/6; this immediately told us that sin(77/6) is equal to either
sin(m/6) or —sin(w/6) and we just had to make sure we got the correct one.
We saw that it was the negative one because y was negative.

Actually, the sine of anything in the third or fourth quadrant must be
negative because y is negative there. Similarly, the cosine of anything in the
second or third quadrant must be negative, since x is negative there. The
tangent is the ratio y/x, which is negative in the second and fourth quadrants
(since one, but not both, of x and y is then negative) but positive in the first
and third quadrants.

Let’s summarize these findings in words as well as with a picture. First, all
three functions are positive in the first quadrant (I). In the second quadrant
(I), only sin is positive; the other two functions are negative. In the third
quadrant (IIT), only tan is positive; the other two functions are negative.
And finally, in the fourth quadrant (IV), only cos is positive; the other two
functions are negative. Here’s what it all looks like:

™
2
II I
sin + sin +
CcoSs — cos +
t —
an S A tan +
™ 0 (= 2m)
. T .
cos — cos +
tan + tan —
111 1A%
3
2

In fact, the letters ASTC on the diagram are all you need to remember. They
show you which of the functions are positive in that quadrant. “A” stands for
“All,” meaning all the functions are positive in the first quadrant; the other
letters obviously stand for sin, tan, and cos, respectively. In our example,
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77/6 is in the third quadrant, so only tan is positive there. In particular, sin
is negative, so since we had narrowed the value of sin(77/6) down to 1/2 or
—1/2, it must be the negative possibility: indeed, sin(77/6) = —1/2.

The only problem with the ASTC diagram is that it doesn’t really tell
you how to handle the angles 0, 7/2, 7, or 37/2, since they lie on the axes.
In this case, it’s best to forget all about the ASTC stuff and draw a graph
of y = sin(x) (or cos(z) or tan(x), as appropriate) and read the value off the
graph. We'll discuss this in Section 2.3 below.

Meanwhile, here’s a summary of the ASTC method for finding trig func-
tions of angles between 0 and 27:

1. Draw the quadrant diagram, decide where in the picture the angle you
care about is, and then mark that angle in the diagram.

2. If the angle you want is on the z- or y-axis (that is, not within any
quadrant), draw a graph of the trig function and read the value off the
graph (there are some examples in Section 2.3 below).

3. Otherwise, find the smallest angle between the one we want and the
x-axis; this is called the reference angle.

4. If you can, use the important table to work out the value of the trig
function of the reference angle. That’s the answer you need, except that
you might need a minus sign in front.

5. Use the ASTC diagram to decide whether or not you need a minus sign.

Let’s look at a couple of examples. How would you find cos(77/4) and
tan(97/13)? We’ll look at them one at a time. For cos(77/4), we notice that
7/4 is between 3/2 and 2, so the angle must be in the fourth quadrant:

ol

™ <\ 0 (=2m)
\_/reference angle

T

4
TI1 o IV

To work out the reference angle, notice that we have to go up to 27 (not
down to 0, beware!) so the reference angle is the difference between 27 and
7r/4, which is (2r — 7w/4) or simply 7/4. So, cos(7mw/4) is plus or minus
cos(m/4), which is 1/4/2 according to our table. Is it plus or minus? The
ASTC picture says that cos is positive in the fourth quadrant, so it’s plus:

cos(Tm/4) = 1/v/2.
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Now let’s look at tan(97/13). We see that 9/13 is between 1/2 and 1, so
the angle 97/13 is in the second quadrant:

ol

I 97 I

13
reference angle

e

™

0 (=2n)

II1 3 v

This time we have to go up to 7 to get to the z-axis, so the reference angle
is the difference between 7 and 97/13, which is 7 — 97/13 or simply 47 /13.
So, we know that tan(97/13) is plus or minus tan(4w/13). Alas, the number
47 /13 isn’t in our table, so we can’t simplify tan(4r/13). We also need to
work out whether it’s plus or minus. Well, the ASTC diagram shows that
only sin is positive in the second quadrant, so tan must be negative there and
we see that tan(97/13) = — tan(4m/13). That’s as simplified as we can get
without approximating. When solving calculus problems, I don’t recommend
approximating the answer unless you are explicitly asked to. A common
misconception is that the number that comes out on the calculator when you
calculate something like — tan(47/13) is the actual answer. On the contrary,
it’s just an approximation! So you shouldn’t write

— tan(47/13) = —0.768438861,

since it’s just not true. Instead, just leave it as — tan(47/13) unless you are
specifically asked for an approximation. In that case, use the approximately-
equal symbol and fewer decimal places, rounding appropriately (unless you
are asked for more):

— tan(4m/13) = —0.768.

By the way, you should rarely need to use a calculator—in fact, some colleges
don’t even allow them in exams! So you should try to avoid the temptation
ever to use one.

Trig functions outside [0, 2]

There’s still the question of how to take trig functions of angles bigger than
27 or less than 0. In fact this isn’t so bad: simply add or subtract multiples
of 27 until you get between 0 and 27. You see, it doesn’t just stop at 27. It
just keeps on wrapping around. For example, if I asked you to stand on the
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spot facing due east and then turn around counterclockwise an angle of 450
degrees, it would be reasonable to assume that you’d turn a full revolution
and then an extra 90 degrees. You'd be facing due north. Sure, you’d be
a little dizzier than if you just did a 90-degree counterclockwise turn, but
you’d be facing the same way. So 450 degrees is an equivalent angle to 90
degrees, and of course the same sort of thing is true in radians: in this case,
5m/2 radians is an equivalent angle to 7/2 radians. But why stop at one
revolution? How about 97/2 radians? That’s the same as going around 2w
twice (which gets us up to 47) and then an extra /2, so we’ve done 2 useless
revolutions before our final /2 twist. The revolutions don’t matter, so once
again 97/2 is equivalent to /2. This procedure can be extended indefinitely
to get a whole family of angles which are equivalent to 7/2:

272727 27 2777

Of course, each angle is a full revolution, or 27, more than the first one.
Still, that’s not the full story: if I'm going to insist that you do all these
counterclockwise revolutions and get that dizzy, you might as well ask to be
allowed to do a clockwise revolution or two to recover. This corresponds to a
negative angle. In particular, if you were facing east and I asked you to turn
—270 degrees counterclockwise, the only sane interpretation of my bizarre
request is to turn 270 degrees (or 37/2) clockwise. Evidently you’ll still end
up facing due north, so —270 degrees must be equivalent to 90 degrees. Indeed,
adding 360 degrees to —270 degrees just gives us 90 degrees. In radians, we
see that —37/2 is an equivalent angle to /2. In addition, we could insist on
more negative (clockwise) full revolutions. In the end, here is the complete
set of angles which are equivalent to m/2:

157 11w 77 37 w 5w 97w 13w 17w
M 27 27 27 2727 27 27 27 2 bR

The sequence has no beginning or end; when I say it’s “complete,” I'm glossing
over the fact that there are infinitely many angles included in the dots at the
beginning and the end. We can avoid the dots by writing the collection in set
notation as {m/2 4+ 27n}, where n runs over all the integers.

Let’s see if we can apply this. How would you find sec(157/4)? The first
thing to note is that if we can find cos(157/4), all we need to do is take the
reciprocal in order to get sec(157/4). So let’s find cos(157/4) first. Since 15/4
is more than 2, let’s try lopping off 2 from it. Hmm, 15/4 — 2 = 7/4, which is
now between 0 and 2, so that looks promising. Restoring the 7, we see that
cos(157/4) is the same as cos(77/4) which we already saw is equal to 1/v/2.
So, cos(157m/4) = 1/+/2. Taking reciprocals, we see that sec(157/4) is just
V2.

Finally, how about sin(—5m/6)? There are several ways of doing this
problem, but the way suggested above is to try to add multiples of 27 to
—57/6 until we are between 0 and 27. In fact, adding 27 to —57/6 gives
77/6, so sin(—5m7/6) = sin(77/6), which we already saw is equal to —1/2.
Alternatively, we could have drawn a diagram directly:
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T
2

11 1

reference angle

0 (= 2m)
L/

(this angle is 5% clockwise)

111 v

Now you have to work out the reference angle from the diagram, and it’s not
too hard to see that it is 7/6 and continue as before.

2.3 The Graphs of Trig Functions

It’s really useful to remember what the graphs of the sin, cos, and tan func-
tions look like. These functions are all periodic, meaning that they repeat
themselves over and over again from left to right. For example, consider
y = sin(z). The graph from 0 to 27 looks like this:

1V\ y = sin(x)

-1

You should be able to produce this graph without thinking, including the
positions of 0, 7/2, w, 37/2, and 27. Since sin(x) repeats every 27 units (we
say that sin(x) is periodic in & with period 27), we can extend the graph by
repeating the pattern:

w
3
|
wls
e
3
w
3
S
3
(o1
3
w

G

Just reading values off the graph, we can see that sin(37/2) = —1 and
sin(—7) = 0. As noted earlier, this is how you should deal with multiples
of 7/2; no need to mess around with reference angles. Another thing to note
is that the graph has 180° point symmetry about the origin, which means
that sin(z) is an odd function of z. (We looked at odd and even functions in
Section 1.4 of the previous chapter.)
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The graph of y = cos(z) is similar to that of y = sin(z). When z ranges
from 0 to 2, it looks like this:

—3r Lbx _op _3\_ g AT f z T 3t 9 BEIN\_ 3w
-1

For example, if you want to find cos(w), you can see that it is —1 just by
reading it off the graph. Furthermore, notice that this time the graph has
mirror symmetry in the y-axis. This means that cos(x) is an even function of
x.

Now y = tan(z) is a little different. It’s best to graph it for z between
—m/2 and 7/2 first:

y=tan(z), -3 <z <3

|
0l
(e}
ol
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The tan function has vertical asymptotes, unlike the sin and cos functions.

Also, its period is actually 7, not 27, so the above pattern can be repeated to
obtain the full graph of y = tan(z):

y= tan(x)

—3m —5777 Log =3

S
3
|
o
3

It’s clear that y = tan(z) has vertical asymptotes (and is consequently unde-

fined) when x is any odd multiple of /2. Also, the symmetry of the graph
indicates that tan(x) is an odd function of x.

It’s also worthwhile learning the graphs of y = sec(z), y = csc(z), and
y = cot(z):

v= sec(x)

—

57 3m _
—3m 7 —2m —7. —T
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y = csc(z)

E : E 1 ; ;

g . g . g . . g . g . i

—377 757” —27‘1’ —37” -7 -3 . 0 z 0 37” 2r  Z 37r

y = cot(x)

k | AN | |
! ! i ! ! |
—3m e —2m -3 -7 -5 0 3 ™ an 2 = 3.7r

From their graphs, we can get the following symmetry properties of all six
basic trig functions, which are worth learning:

sin(z), tan(z), cot(x), and csc(x) are odd functions of z.
cos(z) and sec(z) are even functions of x.

So sin(—x)

numbers x.

—sin(z), tan(—x) = — tan(z), and cos(—z) = cos(x) for all real



Section 2.4: Trig Identities o 39

2.4 Trig ldentities

There are relations between trig functions which will come in handy. First,
note that tan and cot may be expressed in terms of sin and cos as follows:

tan(z) = sin(z)7 cot(z) = cos(x)

cos(x)

sin(z)

(Sometimes it’s helpful to replace every instance of tan or cot by sin and cos
using these identities, but you shouldn’t really do this unless you're stuck.)

The most important of all the trig identities is Pythagoras’ Theorem (writ-
ten in trig form),

‘ cos?(x) + sin’(x) = 1. ‘

This is true for any z. (Why is this Pythagoras’ Theorem? If the hypotenuse
of a right-angled triangle is 1 and one of the angles is x, convince yourself
that the other two sides of the triangle have lengths cos(x) and sin(z).)

Now divide this equation by cos?(z). I want you to check that you end up
with

1+ tan®(z) = sec?(z).

This also comes up a lot in calculus. Alternatively, you could have divided
the Pythagorean equation above by sin?(z) to get

cot?(z) + 1 = csc?(x).

This equation seems to come up less frequently than the others.

There are some more relationships between trig functions. Have you no-
ticed that some of the names begin with the syllable “co”? This is short for
the word “complementary.” To say that two angles are complementary means
that they add up to 7/2 (or 90 degrees). It does not mean that they are nice
to each other. All puns aside, the fact is that we have the following general
relationship:

. . . . ™
trig function(z) = co-trig function (5 - :v) .
So in particular, we have
sin(x) = cos (g - z) , tan(z) = cot (g - :c) , and sec(x) = csc (g - :c) .

It even works when the trig function is already a “co”; you just have to realize
that the complement of a complement is the original angle! For example, co-
co-sine is really just sine, and co-co-tan is just tan. Basically this means that
we can also say that

cos(x) = sin (g - z) , cot(x) = tan (g - :c) , and csc(x) = sec (g - :c) .

Finally, there’s another group of identities which are worth learning. These
are the identities involving sums of angles and the double-angle formulas.
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Specifically, you should remember that

sin(A + B) =
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It’s also useful to remember that you can switch all the pluses and minuses
to get some related formulas:

sin(A — B) = sin(A) cos(B) — cos(A) sin(B)
cos(A — B) = cos(A) cos(B) + sin(A) sin(B).

A nice consequence of the sin(A + B) and cos(A + B) formulas in the box
above is obtained by letting A = B = z. It’s clear that the sine formula is
sin(2x) = 2sin(x) cos(z), but let’s take a closer look at the cosine formula.
This becomes cos(2z) = cos?(x) — sin?(z); true as this is, it is more useful to
use the Pythagorean identity cos?(z)+sin?(z) = 1 to express cos(2x) as either
2 cos?(x) —1 or 1 —2sin?(z) (convince yourself that these are both valid!). In
summary, the double-angle formulas are

sin(2x) = 2sin(z) cos(x)

cos(2x) = 2cos?(z) — 1 = 1 — 2sin?(x).

So, how would you write sin(4z) in terms of sin(z) and cos(z)? Well, think of
4x as double 2z and use the sine identity to write sin(4x) = 2sin(2z) cos(2x).
Then use both identities to get

sin(4x) = 2(2sin(z) cos(z))(2 cos*(x) — 1) = 8sin(z) cos®(z) — 4sin(x) cos(z).
Similarly,
cos(4x) = 2cos?(2x) — 1 = 2(2cos?*(x) — 1) — 1 = 8 cos?(z) — 8 cos?(x) + 1.

You shouldn’t memorize these last two formulas; instead, make sure you un-
derstand how to derive them using the double-angle formulas.

Now, if you can master all the trig in this chapter, you will be in very
good shape indeed for the rest of the book. So don’t leave it till too late—get
cracking on a bunch of examples and make sure you learn the table and all
the boxed formulas!



CHAPTER 3

INfroduction To Limifs

3.1

Calculus wouldn’t exist without the concept of limits. This means that we
are going to spend a lot of time looking at them. It turns out that it’s pretty
tricky to define a limit properly, but you can get an intuitive understanding of
limits even without going into the gory details. This will be enough to tackle
differentiation and integration. So, this chapter contains only the intuitive
version; check out Appendix A for the formal version. All in all, here’s what
we’ll look at in this chapter:

e an intuitive idea of what a limit is;

e left-hand, right-hand, and two-sided limits, and limits at oo and —oo;
e when limits fail to exist; and

e the sandwich principle (also known as the “squeeze principle”).

Limifs: The Basic Idea

Let’s dive in. We start with some function f and a point on the z-axis,
which we’ll call a. Here is what we’d like to understand: what does f(x) look
like when z is really really close to a, but not equal to a? This is a pretty
strange question to ask, which is probably why it took until relatively recently
for humankind to develop calculus.

Here’s an example showing why we might want to ask this question. Let
f have domain R\{2} (all real numbers except for 2), and set f(z) =z — 1
on this domain. Formally, you might write:

fl@y=ax-1 when = # 2.

This seems like a weird sort of function: after all, why on earth would we
want to exclude 2 from the domain? Actually, in the next chapter, we’ll see
that f arises quite naturally as a rational function (see the second example
in Section 4.1). In the meantime, let’s just take f for what it is and sketch a
graph of it:
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What is f(2)? Perhaps you'd like to say that f(2) = 1, but that would be
a load of bull since 2 isn’t even in the domain of f. The best you can do is
to say that f(2) is undefined. On the other hand, we can find the value of
f(x) when z is really really close to 2 and see what happens. For example,
f(2.01) = 1.01, and f(1.999) = 0.999. If you think about it, you can see that
when z is really really close to 2, the value of f(z) is really really close to 1.

What’s more, you can get as close as you want to 1, without actually
getting to 1, by letting x be close enough to 2. For example, if you want f(x)
to be within 0.0001 of 1, you could take any = between 1.9999 and 2.0001
(except of course for z = 2, which is forbidden). If you instead wanted f(x)
to be within 0.000007 of 1, then you’d have to be a little more picky about your
choice of x—this time you’d need to take x between 1.999993 and 2.000007
(except for z = 2, once again).

Anyway, these ideas are described in much greater detail in Section A.1 of
Appendix A. Without getting bogged down, let’s cut to the chase and just
write

lim f(z) =1.

x—2

If you read this out loud, it should sound like “the limit, as = goes to 2, of
f(z) is equal to 1.” Again, this means that when z is near 2 (but not equal
to it), the value of f(x) is near 1. How near? As near as your heart desires.
Another way of writing the above statement is

fl@) =1 asz— 2.

This is harder to do computations with, but its meaning is quite clear: as x
journeys along the number line from the left or the right toward the number
2, the value of f(z) gets very very close to 1 (and stays close!).

Now, let’s take the above function f and modify it slightly. Indeed, suppose
that a new function g has the following graph:

y = g()
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The domain of ¢ is all real numbers, and g(x) can be defined in piecewise

fashion as
(2) x—1 ifx+#2,
xTr) =
g 3 ifz=2
What is lim, g(x)? The trick here is that the value of g(2) is irrelevant! It’s
only the values of g(x) where z is close to 2, not actually at 2, which matter.
Ignoring x = 2, the function g is identical to the function f we looked at
earlier. So, lim g(x) = 1 as before, even though g(2) = 3.
Here’s an important point: when you write something like

lim f(z) =1,

the left-hand side isn’t actually a function of z! Remember, the equation
means that f(z) is close to 1 when z is close to 2. We could actually replace
x by any other letter and this would still be true. For example, f(q) is close
to 1 when q is close to 2, so we have

lim f(q) = 1.

q—2
We can go nuts with this and also write

%ngf(b)zl, lerlzf(Z):17 (iLHle(O()Zl,
and so on until we run out of letters and symbols! The point is that in the
limit
lim2 flz) =1,

the variable z is just a dummy variable. It is a temporary label for some
quantity that is (in this case) getting very close to 2. It can be replaced by
any other letter, as long as you swap it out wherever else it appears; also, when
you work out the value of the limit, the answer cannot include the dummy
variable. So be smart about your dummy variables.

Left-Hond and Right-Hand Limits

We’ve seen that limits describe the behavior of a function near a certain point.
Think about how you would describe the behavior of h(z) near z = 3:

y = h(z)

—_
[\
ok
NN
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Of course, the fact that h(3) = 2 is irrelevant as far as the limiting behavior
is concerned. Now, what happens when you approach x = 3 from the left?
Imagine that you’re the hiker in the picture, climbing up and down the hill.
The value of h(z) tells you how high up you are when your horizontal position
is at x. So, if you walk rightward from the left of the picture, then when your
horizontal position is close to 3, your height is close to 1. Sure, there’s a sheer
drop when you get to z = 3 (not to mention a weird little ledge floating in
space above you!), but we don’t care about this for the moment. Everything
to the right of x = 3, including = = 3 itself, is irrelevant. So we’ve just seen
that the left-hand limit of h(x) at © = 3 is equal to 1.

On the other hand, if you are walking leftward from the right-hand side
of the picture, your height becomes close to —2 as your horizontal position
gets close to = 3. This means that the right-hand limit of h(z) at x = 3 is
equal to —2. Now everything to the left of z = 3 (including x = 3 itself) is
irrelevant!

We can summarize our findings from above by writing

lim h(z) =1 and lim h(x) = -2.
r—3~ z—3t
The little minus sign after the 3 in the first limit above means that the limit
is a left-hand limit, and the little plus sign in the second limit means that it’s
a right-hand limit. It’s important to write the minus or plus sign after the 3,
not before it! For example, if you write
lim h(z),
r——3

then you are referring to the regular two-sided limit of h(z) at z = —3, not
the left-hand limit at x = 3. These are two very different animals indeed.
By the way, the reason that you write x — 3~ under the limit sign for the
left-hand limit is that this limit only involves values of x less than 3. That is,
you need to take a little bit away from 3 to see what’s going on. In a similar
manner, when you write z — 3% for the right-hand limit, this means that you
only need to consider what happens when you add a little bit onto 3.

Now, limits don’t always exist, as we’ll see in the next section. But here’s
something important: the regular two-sided limit at * = a exists exactly
when both left-hand and right-hand limits at = a exist and are equal to
each other! In that case, all three limits—two-sided, left-hand, and right-
hand—are the same. In math-speak, I'm saying that

lim f(z) =L and lim+ f(x)=1L

is the same thing as
lim f(z) = L.

r—a
If the left-hand and right-hand limits are not equal, as in the case of our
function h from above, then the two-sided limit does not exist. We’d just
write
i{g h(x) does not exist

or you could even write “DNE” instead of “does not exist.”
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3.3 When the Limit Does Not Exist

We just saw that a two-sided limit doesn’t exist when the corresponding left-
hand and right-hand limits are different. Here’s an even more dramatic ex-
ample of this. Consider the graph of f(x) =1/x:

f) =~

What is glgigo f(z)? Tt may be a bit much to expect the two-sided limit to
exist here, so let’s first try to find the right-hand limit, glgiQm f(z). Looking at
the graph, it seems as though f(x) is very large when z is positive and close
to 0. It doesn’t really get close to any number in particular as x slides down
to 0 from the right; it just gets larger and larger. How large? Larger than
anything you can imagine! We say that the limit is infinity, and write

lim — = oo.

z—0t T
Similarly, the left-hand limit here is —oo, since f(z) gets arbitrarily more and
more negative as x slides upward to 0. That is,

lim — = —o0.
z—0— T

The two-sided limit certainly doesn’t exist, since the left-hand and right-hand
limits are different. On the other hand, consider the function g defined by
g(z) = 1/22. The graph looks like this:
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Both the left-hand and right-hand limits at x = 0 are oo, so you can say that
glciglol /2% = oo as well. By the way, we now have a formal definition of the
term “vertical asymptote”:

“f has a vertical asymptote at z = a” means that at least one
of lim , f(z) and lim _f(x) is equal to oo or —oo0.

Now, is it possible that even a left-hand or right-hand limit fails to exist?
The answer is yes! For example, let’s meet the funky function g defined by
g(x) = sin(1/x). What does the graph of this function look like? Let’s worry
about the positive values of x first. Since sin(x) has zeroes at the values
x = m,2m,3m,. .., then sin(1/x) will have zeroes when 1/x = m, 27, 3m,....
Taking reciprocals, we see that sin(1/z) has zeroes when z = %, %, 3%, .
These numbers are the z-intercepts of sin(1/x). On the number line, this is
what they look like:

R ] 1 | | | |
) -——— 11 1 1 1 1
etc. 6xb5r 4x 3m 2m ™

As you see, they really bunch up as you get close to 0. Now, sin(z) goes up to
1 or down to —1 between every z-intercept, so sin(1/z) does the same. Let’s
graph what we know so far:

(]
3
31

o) - (1)

So what is lim sin(1/2)? The above graph is a real mess near z = 0. It
oscillates infinitely often between 1 and —1, faster and faster as you move
from the right toward x = 0. There is no vertical asymptote, but there’s still
no limit.* The function doesn’t tend toward any one number as x goes to 0
from the right. So, we say that lim , sin(1/z) does not exist (DNE). We'll
finish the graph of y = sin(1/x) in the next section.

*See Section A.3.4 of Appendix A for a real proof of this.
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Limits af oo and —oo

There is one more type of limit that we need to investigate. We’ve concen-
trated on the behavior of a function near a point = a. However sometimes it
is important to understand how a function behaves when x gets really huge.
Another way of saying this is that we are interested in the behavior of a
function as its argument x goes to co. We'd like to write something like

lim f(z)=1L

r—00
and mean that f(x) gets really close, and stays close, to the value L when z
is large. (More details can be found in Section A.3.3 of Appendix A.) The
important thing to realize is that writing “lim_f (x) = L” indicates that the
graph of f has a right-hand horizontal asymptote at y = L. There is a similar
notion for when = heads toward —oo: we write

lim f(z) =1L,

r——00

which means that f(x) gets extremely close, and stays close, to L when x gets
more and more negative (or more precisely, —x gets larger and larger). This
of course corresponds to the graph of y = f(x) having a left-hand horizontal
asymptote. You can turn these definitions around if you like and say:

“f has a right-hand horizontal asymptote at y = L”
means that lim_f(z) = L.

“f has a left-hand horizontal asymptote at y = M”
means that lim__ f(z) = M.

Of course, something like y = 22 doesn’t have any horizontal asymptotes: the
values of y just go up and up as = gets larger. In symbols, we can write this
aswleoon = oo. Alternatively, the limit may not even exist. For example,
what is lim sin(z)? Well, what value is sin(z) getting closer and closer to
(and staying close)? It’s just oscillating back and forth between —1 and 1, so
it never really gets anywhere. There’s no horizontal asymptote, nor does the
function wander off to 0o or —oo; the best you can do is to say that lim sin(x)
does not exist (DNE). Again, see Section A.3.4 of Appendix A for a proof of
this.

Let’s return to the function f given by f(z) = sin(1/z) that we looked at
in the previous section. What happens when z gets very large? Well, when
x is large, 1/z is very close to 0. Since sin(0) = 0, it should be true that
sin(1/x) is also very close to 0. The larger x gets, the closer sin(1/z) is to 0.
My argument has been a little sketchy but hopefully you’re convinced that*

lim sin(1/z) = 0.

r—00
So sin(1/x) has a horizontal asymptote at y = 0. This allows us to extend the
graph of y = sin(1/z) that we drew above, at least to the right. We should

*If not, see Section A.4.1 of Appendix Al
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still worry about what happens when « < 0. This isn’t too bad, since f is an
odd function. Here’s why:

f(—z) = sin <_ix> =sin (-i) = —sin <$> = —f(2).

Note that we used the fact that sin(z) is an odd function of x to get from
sin(—1/x) to —sin(1/z). So, since odd functions have that nice symmetry
about the origin (see Section 1.4 in Chapter 1), we can complete the graph of
y = sin(1/z) as follows:

3.4.1

Again, it’s hard to draw what happens for z near 0. The closer z is to 0, the
more wildly the function oscillates, and of course the function is undefined at
z = 0. In the above picture, I chose to avoid the black smudge in the middle
and just leave the oscillations up to your imagination.

Large numbers and small numtbers

I hope we can all agree that 1,000,000,000,000 is a large number. So how about
—1,000,000,000,0007 Perhaps controversially, I want you to think of this as
a large negative number rather than a small number. An example of a small
number would be 0.000000001, while —0.000000001 is a small number too—
more precisely, a small negative number. Funnily enough, we’re not going to
think of 0 itself as being small: it’s just zero. So our informal definition of
large numbers and small numbers looks like this:

e A number is large if its absolute value is a really big number.
e A number is small if it is really close to 0 (but not actually equal to 0).

Although the above definition will serve us well in practice, it’s a really
lame definition. What do I mean by “really big” and “really close to 0”7 Well,
consider the limit equation

lim f(z) = L.
r—0o0
As we saw above, this means that when z is a large enough number, the value

of f(z) is almost L. The question is, how large is “large enough”? It depends
on how close to L you want f(x) to be! Still, from a practical point of view,
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a number z is large enough if the graph of y = f(x) starts looking like it’s
getting serious about snuggling up to the horizontal asymptote at y = L. Of
course, everything depends on what the function f is, as you can see from the
following picture:

In both cases, f(10) is nowhere near L. In the left-hand picture, it looks
like f(z) is pretty close to L when z is at least 100, so any number above 100
would be large. In the right-hand picture, f(100) is far away from L, so now
100 isn’t large enough. You probably need to go up to about 200 in this case.
So can’t you just pick a number like 1,000,000,000,000 and say that it’s always
large? Nope—a function might wander around until 5,000,000,000,000 before
it starts getting close to its horizontal asymptote. The point is that the term
“large” has to be taken in context, relative to some function or limit. Luckily,
there’s plenty of room up above—even a number like 1,000,000,000,000 is
pretty puny compared to 10'%° (a googol), which itself is chicken feed in
comparison with 101000090 " and so on. By the way, we’ll often use the term
“near 0o0” in place of “large and positive.” (A number can’t really be near co
in the literal sense, since oo is so far away from everything. The term “near
oo” makes sense, though, in the context of limits as x — 0.)

Of course, all this also applies to limits as z — —o0, except that you just
stick a minus sign in front of all the large positive numbers above. In this case
we’ll sometimes say “near —oo” to emphasize that we are referring to large
negative numbers.

On the other hand, we’ll often be looking at limit equations of the form

lim f(x) =L, lim f(z)=1L or lim f(z) = L.

z—0 r—0t r—0—
In all three of these cases, we know that when x is close enough to 0, the
value of f(z) is almost L. (For the right-hand limit, = also has to be positive,
while for the left-hand limit, 2 has to be negative.) Again, how close does
have to be to 07 It depends on the function f. So, when we say a number is
“small” (or “near 0”), we’ll have to take this in the context of some function
or limit, just as in the case of “large.”

Although this discussion really tightens up the above lame definition, it’s

still not perfect. If you want to learn more, you should really check out
Sections A.1 and A.3.3 in Appendix A.
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3.5 Two Common Misconceptions about Asymptotes

Now seems like a good time to correct a couple of common misconceptions
about horizontal asymptotes. First, a function doesn’t have to have the same
horizontal asymptote on the left as on the right. In the graph of f(z) = 1/x
on page 45 above, there is a horizontal asymptote at y = 0 on both the
right-hand side and the left-hand side—which means that

lim — =0 and lim —— =0.
r—00 I T—00 x

However, consider the graph of y = tan™! () (or if you prefer, y = arctan(x)—
this is the inverse tangent function and you can write it either way):

This function has a right-hand horizontal asymptote at y = 7/2 and a left-
hand horizontal asymptote at y = —m/2; these are not the same. We can also
express this in terms of limits:

lim tan~'(z) = g and lim tan~!(z) = —g

So a function can indeed have different right- and left-hand horizontal asymp-
totes, but there can be at most two horizontal asymptotes—one on the right
and one on the left. It might have none or one: for example, y = 2% has a
left-hand horizontal asymptote but not a right-hand one (see the graph on
page 22). This is in contrast to vertical asymptotes: a function can have as
many of those as it feels like (for example, y = tan(z) has infinitely many).

Another common misconception is that a function can’t cross its asymp-
tote. Perhaps you have learned that an asymptote is a line that a function
gets closer and closer to without ever crossing. This just isn’t true, at least
when you’re talking about horizontal asymptotes. For example, consider the
function f given by f(z) = sin(z)/x, where for the moment we only care
about what happens when x is positive and large. The value of sin(x) oscil-
lates between —1 and 1, so the value of sin(z)/x oscillates between the curves
y=—1/x and y = 1/x. Also, sin(z)/x has the same zeroes as sin(x) does,
namely 7,27, 3w, .... Putting it all together, the graph looks like this:
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The curves y = 1/z and y = —1/x, which are drawn as dotted curves in the

graph, form what’s called the envelope of the sine wave. In any event, as you
can see from the graph, if there’s any justice in the world, then it should be

true that

sin(x) _0

lim
T—00 x

This means that the z-axis is a horizontal asymptote for f, even though the
graph of y = f(x) crosses the axis over and over again. Now, to justify the
above limit, we’ll need to apply something called the sandwich principle. The

justification is at the end of the next section.

3.6 The Sandwich Principle
J

The sandwich principle, also known as the squeeze principle, says that if a
function f is sandwiched between two functions g and h that converge to the

same limit L as © — a, then f also converges to L as z — a.
Suppose that for all

Here’s a more precise statement of the principle.
That is, f(z) is sandwiched (or

x near a, we have g(z) < f(z) < h(z).
squeezed) between g(z) and h(z). Also, let’s suppose that lim g(x) = L and

Jim h(z) = L. Then we can conclude that lim f(z) = L; that is, all three
functions have the same limit as * — a. As usual, the picture tells the story:
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The function f, shown as a solid curve in the picture, is really squished be-
tween the other functions g and h; the values of f(x) are forced to tend to L
in the limit as  — a. (See Section A.2.4 of Appendix A for a proof of the
sandwich principle.)

There’s a similar version of the sandwich principle for one-sided limits,
except this time the inequality g(z) < f(x) < h(x) only has to hold for z on
the side of a that you care about. For example, what is

. . 1
lim zsin | — )7
r—0t xT

The graph of y = xsin(1/z) is similar to that of y = sin(1/z) but now there is
the factor of x which causes the function to be trapped between the envelopes
of y = x and y = —z. Here’s what the graph looks like for « between 0 and
0.3:

hi(z) ==z

f(x) =zsin(1/x)

(0 < z<0.3)

g(x) = —x

We still have the wild oscillations as z goes to 0 from above, but they are
now damped by the envelope lines. In particular, finding the limit we want is
a perfect application of the sandwich principle. The function g is the lower
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envelope line y = —z, and the function h is the upper envelope line y = .
We need to show that g(z) < f(z) < h(x) for x > 0. We don’t care about
x < 0 since we only need the right-hand limit of f(z) at z = 0. (Indeed, if
you extend the lines to negative x, you can see that g(z) is actually greater
than h(x) for z < 0, so the sandwich is the wrong way around!) So, how do
we show that g(z) < f(x) < h(z) when & > 07 We'll use the fact that the
sine of any number (in our case, 1/z) is between —1 and 1 inclusive:

1
—1 <sin (—) <1.
x

Now multiply this inequality through by x, which is cool because x > 0; we

get,
. 1
—r<zsin|-—| <=z
T

But this is precisely g(z) < f(z) < h(x), which is what we need. Finally, note
that
A o) = g Co =0 ad T b = g e

So, since the values g(z) and h(z) of the sandwiching functions converge to
the same number, 0, as z — 0T, so does f(z). That is, we’ve shown that

1
lim xsin (—) =0.
z—0+ x
Remember, this certainly isn’t true without the factor x out front; the limit
of sin(1/z) as z — 07 does not exist, as we saw in Section 3.3 above.
We still haven’t resolved the issue of justifying the limit from the end of
the previous section! Remember, we wanted to show that
sin(x)

lim

—00 €T

=0.

To do this, we have to invoke a slightly different form of the sandwich principle,
involving limits at co. In this case we need g(z) < f(z) < h(x) to be true
for all large z; then if we know that lim g(z) = L and lim_h(z) = L, we
can also say that lim f(x) = L. This is almost the same as the sandwich
principle for finite limits. To establish the above limit, we again use the fact
that —1 <sin(z) <1 for all z, but this time we divide by x to get

sin(x)

< <

8|~
8|~

x

for all z > 0. Now let  — oo; since both —1/z and 1/z have 0 as their limit,
the same must be true for sin(z)/z. That is, since

lim —l =0 and lim l =0,
r—o00 I r—00 I

we must also have
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In summary, here’s what the sandwich principle says:

This also works for left-hand or right-hand limits; in that case, the inequality
only has to be true for z on the appropriate side of a. It also works when
a is oo or —oo; in that case, the inequality has to be true for x really large
(positively or negatively, respectively).

3.7 Summary of Basic Types of Limifs

i We have looked at a whole bunch of different basic types of limits. Let’s fin-
ish this chapter with some representative diagrams showing the most common
possibilities:

1. The right-hand limit at = a. Behavior of f(z) to the left of z = a, and
at « = a itself, is irrelevant. (This means that it doesn’t matter what values
f(z) takes for x < a, as far as the right-hand limit is concerned. In fact, f(z)
need not even be defined for z < a.)

N

a a a}l a

lim f(:c) =L lim f(q:) =00 lim f(r) = —00 lim+ f(z) DNE

r—a™t z—at z—at r—a

2. The left-hand limit at 2 = a. Behavior of f(z) to the right of = a, and
at x = a itself, is irrelevant.

S

a a l a a

lim f(ac) =L lim f(z) =00 lim f(a:) =—00 lim f(z) DNE

r—a T—a~— r—a~ r—a
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3. The two-sided limit at x = a. In the first picture below, the left- and
right-hand limits exist but are different, so the two-sided limit does not exist.
In the second picture, the left- and right-hand limits agree, so the two-sided
limit exists and is equal to the common value. The value of f(a) is irrelevant.

N

ia
Jm (@) =M }Jm1f@)DNE
lim flx)y=1L e

4. The limit as x — oo.

NaS

Jm f@) =1 }hmﬂ@:L
lim flx)y=1L e

lim f(z) =

xr—00

L lim f(z) =00

€Tr—00

5. The limit as x — —oo.

lim f(z) = —o0

Tr—00

lim f(x) DNE

r—00

lim f(z)=—o0

T——00

lim f(z) DNE

r——00






CHAPTER 4

How o Solve Limit Problems Involving Polynomials

4.1

In the previous chapter, we looked at limits from a mostly conceptual view-
point. Now it’s time to see some of the techniques used to evaluate limits.
For the moment, we’ll concentrate on limits involving polynomials; later on
we’ll see how to deal with trig functions, exponentials, and logarithms. As
we’ll see in the next chapter, differentiation involves taking limits of ratios, so
most of our focus will be on this type of limit.

When you’re taking the limit of a ratio of two polynomials, it’s really im-
portant to notice where the limit is being taken. In particular, the techniques
for dealing with  — oo and  — a (for some finite a) are completely different.
So, we’ll split up our plan of attack into limits involving the following types
of functions:

e rational functions as x — a;

e functions involving square roots as r — a;

rational functions as x — oo;

ratios of polynomial-like (or “poly-type”) functions as  — oo;

rational functions/poly-type functions as @ — —oo; and

functions involving absolute values.

Limits Involving Rational Funcfions as  — a

Let’s start off with limits that look like this:
lim p()

w—a q(z)’
where p and ¢ are polynomials and « is a finite number. (Remember that
the quotient p(z)/q(z) of two polynomials is called a rational function.) The
first thing you should always try is to substitute the value of a for z. If the
denominator isn’t 0, then you're in good shape—the value of the limit is just
what you get when you substitute. For example, what is

2 _
lim roorre 3x+2?
rz——1 $—2
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Simply plug x = —1 into the expression (2% — 3z + 2)/(x — 2), and you get

(-1)2-3(-1)+2 6
—1-2 T -3

—2.

The denominator isn’t 0, so —2 is the value of the limit. (I know that I said in
the previous chapter that the value of the function at the limit point, which
is x = —1 in this case, is irrelevant; but in the next chapter we’ll look at the
concept of continuity, which will justify this “plugging-in” method.)

On the other hand, if you want to find

Coa?—3x+42
lim ——
z—2 xr—2

)

then plugging in x = 2 won’t work so well: you get (4 — 6+ 2)/(2 — 2), which
simplifies down to 0/0. This is called an indeterminate form. If you use the
plugging in method and get zero divided by zero, then anything could happen:
the limit might be finite, the limit might be co or —oo, or the limit might
not exist. The above example can be solved by the important technique of
factoring everything in sight. In particular, 22 — 3x + 2 can be factored as
(x —2)(z — 1), so we can write

2_3 2 -2 -1
hm &322y, EZDEZD G
r—2 :17—2 rT——2 $—2 r—2

by canceling. Now there’s no impediment to plugging x = 2 into the ex-
pression (z — 1); you just get 2 — 1, which equals 1. That’s the value of our
f limit.
This brings us to a point which is often misunderstood: are the two func-
tions f and g defined by

2
fz) = L@*’Q and  glz) =z —1
T

the same function? Why can’t you say that

2 —3x+2 (z—-2)(x—1)

flay= T2 S T 1= gy

WEell, you almost can! The only problem is when z = 2, because then the
denominator (x — 2) is equal to 0 and that doesn’t make sense. So f and g
are not the same function: the number 2 is not in the domain of f but it is in
the domain of g. (We’ve actually encountered this function f before—check
out the discussion and graph at the beginning of Chapter 3.) On the other
hand, if you put limits in front of everything in the above chain of equations,
it all becomes correct because the values of f(z) and g(x) at x = 2 don’t
matter—it’s only the values of f(x) and g(z) near z = 2 that count. So the
solution of the previous limit problem is indeed valid.

Let’s look at another example of an indeterminate form. Again, the tech-
nique is to try to factor everything in sight. In addition to knowing how to
factor quadratics, it’s really useful to know the formula for the difference of
two cubes:

a® —b* = (a — b)(a® + ab+ b?).
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Here’s a harder example where you need to use this formula: find

. x3 —27
im ——————.
z—3 x4 — had + 622

If you plug in 2 = 3, you indeed get 0/0 (try it and see). So let’s try to factor
both the numerator and the denominator. The numerator is the difference
between z3 and 3%, so we can use the boxed formula above. The denomi-
nator has an obvious factor of 22, so it can be written as z?(x? — 5z + 6).
The quadratic 22 — 5z + 6 can also be factored; altogether, then, you should
convince yourself that we have

x® — 27 . (z=3)(z*+3z+9)

li =
703 74 — 523 + 622 a3 22(x —3)(z —2)

Substituting x = 3 doesn’t work because of the factor of (z — 3) in the de-
nominator. On the other hand, since we are taking limits, we only need to see
what happens when z is near 3; so we are perfectly justified in canceling out
the factors of (z — 3) from the numerator and denominator—they are never
equal to 0. So, using the plugging-in technique after factoring and canceling,
the whole solution looks like this:

, x3 —27 . (x=3)(2*+3x+9) . 2?+32x+9
lim ——————— = lim =lim ——+—
z—3 x4 — 513 + 622 2-3  a2(z —3)(z —2) z—3 x%(x — 2)

3243349 5
323-2) 7

What if the denominator is 0 but the numerator isn’t 07 In that case,
there’s always a vertical asymptote involved; that is, the graph of the rational
function will have a vertical asymptote at the value of x that you're interested
in. The problem is that there are four types of behavior that could arise. In
each of the following diagrams, f is the rational function we care about, and
the various limits at x = a are shown under the picture:

\y—f(r) /\y—ﬂ@ /y‘f‘”) =@

lim f(x) =0 lim f(r) =00 lim f(x) =—x lim f(l’) =
lim_f(z) = -0 lim_f(z) = o0 lim_ f(z) = oo lim_ f(z) = —o0

So, how do you tell which of the four cases you're dealing with? You just
have to explore the sign of f(z) on either side of z = a. If it’s positive on
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both sides, for example, then you must be in the second case above. Here’s
an actual example: how would you find

2:02—50—6?

e—1 z(x—1)3 °

First, plugging in = 1 gives —5/0 (try it!). So we must be dealing with one of
the four cases above. Which one? Let’s set f(z) = (222 — 2 — 6)/(z(z — 1)3)
and see what happens when we move x around near 1. The first thing to
notice is that the numerator 222 — x — 6 is actually equal to —5 when z = 1,
so when we wobble x around a little bit, the numerator will stay negative.
How about the factor of x in the denominator? When z = 1, this factor is of
course 1, which is positive—and it stays positive when you move = around a
bit. The crucial factor is (x — 1)3. This is positive when x > 1 but negative
when z < 1. So we can summarize the situation like this (using (+) and (—)
to denote positive and negative quantities, respectively, and of course using
the fact that (—) - (—) = (4) and so on):

)
whenz >1: ——— = (—); whenz < 1: ———
(+) - (+) (+)- (=)
That is, f(z) is negative when z is a little greater than 1, but positive when z
is a little less than 1. Look up at the four pictures above—the only one that
works is the third figure. In particular, we can see that the two-sided limit

= ().

I 222 —x—6
im ———
z—1 I(CC — 1)3
does not exist, but the one-sided limits do (although they are infinite); in
particular,
2172—17—67 222 — 1 —6

im <X —%_0_ _ d lim T T 0_
et x(x —1)3 > o 1 z(z —1)3 >

Now suppose we change the limit slightly to

202 —x —6

e—1 p(r—1)2
How does that change anything? Well, the numerator is still negative when x
is near 1, and the factor x is still positive, but how about (x — 1)2? Since it’s

a square, it must be positive when x is near but not equal to 1. So we now
have the following situation:

when  >1: ———— = (-); Whenx<1:+7=(—).

(+) - (+)
Now we have negative values on either side of z = 1, so we must have

222 —2—6
lim ——— =

z—1 xz(x —1)2 o

Of course, the left- and right-hand limits are both equal to —oco as well.
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If you plug in « = 5, you get the indeterminate form 0/0 (try it and see!).
Trying to factor everything in sight doesn’t work so well—you can write 2 —9
as (x—3)(x+3), but that doesn’t really help because of that blasted —4 in the
numerator. What you need to do is multiply and divide by vx2 — 9 + 4; this
is called the conjugate expression of vVx2 —9—4. (You have probably already
met conjugate expressions in your math studies, especially when rationalizing
the denominator. The basic idea is that the conjugate expression of a — b is
a + b, and vice versa.) So, here’s what we get when we do this multiplication
and division:

2 —-9—-4 . 2—9—4 Va2 -9+14

lim —— =1 .

This looks more complicated, but something nice happens: using the formula
(a—0b)(a+b) = a® —b?, the numerator simplifies to (v22 — 9)? —42, or simply
22 — 25. So the above limit is just

. x? —25
lim .
=5 (x —5)(Vaz —9+4)

Factor 22 — 25 as (x — 5)(x + 5) and cancel to see that this limit becomes

(x —5)(x+5) . x+5

lim im ———.
=5 (x —5) (Va2 —9+4) =2=5/22-9+4

Now if you substitute x = 5, there are no problems: you simply get 10/8, or
5/4. The moral of the story is that if you have a square root plus or minus
another quantity, try multiplying and dividing by its conjugate—you might
be pleasantly surprised!

Limits Involving Rational Functions as © — o0

OK, back to rational functions, but this time we’ll look at what happens as
x — oo instead of some finite value. In symbols, we are now trying to find
limits of the form

lim p—(z),

A5 g(@)

where p and ¢ are polynomials. Now, here’s a very important property of a
polynomial: when « is large, the leading term dominates. What this
means is that if you have a polynomial p, then as = gets larger and larger,
p(x) behaves as if only its leading term were present. For example, let’s say
p(x) = 323 — 100022 + 5z — 7. Let’s put pr(z) = 323, which is the leading
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term of p. Here’s what I'm claiming: when z is really really large, p(z) and
pr(z) are relatively close to each other. More precisely, we have

p(z)
z—00 P, (x)

Before we see why this is true, let’s just look at the implications of what it is
saying. Imagine that the limit wasn’t there. This equation would say

p(z)
pL(x)
which means that p(z) = pr(z). Well, that clearly isn’t true (at least for most

values of z), but the larger x is, the closer it is to being true. So why not just
write

=1

=1

9

Jim p(z) = lim pr(z)?
This is actually true, but it’s meaningless because both sides are co. So we
have to settle for saying that p(x) and pr(x) are very close to each other in
the sense that their ratio is close to 1. As x gets large, the ratio approaches
1 without ever necessarily equaling 1.

Does this make sense? Why is it the leading term, anyway? Why not one
of the other terms? If you want, you can skip to the next paragraph and see
the mathematical proof; first, however, I'd like to get a feel for what happens
in our example, p(z) = 32% — 100022 + 52 — 7, by testing it on actual large
values of z. Let’s start off with = = 100. In that case, 323 is 3 million, while
100022 is 10 million. The quantity 5z is only 500, and the 7 doesn’t make
much difference, so all together we can see that p(100) is about —7 million. On
the other hand, pz(100) is 3 million, so it’s not looking so great: p(100) and
pr(100) are completely different. Let’s not lose heart—after all, 100 isn’t that
large. Suppose we instead set x equal to 1,000,000—that’s a million. Then
323 is freakin’ huge: it’s 3,000,000,000,000,000,000, or three million trillion!
In comparison, 100022 is relatively puny at only a thousand trillion (that’s
1,000,000,000,000,000) and 5z is only 5 million, which is a microscopic speck
of dust in comparison to these numbers. The —7 term is just laughable and
makes no noticeable difference. So, to calculate p(1,000,000), we need to take
3 million trillion and take away a thousand trillion plus some spare change (a
little under 5 million). Let’s face it, it’s still darned close to 3 million trillion!
After all, how many trillions are we dealing with here? We have 3 million of
them, and we're taking away a mere one thousand of them, so we still have
almost 3 million trillions. That is, p(1,000,000) is about 3 million trillion—but
that is exactly the value of pr,(1,000,000). The point is that the highest-degree
term is growing much faster than the other terms as = gets large. Indeed, if
you replace 1,000,000 with an even larger number, the difference between 23
and the lower order terms like 22 and = becomes even more pronounced.

Enough philosophical rambling. Let’s try to give a real proof that

p@) _
Tr— 00 pL ({L‘)
We have to do some actual math. Start off by writing
p(x) . 323 —10002% + 5z — 7

lim = lim
T—00 pL I’) xr—00 3£C3
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which simplifies to

o (310002 Sr TN o0 51
z—o0 \ 323 323 323 323 ) 3z 322 323/

How do you handle this? Well, the first thing to note is that you can bust up
this last expression into four separate limits. So if you know what happens
to the four quantities 1, —1000/3z, 5/3xz2, and —7/3x3 as x becomes very
large, then you can just add the four limits together to get the limit you
want. Technically, this could be described in words as “the limit of the sum
is equal to the sum of the limits”; this is true when all the limits are finite.*
So, we have four quantities to worry about. The first is 1, which is always 1
regardless of what happens to . The second quantity is —1000/3z. What
happens to this when x gets large? That is, what is

The trick here is to realize that you can take out a factor of —1000/3. In
particular, the limit can be expressed as

The cool thing about something like —1000/3 is that it’s constant. It doesn’t
change, no matter what x is, so it turns out that you can just go ahead and
drag it out of the limit (see Section A.2.2 of Appendix A for more details).

So we have
1000 1 1000 .. 1
lm ——— = ——— lim —.

We've already seen that the reciprocal of a very large number is a very small
number (remember, this means a number very close to zero). So lim 1/x =0,
and —1000/3 times the limit is also 0. The conclusion is that
. 1000

lim ——— =

z—00 3z
In fact, you should just write that down without going into any more detail.
More generally, you can use the following theorem:

C
lim — =0
rz—oo

for any n > 0, as long as C' is constant. This fact allows us to see that the
other two pieces, 5/3z% and —7/3x3, also tend to 0 as x becomes very large.
So the whole argument is

323 — 100022 + 5z — 7 ( 1000 5 7 )

li =1 1 =4 < __
i 3x3 s 3z + 3z2 3a3

1-0+0+0=1.

*It’s not true if the limits aren’t finite! Consider lim _(z+ (1 —x)). For any z, it’s true
that (z + (1 — x)) = 1, so this limit is just 1. On the other hand, the individual limits of
the two pieces (z) and (1 — z) are_lim (z) and_lim (1 — ). The first limit is co and the
second is —oo, but it’s not true that co + (—oo) = 1. In fact, the expression co + (—o0) is
meaningless.
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So we have proved that

lim p(z)

=1
z—oo leading term of p(x)

in the special case where p(z) = 3z% — 10002% + 52 — 7. Luckily the same
method works for any polynomial, and we’ll be using it over and over again
during the rest of this chapter!

Method and examples

Here’s the general idea: when you see p(z) for some polynomial p with more
than one term, replace it by

p(z)
leading term of p(z)

x (leading term of p(x)).

Do this for every polynomial around! Note that all we’ve done is to divide
and multiply by the leading term, so we haven’t changed the quantity p(x).
The point is that the fraction in the expression above has limit 1 as z — oo,
and the leading term is much simpler. Let’s see how this works in practice:
for example, what is

. x — 8z*
lim ?
z=o0 Txt + 53 4+ 200022 — 6

We have two polynomials: one on the top and one on the bottom. For the
numerator, the leading term is —8z* (don’t be fooled by the order in which
the numerator is written—the leading term isn’t always written first!). So
we’re going to replace the numerator by

x — 8z

W X (-81’4)

Similarly, the denominator has leading term 724, so we’ll replace it by

7z* 4+ 523 4+ 200022 — 6

4
i x (7x*).
Making both these replacements leads to this:
x — 8x?
z — 8z g = (—8x%)
lim = lim .
z—oo Txt + 53 + 200022 — 6 z—oo Tzt + 523 + 200022 — 6 A
- x (Tx)

Looking at this, you should concentrate on the ratio

—8z4

Txd
because that’s what’s really going on here. The other fractions all have limit
1, but we have effectively squeezed all the important juice out of our two
polynomials into the simple ratio of leading terms. Luckily that ratio just
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simplifies to —8/7, so that should be our answer. To nail that down, we have
to prove that the other fractions have limit 1, but that’s no problem. You
see, in each of the little fractions, we can do the division and we see that our
above limit can be written as

x| T2 Tat

Now we take limits; from the fact in the box in the previous section, any
expression of the form C/z™ goes to 0 as  — oo (provided that C is constant
and n > 0). So most of the stuff goes away! We also cancel out the z* factor
on the right to see that we are reduced to
0+1 -8

— X
1+0+0-0 7

-8
X — = —
7

==

and we’re all done.
Here’s another example: find

. (x% + 32 —99)(2 — 2°)
lim .
z—oo (1827 + 928 — 322 — 1)(x + 1)
We have four polynomials here, with leading terms z*, —z°, 182", and z. So
we’ll use our method for each one of them! Try it and see for yourself before

reading further. Even if you don’t, make sure you understand every step of
the argument below:

i (z* + 32 — 99)(2 — )
00 (1827 + 925 — 322 — 1)(z + 1)

x* + 32— 99 2 — b
<7x4 x (z4>> ( . (—x5>)
= R 08 322 1 1
( A x(mxm><x x(@)
s

18z7
3 99 2
1+ 2 -2 (24
. (+5-5) (5 L (=)
N I IR BN AU AN (L 6
18z  18z° 1827 T
= (1+0-0)(0+1) x lim - lim _—m:—oo.

(1+0-0-0)(14+0)  z—oc 18 z—oo 18

The main point is that we boiled out the leading terms into the ratio

(z*)(=2")
(1827)(x)’

which simplifies to —z/18. Everything else had no effect! Finally, when
x — 00, the quantity —x/18 goes to —oo, so that’s the “value” of the limit
we’re looking for.
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4.4

In the previous two examples, we’ve seen that the limit might be finite and
nonzero (we got the answer —8/7) or it might be infinite (we got the answer
—00). Let’s look at the degree of the polynomials in these examples. In the
first example, both the numerator and the denominator were of degree 4. In
the second example, the numerator is the product of polynomials of degree
4 and degree 5, so if you multiply it out, you get a polynomial of degree
9. Similarly, the denominator is the product of polynomials of degree 7 and
degree 1, so it has total degree 8. In this case, the numerator is of greater
degree than the denominator. On the other hand, consider this limit:

. 2x+3
lim

z—o0 2 — 7

Let’s use our methods to solve it:

2x 4+ 3 3
21 +3 5, < (22) I+o-) 2
lim = lim 24 = lim 24 —
z—00 2 — —00 ZC2 -7 9 T—00 7 72
o < @) -2
1+0 2
= + x lim — =0
1-— T—00 I

Here, the denominator has degree 2, which is greater than the numerator’s
degree (which is 1). The result is that the denominator dominates, so the
limit is 0. In general, here’s what we can say considering the limit

where p and ¢ are polynomials:

1. If the degree of p equals the degree of ¢, the limit is finite and nonzero.
2. If the degree of p is greater than the degree of ¢, the limit is co or —oo.
3. If the degree of p is less than the degree of ¢, the limit is 0.

(All this is also true when & — —o0, so that the limit is

im @
A0 @)

we’ll consider this case in Section 4.5 below.) These facts are easily proved in
general using the above methods. Useful as these facts are, you really don’t
need them to solve problems; you should use the dividing and multiplying
method, then use the facts to check that your answer makes sense.

Limits Involving Poly-type Functions as £ — oo

Consider functions f, g and h defined by
f(z) =23 4 42” — 52%/3 + 1, g(x) =+Va -T2+ 2,
and h(z):x4—\/z3+\s/x2—2x+3.
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These aren’t polynomials because they involve fractional powers or nth roots,
but they look a little like polynomials. In fact, the methods of the previous
section work on these objects as well, so I'll call them “poly-type functions.”

The principles for poly-type functions are similar to those for polynomials,
except that this time it may not be so clear what the leading term is. The
presence of square roots (or cube roots, fourth roots, and so on) can have a
big impact on this. For example, let’s consider

lim V16z* + 8 + 3x
z—oo 22 4+6x+1

The bottom is a polynomial with leading term 22, so we’ll replace it by

222 4+ 6z + 1
222 %

(222).

How about the top? The part under the square root is a polynomial, 16x* +38,
and its leading term is 16x*. If you take the square root of that, you get 42.
So mentally you should think of the top as behaving like 422 +3x. The leading
term of that is 422, so that’s what we’re going to use. Specifically, we will

replace the top by
V16z* + 8 + 3z 9
————— x (427).
42
How do you simplify the first fraction? The answer is that you can drag the

422 under the square root, and it becomes 162

V16zt + 8 + 3z \/16x4+8+3z /1624 +8 3z

4z2 4z2 422 164 422
Now if you split up more and cancel, you can reduce this to

8 3

14+ —+4+ —.
+ 1624 + 4z

As © — o0, the parts with x on the bottom just go away, so this expression

goes to
vV14+0+0=1.

So, let’s put it all together and write out the solution to the original problem:

V16z* + 8+ 3z )
607 +8+3z gz <)

lim = lim 5
z=oo 222 46z +1 z—oo 2z +6x +1
—— x (222)
212
16z* + 8 3x 8 3
L 14— 4+ 2
Vet T 4 Tt 1 4
= lim 5 X — = lim X —
z—oo  2z° + 6z +1 222 oo 6 1 2
o T 14—+ —
2,2 20 22

V14040 y
14040

2=2.
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Nice, huh? Messy, but nice. Now let’s see what happens when we modify the
situation very slightly. Consider

Y 16x% + 8 + 323

iooe 222 + 6z +1
The only change is that the 3z term in the numerator in the previous example
has become 323. How does this affect things? Well, we already said that the
V16x% + 8 term behaves like 422 for large z, but this time it gets swamped
by the higher-degree term 3z3. So now we have to replace the top by

V162% + 8 4 32° 3
323 x (3z2);

of course, when we drag 32> under the square root, it will become 9z°¢. All
together, then, the solution looks like this:

V1624 + 8 4 323 3
. V16t +8+32% 323 x (32%)
lim = lim 5

z—oo 222 +6x+1 z—oo  22° +6x+1 "

52 (222)

162* +8 328 16 8
B T RS YUK (L o VO
T T 2 el 227 etk 6 1 72

— 1+ 5+ 38

s
VO+0+1 . 3x

= ———— X lim — = o0.

1+0+0 z—00 2
Make sure you understand each step of the last two solutions. In the first
example, the leading term came from the 16x* under the square root; even
when you take the square root, the resulting term 4z? still dominated the
rest of the numerator (3z). In the second example, the rest of the numerator
(32%) was the dominant force. But wait, you say—what if they are the same?

For example, what is

. V426 — 525 — 223 0

o0 Y270 18T
The denominator isn’t too nasty, actually, but let’s just look at the numerator
for a second. Under the square root, we have 4% — 52°, which behaves like
its leading term 4x® when x is large. So we should think that /426 — 525
behaves like v4z6, which is just 223 (since x is positive). The problem is
that we are taking away 22> in the numerator, so it looks like we’re left with
nothing! Crap. What do we do?

The solution is to use the same technique as described in Section 4.2 above:

multiply top and bottom by the conjugate expression of the numerator. So
before we even look at leading terms, we need to do some prep work:

VAzb — 5ad — 223 V426 — 525 — 223 /426 — 55 + 223

lim = lim

X :
z—o0 /2716 4 8x z—oo /2726 4 8x VA4xb — 5a5 + 223
Now the formula (a —b)(a+b) = a? —b? allows us to simplify this whole thing
to

. (425 — 52°) — (223)2
im )
w—00 /2720 + 8x(v/420 — 55 + 223)
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In fact we can even tidy up the numerator further and reduce the situation to

. —5xP
lim .
w—00 /2720 + 8x(\/4x0 — 5a® + 223)

There, that’s not so bad! There’s nothing we need to do on the numerator;
let’s just concentrate on the denominator. For /2726 4 8z, we can actually
just multiply and divide by the cube root of the leading term 27z, giving

/2726 + 8x 8

Voas < VAT

which is just
V2726 + 8z % (327)
V276 -

Of course, we’ll combine the terms under the square root and cancel to get

32725 + 8z 5 s/ 8 5

Note that the part involving the cube root just goes to 1 as x — oc.

As for the other term, /426 — 5254223, here we need to be a little careful.
Under the square root, we have 4x% — 52°, so the leading term is 4x%. The
square root of this is 222. Now we have to add 2z to this, and the total
“leading term” on the numerator is therefore 223 + 2z3, or 423. Let’s see how
it works. We’ll replace the numerator by

VAz5 — 5a5 + 223 "

4a3

(4$3)7

then split up the fraction and drag the 423 under the square root, where it
becomes 16z5; we get

406 — 525 228 1 5 1
- 423) = = 4 473).
<V 1620 +4m3>x(z) ( 1 16x+2>x(x)

Now when you let x — oo, the first product goes to

1 1 1 1
1 + 0+ 573 + 5 )
which is what we want! (Note that the square root of 1 is 1.)

Now let’s try to put it all together and solve this darned problem. We
started off by multiplying the numerator by its conjugate, which reduced

matters to
—5xb

lim .
w—00 /2720 + 8x(v/420 — 5ad + 223)

Now we’ll use the multiply and divide method on the bottom, giving

—5°
lim x

@ e (m } (3x2)> <m+zx3 } (4x3)>'

V275 43
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Pull out the quantities —5z°, 322, and 423 to get

. 1 —5z°
lim

T—00 <\%/27(E6+81'> (\/4m6_5x5+2m3> X (3562)(4563)

V2725 4o’

Now all you have to do is cancel 2° from the top and the bottom and use the
arguments from above to show that the final answer is —5/12. T’ve left you
with a bit of work, but you should try to assemble all the bits and pieces from
above into a complete solution.

4.5 Limits Involving Rational Functions as £ — —o0

Now let’s spend a little time on limits of the form

im @
A o)

where p and ¢ are polynomials or even poly-type functions. All the principles
we’ve been using apply equally well here. When « is a very large negative
number, the highest-degree term in any sum still dominates. Also, it’s true
that C/a™ still goes to 0 as © — —oo, provided that C' is constant and n
is a positive integer. (Can you see why?) This all means that the solutions
are almost identical to what we’ve already seen. For example, consider some
adaptations of two examples we’ve already looked at in Section 4.3.1 above:

. r — 8zt . (z* + 32 — 99)(2 — )
lim and  lim .
z——oo Tzt + 523 4+ 200022 — 6 z——oo (1827 + 926 — 322 — 1)(x + 1)

All T've done is change oo to —oo, so that we are now interested in what
becomes of the two rational functions when z is a very large negative number.
The solution to the first one is the same as it was when x tended to oo; you
just multiply and divide by the leading term of each polynomial:

x — 8x*
o — 8z e x (—8x%)
lim = lim I 3 5
z——o0 Txt + 523 4+ 200022 — 6  e——oc0 Tz* + 5x° + 20002° — 6 A
- x (Tz4)
1
sz ! -8 8
=, lim 5 8ngooo 6 77 7

Tr  Tx2 Tt

The point here is that any term that looks like C//z™ for some positive n goes
to 0 as * — —o0, just the same as it does when x — oco. On the other hand,
the second example is not quite identical; the very last step is different from
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the previous version of the problem:

im (z* + 32 — 99)(2 — )
z——00 (1827 + 926 — 322 — 1)(z + 1)

z5"c0 (1827 + 925 — 322 — 1 r+1
7
( 1827 x (18x )) ( X (:c))

. (ra-%)(5) s

X
T——00 9 3 1 1 (1827)(x)
14— -2 = V(14=
< + 18z  18z° 18x7> < + :v)

= (1+0-0)(=0+1) x lim — = lim _—x—oo
T (14+0-0-0)(1+0)  e—-cc 18  z—-o0 18

Only when we take the limit at the very end do we see anything different from
when x — oco: as ¢ — —o0, now —xz/18 goes to oo rather than —oco.

There’s only one other thing you have to beware. We’ve been dragging
factors into square roots without being too careful. To show you what I
mean, try simplifying v22. Did you get #? That’s not right if 2 is negative,
unfortunately. For example, if you square —2 and then take the square root,
you will get 2. So in fact V22 = —z when z is negative. This sort of thing
comes up when you look at poly-type limits as x — —oo, for example:

. V4xb + 8
lim

z——o00 223 +6x + 1"

The denominator behaves like its leading term 223, but how about the nu-
merator? The term in the square root, 42 + 8, behaves like 428, so /425 + 8
behaves like /4296, Tempting as it is to simplify this as 223, it is simply
not correct! Since z — —oo, we are interested in what happens when x is
negative. This means that 2z3 is negative, but V425 is positive, so we must
simplify V426 as —223. Here’s how the solution goes:

VA4z6 +8
- - 6
A T8 . o X Vdzx

li — - =
a0 223 4+ 62 + 1 e 223 + 62 + 1
—— 3 X (223)
2x
425+ 8 - 8

. 426 V4ax . 46 —243

= lim X = lim X
z——o0 223 4+ 6x + 1 2x3 T——00 6_17 N 1 23
213 203 2z3

V140

- V0 -

—— X
1+0+0

You have to exercise similar care when you deal with fourth roots, sixth roots,
and so on. For example,

Tt =—2x if « is negative.
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4.6

The same would be true if you replaced every instance of 4 with any even
number. On the other hand, it’s not true if you replace 4 by an odd number;
for example,

Vad =z for all z (positive, negative, or zero).
One other point, though: it’s still true that
Vat = 22

even if z < 0! Why? Because x? can’t be negative, and v 4 can’t be negative
by definition, so there can’t possibly be a minus sign! Here’s a summary of
the situation:

if < 0 and you want to write V/gsomething — ™ the only time you
need a minus sign in front of ™ is when n is even and m is odd.

Limits Involving Absolute Values

Sometimes you have to deal with functions involving absolute values. Consider
this limit:

lim m
z—0- T
In order to answer this, let’s set f(x) = |z|/z and check it out some more.

First, note that 0 can’t be in the domain of f, since the denominator would
then be 0. On the other hand, everything else is fine. Let’s look at what
happens when z is positive. The quantity |z| is then just z, so we see that
f(z) = 1 if x is any positive number. On the other hand, if = is negative,
then |z| = —z, so f(z) = —x/x = =1 if © < 0. That is, writing f(x) = |z|/z
is just a fancy way of saying that f(z) =1if z > 0 and f(z) = -1 if 2 < 0.
The graph of y = f(x) looks like this:

||

Y=
T

So, for the left-hand limit that we were looking at, you need to approach z = 0
from the left, and it’s clear that
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and we may as well note that

Since the left- and right-hand limits don’t agree, the two-sided limit doesn’t
exist:
lim m DNE.

z—0 X

Most examples involving absolute values can be solved in a similar fashion
by considering two or more different ranges of x, depending on the sign of
what’s inside the absolute value signs. A very slight variation of the above
example is

. |z + 2|
lim .
z—(—2)- T+ 2

Looking at the absolute value, we see that it matters whether z +2 > 0 or
x+2 < 0. These conditions can be rewritten as x > —2 or x < —2. In the first
case, |z + 2| = x + 2, whereas in the second case |x + 2| = —(z +2). The end
result is that the quantity |z + 2|/(z 4 2) is equal to 1 when = > —2; whereas
the quantity is just —1 when z < —2. In fact, the graph of y = |z +2|/(z+2)
is the same as the graph of y = |z|/x shifted to the left by 2 units:

|z 42

y T+ 2

This means that the left-hand limit that we’re looking for is equal to —1 (and
the right-hand limit is 1, and the two-sided limit does not exist).






CHAPTER 5

Continuity and Differentiabllity

0.1

In general, there’s only one special thing about the graph of a function: it just
has to obey the vertical line test. That’s not particularly exclusive. The graph
could be all over the place—a little bit here, a vertical asymptote there, or
any number of individual disconnected points wherever the hell they feel like
being. So now we’re going to see what happens if we’re a little more exclusive:
we want to look at two types of smoothness. First, continuity: intuitively, this
means that the graph now has to be drawn in one piece, without taking the
pen off the page. Second, differentiability: the intuition here is that there are
no sharp corners in the graph. In both cases, we’ll do a lot better job with
the definition, and we’ll see some of the things you can expect to get from
functions with these special properties. In detail, this is what we’ll look at in
this chapter:

e continuity at a point, and over an interval;

e some examples of continuous functions;

e the Intermediate Value Theorem for continuous functions;
e maxima and minima of continuous functions;

e displacement, average velocity, and instantaneous velocity;
e tangent lines and derivatives;

e second and higher-order derivatives; and

e the relationship between continuity and differentiability.

Confinuity

We'll start off by looking at what it means for a function to be continuous.
As I said above, the intuition is that you can draw the graph of the function
in one piece, without lifting your pen off the page. This is all very well for
something like y = 22, which is all in one piece; but it’s a little unfair for
something like y = 1/x. This would have had a graph in one piece except
for the vertical asymptote at x = 0, which breaks it into two. In fact, if
f(x) = 1/z, then we want to say that f is continuous everywhere except at
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x = 0. So we have to understand what it means to be continuous at a point,
and then we’ll worry about continuity over larger regions like intervals.

Continuity at a point

Let’s start with a function f and a point a on the z-axis which is in the domain
of f. When we draw the graph of y = f(x), we don’t want to lift up the pen
as we pass through the point (a, f(a)) on the graph. It doesn’t matter if we
have to lift up our pen elsewhere, as long as we don’t lift it up near (a, f(a)).
This means that we want a stream of points (x, f(x)) which get closer and
closer—arbitrarily close, in fact—to the point (a, f(a)). In other words, as
x — a, we need f(x) — f(a). Yes, ladies and gentlemen, we’re dealing with
limits here. We can now give a proper definition:

A function f is continuous at x = a if lim f(z) = f(a).

r—a

Of course, for this last equation to make sense at all, both sides must be
defined. If the limit doesn’t exist, then f isn’t continuous at x = a, whereas
if f(a) doesn’t exist, then youre totally screwed: there isn’t even a point
(a, f(a)) to go through! So we can be a little more precise about the definition
and explicitly require three things to be true:

1. The two-sided limit lim f(x) exists (and is finite).
2. The function is defined at = = a; that is, f(a) exists (and is finite).

3. The two above quantities are equal: that is,

lim f(x) = f(a).

r—a

6 Let’s see what happens if any of these properties fail. Consider the following
V graphs:
1 2 3 4
a a a a
SN

In diagram #1, the left- and right-hand limits aren’t the same at x = a, so
the two-sided limit doesn’t exist there; therefore the function isn’t continuous
at © = a. In diagram #2, the left- and right-hand limits exist and are finite
and equal to each other, so the two-sided limit exists; however the function
isn’t even defined at © = a, so it isn’t continuous there. In diagram #3, the
two-sided limit again exists, and the function is defined at x = a, but the limit
isn’t the same as the function value; once again, the function isn’t continuous
at £ = a. On the other hand, the function in diagram #4 is indeed continuous
at © = a, since the two-sided limit at = = a exists, f(a) exists, and the limit is
the same as the value of the function. By the way, we say that the functions
in the first three diagrams have a discontinuity at © = a.
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5.1.2  Confinuity on an inferval

We now know what it means for a function to be continuous at a single point.
Let’s extend this definition and say that a function f is continuous on the
interval (a,b) if it is continuous at every point in the interval. Notice that
f doesn’t actually have to be continuous at the endpoints x = a or = = b.
For example, if f(x) = 1/z, then f is continuous on the interval (0, 00) even
though f(0) isn’t defined. This function is also continuous on (—o0,0), but
not on (—2,3), since 0 lies within that interval, and f isn’t continuous there.

How about an interval like [a, b]? We have to be a little more flexible. For
example, below is the graph of a function with domain [a, b]; we’d like to say
that it’s continuous on [a, b]:

T

a b

The problem is that the two-sided limits at the endpoints * = a and z = b
don’t exist: we only have a right-hand limit at = a and a left-hand limit at
x = b. That’s OK; we just modify our definition a bit by using the appropriate
one-sided limits at the endpoints. So we say that a function f is continuous
on [a,b] if

1. the function f is continuous at every point in (a, b);

2. the function f is right-continuous at x = a. That is, lim , f(z) exists
(and is finite), f(a) exists, and these two quantities are equal; and

3. the function f is left-continuous at = b. That is, lim _ f(x) exists (and
is finite), f(b) exists, and these two quantities are %(Yubal.

Finally, we just say that a function is continuous if it is continuous at all
the points in its domain, with the understanding that if its domain includes
an interval with a left and/or right endpoint, then we only need one-sided
continuity there.

Examples of continuous functions

Many common functions are continuous. For example, every polynomial is
continuous. This seems a little hard to prove, since there are so many different
polynomials, but actually it’s not so bad. First, let’s prove that the constant
function f, defined by f(z) =1 for all z, is continuous at any point a. Well,
we need to show that

lim f(x) = f(a).

Since f(x) =1 for any z, and f(a) = 1, then this means that we need to show
that
lim1=1.

r—a
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Of course, this is obviously true, since nothing depends on x or a! Now, let’s
set g(z) = z. Is g continuous? Well, now we need

lim g(z) = g(a).
Since g(z) = z and g(a) = a, this reduces to showing that

lim x = a.

r—a
This is also obviously true: as z — a, well, x — a! Now we just need to observe
that a constant multiple of a continuous function is continuous; also, if you
add, subtract, multiply or take the composition of two continuous functions,
you get another continuous function (see Section A.4.1 of Appendix A for
more info). The same is almost true if you divide one continuous function
by another: the quotient function is continuous everywhere except where the
denominator is 0. For example, 1/x is continuous except at « = 0, since we’ve
seen that both the numerator and denominator are continuous functions of x.

Anyway, back to polynomials. Because g(z) = z is continuous in z, we
can multiply ¢ by itself to see that 22 is also continuous in 2. You can keep
multiplying by x as often as you like to prove the continuity of any power of
x (as a function of ). Then you can multiply by constant coefficients and
add different powers together to get any polynomial—and everything’s still
continuous!

It turns out that all exponentials and logarithms are continuous, as are all
the trig functions (except where they have vertical asymptotes). We’ll just
take that for granted for the moment and return to this point in Section 5.2.11
below. Meanwhile, I want to look at a more exotic function. Consider the
function f defined by f(z) = zsin(1/x). We looked at the graph of this (at
least when 2 > 0) in Section 3.6 of Chapter 3. In fact, it’s really easy to extend
the graph to = < 0, because f is an even function. Why? Remembering that
sin(x) is an odd function of z, we have

F(—2) = (—z)sin (_ix) — (~2) (—sin (%)) — zsin (%) = f(x).

So f is indeed even, and we can get the graph of all of f by reflecting the pre-
vious graph using the y-axis as our mirror (the graph only shows the domain
—-0.3<x<0.3):

“WVA oa()
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Now let’s consider the continuity of the function. As a function of x, we
know that 1/x is continuous away from z = 0; now compose this with the
sine function, which is also continuous, and you can see that sin(1/x) is also
continuous away from & = 0. Now you just have to multiply sin(1/x) by =
(which is obviously a continuous function of z!) to see that f is continuous
everywhere except at x = 0.

Now, what happens at £ = 0?7 Clearly f is not continuous at x = 0, since
it’s not even defined there (there’s a hole in the graph). Let’s plug up this
hole by defining a function g as follows:

xsin <l> if x #0,
g(x) = z
0 ifx=0.

So g(x) = f(x) everywhere except at = 0, where g equals 0 but f is un-
defined. As a result, g is automatically continuous everywhere f is—namely,
everywhere except z = 0—but now we need to see what happens at = = 0.
We have a hope because g(0) is defined. Also, we used the sandwich principle
in Section 3.6 of Chapter 3 to show that

1

lim g(z) = lim xsin| — ) =0.
z—0*t g( ) z—0t (I)

By symmetry (or the sandwich principle, again), we can see that the left-hand

limit is also equal to 0. So in fact the two-sided limit is 0 as well:

z—0

. . . 1
ilir(l)g(m) = lim zsin (E) =0.

So we have shown that
lim g(x) = (0)

since both sides exist and are equal to 0. This means that ¢ is actually
continuous at x = 0, even though it was cobbled together in piecewise fashion.

We're almost ready to look at two nice facts involving continuity; first I
want to return to a point I made at the beginning of Chapter 4. The first
example we looked at was

. x> —-3x+2
lim ——
z——1 T —2

which we solved by just substituting x = —1 to get the answer —2. Why is
this justified? The argument seems to contradict the idea that the value of
the above limit has nothing to do with what happens at x = —1, only what
happens near * = —1. This is where continuity comes in: it connects the
“near” with the “at.” Specifically, if we let f(z) = (22 — 3z +2)/(z — 2),
then since the numerator and denominator are polynomials, f is continuous
everywhere except where the denominator is 0. That is, f is continuous
everywhere except at = 2. So f is continuous at x = —1, which means that

lim f(z) = f(=1).

r——1
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Replacing f by its definition, we have

2 —1)2 _3(—
o 3042 (C1)2 - 3(-1) 42

- = 2.
o1 T —2 (—1)—2

That is the complete solution. In practice, few mathematicians would bother
spelling it out in such gory detail, but it’s worth understanding what you're
doing whenever possible!

The Intermediote Value Theorem

Knowing that a function is continuous brings some benefits. We’re going to
look at two such benefits. The first is called the Intermediate Value Theorem,
or IVT for short. Here’s the idea: let’s suppose that a function f is continuous
on a closed interval [a, b]. Also suppose that f(a) < 0 and f(b) > 0. So in the
graph of y = f(z), we know that the point (a, f(a)) lies below the z-axis and
that the point (b, f(b)) lies above the z-axis, like this:

Now, if you have to connect those two points with a curve (which of course
has to obey the vertical line test), and you're not allowed to lift your pen up,
it’s intuitively obvious that your pen will have to cross the z-axis somewhere
between a and b, at least once. It could be close to a or close to b, or somewhere
in the middle; you might cross back and forth many times; but the critical
thing is that you have to cross at least once. That is, there is an z-intercept
somewhere between a and b. It’s crucial that the function f is continuous at
every point in [a, b]; look what can happen if f is discontinuous at even one
point:

/\)
a b

o

The discontinuity allows this function to jump over the x-axis without passing
through it. So, we need continuity on the whole region [a,b]. All this is also
true if we start above the axis and end below it; that is, if f(a) > 0 and
f(b) < 0, we must have an z-intercept somewhere in [a, b] if f is continuous
on all of [a,b]. Since an z-intercept at ¢ means that f(c) = 0, we can state
the Intermediate Value Theorem as follows:
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Intermediate Value Theorem: if f is continuous on [a, b], and f(a) < 0
and f(b) > 0, then there is at least one number c in the interval (a,b)
such that f(c) = 0. The same is true if instead f(a) > 0 and f(b) < 0.

There’s a proof of this theorem in Section A.4.2 of Appendix A. For now,
let’s look at a few examples of how to apply this theorem. First, suppose
you want to show that the polynomial p(z) = —2° + 2* + 3z + 1 has an
z-intercept between = 1 and x = 2. All you have to do is notice that
p is continuous everywhere (including [1,2]) because it’s a polynomial; also,
calculate p(1) =4 > 0 and p(2) = —9 < 0. Since p(1) and p(2) have opposite
signs and p is continuous on [1,2], we know that there is at least one number
¢ in the interval (1,2) such that p(c) = 0. This number c¢ is an z-intercept of
the polynomial p.

Here’s a slightly harder example. How would you show that the equation
x = cos(x) has a solution? You don’t have to find the solution, only to
show that there is one. You could start by drawing the graphs of y = = and
y = cos(z) on the same axes. If you do, you’ll find that the intersection of the
graphs has z-coordinate somewhere around 7/4. This graphical argument,
while compelling, doesn’t cut it so far as a mathematical proof is concerned.
How can we do better?

The first step is to use a little trick: put everything onto the left-hand
side. So, instead of solving x = cos(x), we try to solve z — cos(x) = 0. Now
we must take the initiative and set f(x) = x — cos(z). We’ll be all done if we
can show that there is a number ¢ such that f(c) = 0. Let’s check that this
makes sense: if f(c) = 0, then ¢ —cos(c) = 0, so ¢ = cos(c) and we have found
a solution to the equation x = cos(x), namely = = c.

Now it’s time to use the Intermediate Value Theorem. We need to find
two numbers a and b such that one of f(a) and f(b) is negative and the other
one is positive. Since we think (from the graph) that the answer is around
/4, we’ll be conservative and take a = 0 and b = 7/2. Let’s check the values
of f(0) and f(m/2). First, f(0) =0 — cos(0) =0 — 1 = —1, which is negative,
and second, f(m/2) = 7/2 — cos(w/2) = /2 — 0 = ©/2, which is positive.
Since f is continuous (it is the difference of two continuous functions), we
can conclude by the Intermediate Value Theorem that f(c) = 0 for some ¢
in the interval (0,7/2), and we have shown that = cos(z) has a solution.
We don’t know where the solution is, nor how many solutions there are—only
that there is at least one solution in the interval (0,7/2). (Note that the
solution is not really at 7/4! It’s not possible to find a nice expression for the
answer, actually.)

Here’s a small variation. So far, we have required that f(a) < 0 and
f(®) > 0 (or the other way around), then concluded that there’s a number
¢ in (a,b) such that f(c) = 0. Instead, we can replace 0 by any number M
and the result is still true. So, suppose f is continuous on [a, b]; if f(a) < M
and f(b) > M (or the other way around), then there is some ¢ in (a,b) such
that f(c) = M. For example, if f(z) = 3% + 2%, then does the equation
f(z) = 5 have a solution? Certainly f is continuous; also we can guess to
plug in 0 and 2, which leads to f(0) = 1 and f(2) = 13. Since the numbers 1
and 13 surround the target number 5 (one is smaller and the other is bigger),
the Intermediate Value Theorem tells us that f(¢) = 5 for some ¢ in (0, 2).
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That is, f(z) = 5 does have a solution. Now, try to repeat the problem by
starting with a new function g, where g(x) = 3% + 2% — 5. Convince yourself
that if f(x) =5 has a solution ¢, then this number ¢ is also a solution of the
equation g(z) = 0. Since ¢g(0) < 0 and g(2) > 0, you can use the previous
method instead of the variation! In fact, the variation doesn’t really give us
anything new—it just makes life a little easier sometimes.

A harder IVT example

One last example: let’s show that any polynomial of odd degree has at least
one root. That is, let p be a polynomial of odd degree; I claim that there is
at least one number ¢ such that p(c) = 0. (This isn’t true for polynomials of
even degree: for example, the quadratic 2 + 1 doesn’t have any roots—its
graph doesn’t cross the z-axis.) So, how do we prove my claim?

The key is actually found in the methods of Section 4.3 of the previous
chapter. There we saw that if p(z) is any polynomial and a,z™ is its leading

term, then
lim p(z) =1 and lim p(z)

z—00 Qp X" r——00 ApT"™

=1

So when = gets very large, p(z) and a,a™ are relatively close to each other
(their ratio is near 1). This means that they at least have the same sign as
each other! One can’t be negative and the other positive, or else their ratio
would be negative, not close to 1. The same is true when z is a very large
negative number.

So let’s suppose that A is a large negative number, so large that p(A) and
an, A™ have the same sign. Also, we’ll pick some huge positive number B so
that p(B) and a,, B™ have the same sign. Now let’s compare the signs of a,, A"
and a,B™. Since n is an odd number, these must have opposite signs! One
is negative and one is positive. For example, if a,, > 0, then a,, B" is positive
and a, A™ is negative. (This is only true because n is odd: if n were even then
both quantities would be positive.) So here’s the situation:

p(A)

So p(A) and p(B) have opposite signs. Since p is a polynomial, it is continuous;
by the Intermediate Value Theorem, there is a number ¢ between A and B
such that p(c) = 0. That is, p has a root, although we really have no idea
where it is. That makes sense since we knew virtually nothing about p to
start with, only that its degree was odd.

same sign as opposite sign to same sign as
— —> —

Maoxima and minima of confinuous functions

Let’s move on to the second benefit of knowing that a function is continuous.
Suppose we have a function f which we know is continuous on the closed
interval [a,b]. (It’s very important that the interval is closed at both ends.)
That means that we put our pen down at the point (a, f(a)) and draw a curve
that ends up at (b, (b)) without taking our pen off the paper. The question
is, how high can we go? In other words, is there any limit to how high up this
curve could go? The answer is yes: there must be a highest point, although
the curve could reach that height multiple times.
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In symbols, let’s say that the function f defined on the interval [a, b] has a
mazimum at © = ¢ if f(c) is the highest value of f on the whole interval [a, b].
That is, f(c) > f(z) for all z in the interval. The idea that I've been driving
at is that a continuous function on [a, b] has a maximum in the interval [a, b].
The same is true for the limbo question, “how low can you go?” We’ll say
that f has a minimum at x = ¢ if f(c) is the lowest value of f on the whole
interval; that is, that f(c) < f(z) for all z in [a, b]. Once again, any continuous
function on the interval [a, b] has a minimum in that interval. These facts form
a theorem, sometimes known as the Max-Min Theorem, which can be stated
as follows:

Max-Min Theorem: if f is continuous on [a, b], then
f has at least one maximum and one minimum on [a, b].

Here are some examples of continuous functions on [a,b] and their maxima
and minima (these are the plurals of maximum and minimum, respectively,
of course):

In the first graph, the function attains its maximum at z = ¢ and its minimum
at x = d. In the second, the function has a maximum at x = ¢ but the
minimum is at the left endpoint x = a. The third graph has a maximum at
x = b but the minimum is at both * = ¢ and * = d. This is acceptable—
there are allowed to be multiple minima, as long as there is at least one.
Finally, the fourth graph shows a constant function, which is continuous; in
fact, every point in the interval [a,b] is both a maximum and a minimum,
since the function never goes above or below the constant value C.

So, why does the function f need to be continuous? And why can’t it
be an open interval, like (a,b)? The following diagrams show some potential

problems:
|
|
|
|
|
| /—' /\/
|
1
|
|

(b « ¢ b « ¢ d b

In the first figure, the function f has an asymptote in the middle of the interval
[a, b], which certainly creates a discontinuity. The function has no maximum
value—it just keeps going up and up on the left side of the asymptote. Sim-
ilarly, it has no minimum value either, since it just plummets way down on
the right side of the asymptote.



84 e Continuity and Differentiability

5.2

52.1

The middle diagram on the previous page involves a more subtle situation.
Here the function is only continuous on the open interval (a, b). It clearly has
a minimum at x = ¢, but what is the maximum of this function? You might
think that it occurs at « = b, but think again. The function isn’t even defined
at = b! So it can’t have a maximum there. If the function has a maximum,
it must be somewhere near b. In fact, you’d like it to be the number less than
b which is closest to b. Unfortunately, there is no such number! Whatever you
think the closest number is, you can always take the average of this number
and b to get an even closer number. So there is no maximum; this illustrates
that the interval of continuity has to be closed in order to guarantee that the
Max-Min Theorem works.

Of course, the conclusion of the theorem could still be true even if the
interval isn’t closed. For example, the function in the third diagram above
is only continuous on the open interval (a,b), but it still has a maximum at
x = ¢ and a minimum at x = d. This was just a lucky accident: you can only
use the theorem to guarantee the existence of a maximum and minimum in
an interval [a,b] if you know the function is continuous on the entire closed
interval.

Differentiabllity

We’ve spent a while looking at continuity. Now it’s time to look at another
degree of smoothness that a function can have: differentiability. This essen-
tially means that the function has a derivative. So, we’ll spend quite a bit
of time looking at derivatives. One of the original inspirations for develop-
ing calculus came from trying to understand the relationship between speed,
distance, and time for moving objects. So let’s start there and work our way
back to functions later on.

Average speed

Imagine looking at a photo of a car on a highway. The exposure time was
very short, so it’s not blurry—you can’t even tell whether the car was moving
or not. Now, I ask you this: how fast was the car moving when the picture
was taken? No problem, you say—just use the classic formula

distance
speed = ——

time
The problem is that the photo conveys no sense of distance (the car hasn’t
moved) or time (the photo essentially captures an instant of time). So you
can’t answer my question.

Ah, but what if I tell you that a minute after the picture was taken, the
car had traveled one mile? Then you could use the above formula to see that
the car was going at a mile a minute, or 60 mph. Still, how do you know
that the car was going the same speed for that whole minute? It might have
accelerated and decelerated many times during that minute. You have no
idea how fast it was actually going at the beginning of that minute. In fact,
the above formula isn’t really accurate: the left-hand side should say average
speed, since that’s all we’ve found.
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OK, T'll take pity on you and tell you that the car went 0.25 miles in the
first 10 seconds. Now you can use the formula and see that the average speed
over the first 10 seconds is 1.5 miles per minute, or 90 mph. This helps, but
the car could still have changed its speed over the 10 seconds—we don’t really
know how fast it was going at the beginning of the period. It’s unlikely that
it was too far away from 90 mph because the car can only accelerate and
decelerate so much in such a short time.

It would be even better to know how far the car went in 1 second after the
photo was taken, but it would still not be perfect. Even 0.0001 seconds might
be enough for the car’s speed to change, but not by much. If you sensed that
we’re heading toward whipping out a limit, you’d be quite right. We need to
look at the concept of velocity first, though.

Displacement and velocity

Imagine that the car is driving down a long straight highway. The mile mark-
ers are a little weird—there’s a 0 marker at some point, and to the left of it,
the markers start at —1 and become more and more negative. To the right
of the 0 marker, they go as normal. In fact, the whole situation looks exactly
like a number line:

- | | %61 | 1.

-1 0 1 2 3

Suppose that the car starts at mile 2 and goes directly to mile 5. Then it
has gone a distance of 3 miles. If instead it starts at mile 2 but goes left to
mile —1, it’s also gone a distance of 3 miles. We’d like to distinguish between
these two cases, so we’ll use displacement instead of distance. The formula
for displacement is just

displacement = (final position) — (initial position).

If the car goes from position 2 to 5, then the displacement is 5 — 2 = 3 miles.
If instead the car goes from 2 to —1, the displacement is (—1) —2 = —3 miles.
So displacement can be negative, unlike distance. In fact, if the displacement
is negative, then the car ends up to the left of where it began.

Another important difference between distance and displacement is that
the displacement only involves the final and initial positions—what the car
does in between is irrelevant. If it went from 2 to 11 and then back to 5, the
distance is 94 6 = 15 miles but the total displacement is still only 3 miles. If
instead it went from 2 to —4 and then back to 2, the displacement is actually
0 miles even though the distance is 12 miles. It is true, however, that if the
car just goes in one direction without backtracking, then the distance is the
absolute value of the displacement.

As we saw in the last section, average speed is the distance traveled divided
by the time taken. If you replace distance by displacement, you get the average
velocity instead. That is,

. displacement
average velocity = T tme
ime
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Again, velocity can be negative while speed must be nonnegative. If the car
has a negative average velocity over a certain time period, then it has ended
to the left of where it began. If instead the average velocity is 0 over the time
period, then the car has ended up exactly where it began. Notice that in this
case the car might have a high average speed even though its average velocity
is 0! In general, just like displacement, if the car is going in just one direction,
then the average speed is just the absolute value of the average velocity.

Instantaneous velocity

We now revisit our crucial question in terms of velocity: how do you measure
the velocity of the car at a given instant? The idea, as we saw above, is
to take the average velocity of the car over smaller and smaller time periods
beginning at the instant the photo was taken. Here’s how it works in symbols.

Let ¢ be the instant of time we care about. For example, if a race started at
2 p.m., you might decide to work in seconds with O representing the starting
time; in that case, if the photo was taken at 2:03 p.m. then you’d want to take
t = 180. Anyway, suppose that u is a short time later than ¢. Let’s write vie,,
to mean the average velocity of the car during the time interval beginning at
time ¢ and ending at time u. Now we just push u closer and closer to ¢. How
close? As close as we can! That’s where the limit comes in. In fact,

instantaneous velocity at time t = lim+ Vs r
u—t
Why neglect what happens before time ¢, though? We can make the above
definition a little more general by allowing u to be before ¢; then we can
replace the right-hand limit by a two-sided limit:
instantaneous velocity at time t = limt Vi -
u—
Now we need a few more formulas. Let’s suppose we know exactly where on
the highway the car is at any instant of time. In particular, suppose that at
time ¢, the car is at position f(¢). That is, let

f(t) = position of car at time ¢.

We can now calculate the average velocity v, exactly:

position at time u — position at time ¢ f(u) — f(t)

Vtesy =

u—t u—t

Notice that the denominator u — ¢ is the length of time involved (provided
that u is after® t). Anyway, now we just take a limit as u — ¢:

u) — f(
instantaneous velocity at time t = limt 7‘)0( ) IJ:( )
u— u —

Of course, you cannot just substitute u = ¢ in the previous limit, because then
you get the indeterminate form 0/0. You really do need to use limits.

*If u is before ¢, then the denominator should be ¢ — u, but then the numerator should
be f(t) — f(u), so it all works out!
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One more little variation. Let’s define h = u — ¢t. Then since u is very
close to t, the difference h between the two times must be very small. Indeed,
as u — t, we can see that h — 0. If we make this substitution in the above
limit, then because uw = t + h, we also have

instantaneous velocity at time t = }ILH%

fE+h) - f(t)
- :

There’s no real difference between this formula and the previous one; it’s just
written a little differently.

Let’s look at a quick example. Suppose that the car starts at rest at the
7 mile marker, then accelerates to the right beginning at time ¢ = 0 hours. It
turns out that the car’s position at time ¢ might be something like 15¢2 + 7
(the number 15 here depends on the acceleration). Without worrying about
why this is true, let’s just let f(#) = 15t2+7 and see if we can find the velocity
of the car at any time ¢.

Using the above formula, we have

flE+h) - f(t)

instantaneous velocity at time ¢ = lim

h—0 h
2 o 2
~ im (I5(t+ h)*+7) — (15t +7).
h—0 h

Now expand (t + h)? = t2 + 2th + h? and simplify a bit to see that the above
expression is

15t2 4+ 30th + 152 + 7 — 15t2 — 7 30th + 15h2
lim + a + = lim a = lim (30t + 15h).
h—0 h h—0 h h—0

It’s particularly nice that the h gets canceled from the denominator in the
last step, since that’s what was giving us all the trouble. Now we can just put
h = 0 to see that

instantaneous velocity at time ¢ = }llirr%)(?)Ot + 15h) = 30¢.

So at time 0, the car’s velocity is 30 x 0 = 0 mph—the car is at rest. Half an
hour later, at time t = 1/2, its velocity is 30 x 1/2 = 15 mph. One hour after
the start time, the velocity is 30. In fact, the fact that the velocity is 30t at
time ¢ tells us that the car gets faster and faster at the constant rate of 30
mph every hour. That is, the car is constantly accelerating at 30 miles per
hour per hour, or 30 miles per hour squared.

The graphical interpretation of velocity

It’s time to look at a graph of the situation. Suppose that f(¢) again represents
the position of the car at time t. If we want the instantaneous velocity at a
particular time ¢, we need to pick a time u close to t. Let’s draw the graph
of y = f(¢t) and mark in the points (¢, f(¢)) and (u, f(u)) as well as the line
through them:
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The slope of this line is given by

dope _ L) =S
u—t

which is exactly the formula for the average velocity v, from the previous
section. So we have a graphical interpretation for average velocity over the
time period ¢ to u: it’s the slope of the line joining the points (¢, f(¢)) and
(u, f(u)) on the graph of position versus time.

Let’s try to find a similar interpretation for the instantaneous velocity. We
need to take the limit as u goes to t, so let’s repeat the previous graph a few
times, each time with u closer and closer to the fixed value t:

525

1} u  time t u time t u time

The lines seem to be getting closer to the tangent line at the point (¢, f(t)).
Since the instantaneous velocity is the limit of the slopes of these lines as
u — t, we’d like to say that the instantaneous velocity is exactly equal to the
slope of the tangent line through (¢, f(¢)). Looks like we need to understand
tangent lines better. . ..

Tangent lines

Suppose we pick a number z in the domain of some function f. Then the
point (x, f(x)) lies on the graph of y = f(z). We want to try to draw a line
through that point which is tangential to the curve—that is, we want to find a
tangent line. Intuitively, this means that the line we’re looking for just grazes
the curve at our point (z, f(x)). The tangent line doesn’t have to intersect
the curve only once! For example, the tangent line through (z, f(x)) in the
following picture hits the curve again, and that’s not a problem:
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It’s possible that there’s no tangent line through a given point on a graph.
For example, consider the graph of y = |z|:

- y = ||

The graph passes through (0,0), but there’s no tangent line through that
point. What could the tangent line possibly be, after all? No matter what
you draw, you can’t cuddle up to the graph there since it’s got a sharp point
at the origin. We’ll return to this example in Section 5.2.10 below.

Even if the tangent line through (x, f(x)) exists, how on earth do you
find it? Remember, to specify a line, you only need to provide two pieces
of information: a point the line goes through and its slope. Then you can
use the point-slope form to find the equation of the line. Well, we have one
ingredient: we know the line passes through the point (z, f(z)). Now we just
need to find the slope. To do this, we’ll play a game similar to the one we
played with instantaneous velocities in the previous section.

Start by picking a number z which is close to = (either to the right or to
the left) and plot the point (z, f(z)) on the curve. Now draw the line through

the points (z, f(z)) and (z, f(2)):
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Since the slope is the rise over the run, the slope of the dashed line is
f(z) — f(=)
z2—z

Now, as the point z gets closer and closer to x, without ever actually getting
to x itself, the slope of the above line should become closer and closer to the
slope of the tangent we're looking for. So, if there’s any justice in the world,
then it should be true that

slope of tangent line through (z, f(x)) = lim M

Z—=T zZ—T

Let’s set h = z — x; then we see that as z — x, we have h — 0, so we also
have

slope of tangent line through (z, f(x)) = %ir% w

Of course, this only makes sense if the limit actually exists!

The derivative function

In the following picture, I've drawn in the tangent lines through three different
points on the curve:

/ tangent at x = ¢

.-+~ tangent at x =b

- —-- tangent at x = a

These lines have different slopes. That is, the slope of the tangent line de-
pends on which value of x you start with. Another way of saying this is that
the slope of the tangent line through (z, f(z)) is itself a function of z. This
function is called the derivative of f and is written as f’. We say that we have
differentiated the function f with respect to its variable = to get the function
/. By the formula at the end of the previous section, we see that

o) — fim LETI) @)

h—0 h

provided that the limit exists. In this case, we say that f is differentiable at x.
If the limit doesn’t exist for some particular x, then that value of z is not in
the domain of the derivative function f’, so we say that f is not differentiable
at x. The limit could fail to exist for a variety of reasons. In particular, there
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could be a sharp corner as in the example of y = |z| above. On an even more
basic level, if = isn’t in the domain of f, then you can’t even plot the point
(x, f(x)), let alone draw a tangent line there!

Now let’s recall the definition of instantaneous velocity in Section 5.2.3
above:

instantaneous velocity at time ¢ = ]1111% w,
where f(t) is the position of the car at time ¢. This right-hand side of this
the same as the definition of f’(z) above, except with x replaced by ¢! That
is, if v(¢) is the instantaneous velocity at time ¢, then v(t) = f’(t). Velocity
is precisely the derivative of position with respect to time.

Let’s look at one example of finding a derivative. If f(z) = 2%, what
is f'(z)? The computation is very similar to the one we did at the end of
Section 5.2.3 above:

, o fleth) = fe) (@t h)?—a?
fla) = Jim h I —
a2+ 2eh+h?—22 . 2zh 4+ h?
= o h I
= }llirr%)(2w+h):2x.

So the derivative of f(z) = 2?2 is given by f’(x) = 2z. This means that the
slope of the tangent to the parabola y = 22 at the point (x,2?) is precisely
2z. Let’s draw the curve and a few tangent lines to check it out:

tangent
at x = —1

The slope of the tangent at © = —1 does indeed look like it’s about —2, which
is consistent with the formula f'(z) = 2z. (Twice —1 is —2!) The same
is true with the other tangents—their slopes are all twice the corresponding
x-coordinate.

The derivative as a limiting ratio

In our formula for the derivative f’(z), we have to evaluate the quantity
f(z + h). What is this quantity? Well, if y = f(x), and you change x into
x + h, then f(z + h) is simply the new value of y. The amount h represents
how much you changed z, so let’s replace it by the quantity Az. Here the
symbol A means “change in,” so that Az is just the change in . (Don’t think
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of Az as the product of A and x—this is just plain wrong!) So, let’s rewrite
the formula for f’(x) with h replaced by Ax:

o) — i AN = @)

- Az—0 Az

OK, here’s what happens. We start out with our pair (z,y), where y = f(z).
We now take a new value of x, which we’ll call Z,e. The value of y then
changes as well to a new value ypew, which of course is just f(Zpew). Now, the
amount of change of any quantity is just the new value minus the old one, so
we have two equations:

AT = Tpew — T and AY = Ynew — Y-

The first equation says that zpew = x + Az, so now the second equation can
be transformed as follows:

AY = Ynew — Y = f(Tnew) — f(z) = f(x + Az) — f(z).

But this is just the numerator of the fraction in the definition of f’(z) above!
What this means is that
f(@) = lm 22
)= Az—0 Az’

An interpretation of this is that a small change in x produces approximately
f'(z) times as much change in y. Indeed, if y = f(z) = 22, then we’ve seen
in the previous section that f’(z) = 2z. Let’s concentrate on what happens
when z = 6, for example. First, note that our formula for f’(z) shows us that
f'(6) =2 x 6 = 12. So, if you take the equation 62 = 36 and change the 6 a
little bit, the 36 will change by about 12 times as much. For example, if we
add 0.01 to 6, we should add 0.12 to 36. So I'm saying that (6.01)? should be
about 36.12. In fact, the actual answer is 36.1201, so I was really close.

Now, why didn’t I get the exact answer? The reason is that f'(z) isn’t
actually equal to the ratio of Ay to Ax: it’s equal to the limit of that ratio
as Az tends to 0. This means that if we don’t move as far away from 6, we
should do even better. Let’s try to guess the value of (6.0004)2. We have
changed our original z-value 6 by 0.0004, so the y-value should change by
12 times this much, which is 0.0048. Our guess is therefore that (6.0004)2
is approximately 36.0048. Not bad—the actual answer is 36.00480016, so we
were very close! The smaller the change from 6, the better our method will
work.

Of course, the magic number 12 only works when you start at x = 6.
If instead you start at # = 13, the magic number is f’(13), which equals
2 x 13 = 26. So, we know 132 = 169; what is (13.0002)%? To get from 13
to 13.0002, you have to add 0.0002; since the magic number is 26, we have
to add 26 times as much to 169 to get our guess. That is, we add 0.0052 to
169 and come up with the guess 169.0052. Again, that’s pretty darn good:
(13.0002)2 is actually exactly 169.00520004.

Anyway, we’ll return to these ideas in Chapter 13 when we look at lin-
earization. For now, let’s look at the formula

f'(r) = lim Ay

Az—0 Ax '
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once again. The right-hand side is the limit of the ratio of the change in y
to the change in x, as the change in xz becomes small. Suppose that x is
so small that the change is barely noticeable. Instead of writing Ax, which
means “change in z,” we’d now like to write dz, which should mean “really
really tiny change in z,” and similarly for y. Unfortunately neither da nor dy
really means anything by itself;* nevertheless this provides the inspiration for
writing the derivative in a different, more convenient way:

d
if y = f(z), then you can write d_y instead of f'(x).
T

For example, if y = 22, then % = 2z. In fact, if you replace y by %2, you get
a variety of different ways of expressing the same thing:

2

flay=2 ) _ ¢

T dx dx
As another example, in Section 5.2.3 above, we saw that if the position of a
car at time t is f(t) = 15t> + 7, then its velocity is 30t. Remembering that
velocity is just f’(t), this means that f/(¢) = 30¢t. If instead we decided to
call the position p, so that p = 15t2 + 7, we could write % = 30¢t. The point
is that not everything comes in z’s and y’s—you have to be able to deal with
other letters.

In summary, the quantity % is the derivative of y with respect to x. If

(z%) = 2.

y = f(z), then % and f’(x) are the same thing. Finally, remember that the

quantity % is not actually a fraction at all—it’s the limit of the fraction %

as Az — 0.

The derivative of linear functions

Let’s just pause for breath and go back to a simple case: suppose that f is
linear. This means that f(z) = mz + b for some m and b. What do you think
that f’(z) should be? Remember, this measures the slope of the tangent to
the curve y = f(x) at the point (z, f()). In our case, the graph of y = ma+b
is just a line of slope m and y-intercept equal to b. If there’s any justice in the
world, then the tangent at any point on the line is just the line itself! This
means that the value of f/(z) should be m no matter what z is: the curve
y = mx + b has constant slope m. Let’s check it out using the formula:

oy i @t h) = f@) L (@4 h) +b) - (ma+b)
O ;

. mh .
= lim — = lim m = m.

h—0 h h—0
So there is justice in the world: f/(z) = m regardless of what x is. That
is, the derivative of a linear function is constant. As you might expect, only
linear functions have constant slope (this is a consequence of the so-called
Mean Value Theorem; see Section 11.3.1 in Chapter 11). By the way, if f is
actually constant, so that f(x) = b, then the slope is always 0. In particular,
f/(x) =0 for all z. So we've proved that the derivative of a constant function
is identically 0.

*There is a theory of “infinitesimals,” but it’s beyond the scope of this book!
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5.2.9 Second and higher-order derivatives

Since you can start with a function f and take its derivative to get a new
function f’, you can actually take this new function and differentiate it again.
You end up with the derivative of the derivative; this is called the second
derivative, and it’s written as f”.

For example, we've seen that if f(z) = 22, then the derivative f’(z) = 2z.
Now we want to differentiate this result. Let’s put g(z) = 2z and try to work
out ¢'(x). Since g is a linear function with slope 2, we know from the previous
section above that ¢’(x) = 2. So the derivative of the derivative of f is the
constant function 2, and we have shown that f”(x) = 2 for all «.

If y = f(x), then we’ve seen that we can write % instead of f/(x). There’s
a similar sort of notation for the second derivative:

2
if y = f(x), then you can write % instead of f”(x).

In the above example, if y = f(x) = 22, then we’ve seen that

d?y  d*(z? d?
o= =T - Ly =,

These are all valid ways of expressing that the second derivative of f(z) = 2

(with respect to x) is the constant function 2.

Why stop at taking two derivatives? The third derivative of a function
f is the derivative of the derivative of the derivative of f. That’s a lot of
derivatives! Realistically, you should think of the third derivative of f as
being the derivative of the second derivative of f, and you can write it in any
of the following ways:

d3 d3
@), fP@), =5 o ().

dz3’

The notation f®)(z) is particularly convenient for higher derivatives, because
writing so many apostrophes is just plain stupid. So, for example, the fourth
derivative, which is just the derivative of the third derivative, would be written
f@(x) and not f”(z). That said, it will sometimes be convenient to go the
other way and write f(?)(z) for the second derivative instead of f”(z). It’s
even possible to write f(1)(x) instead of f’(x), since we are only taking one
derivative, and also f()(z) instead of just f(x) itself (no derivatives!). That
way, any derivative can be written in the form f()(z) for some integer n.

52.10 When the derivative does not exist

In Section 5.2.5 above, I mentioned that the graph of f(z) = |z| has a sharp
corner at the origin. This should mean that the derivative doesn’t exist at
x = 0. Now let’s try to see why this is. Using the formula for the derivative,

e e fh) = f@) e+ b=l
, s r+n)—jlz) . T+ h|—|x
o™ =
We are interested in what happens when x = 0, so let’s replace = by 0 in the
above chain of equations:
m |0+ h|—1[0] |h

oy — i JOFR) = f(0) .
7o) = Jim Lo o B — o B



Section 5.2.10: When the derivative does not exist o @5

We have seen this limit before! In fact, in Section 4.6 of the previous chapter,
we saw that the limit does not exist. This means that the value of f/(0) is
undefined: 0 is not in the domain of f’. We also saw, however, that the above
limit does exist if you change it from a two-sided limit to a one-sided limit.
In particular, the right-hand limit is 1 and the left-hand limit is —1. This
motivates the idea of right-hand and left-hand derivatives, which are defined
by the formulas

o T+ h) = (@) o fa+h) = (@)
R h and ol h !

respectively. They look pretty similar to the definition of the ordinary deriva-
tive, except that the two-sided limit (that is, as h — 0) is replaced by right-
hand and left-hand limits, respectively. Just as in the case of limits, if the left-
and right-hand derivatives both exist and are equal, then the actual derivative
exists and is equal to the same thing. Also,* if the derivative exists then the
left- and right-hand derivatives both exist and are equal to the derivative.

Anyway, the point is that if f(z) = |z|, at = 0 the right-hand derivative
is 1 and the left-hand derivative is —1. Do you believe this? Look at the
graph again:

y = ||

As you head from the origin along the curve to the right, it’s definitely slope
1 (and in fact it stays at slope 1, that is, f/(z) = 1 if > 0). Similarly, to the
immediate left of the origin, the slope is —1 (and in fact f'(z) = —1if x < 0).
Since the left-hand slope doesn’t equal the right-hand slope, there can be no
derivative at x = 0.

OK, so we have come up with a continuous function which isn’t differ-
entiable everywhere in its domain. Still, it is clearly differentiable except at
one measly little point. It turns out that you can have a continuous function
which is so spiky and jittery that it effectively has a sharp corner at every
single x, so it can’t be differentiated anywhere! This sort of funky function is
beyond the scope of this book, but I might as well mention that some of these
sorts of functions are used to model stock prices—if you’ve ever seen the graph
of a stock price, you’ll know what I mean by “spiky and jittery.” Anyway,
my point is that there are continuous functions which are not differentiable.
Are there any differentiable functions which aren’t continuous? The answer
is “no,” and we're about to see why.

*You might say “conversely,” but only if you know what a “converse” is!
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Differentiability and confinuity

Now it’s time to relate the two big concepts in this chapter. I'm going to show
that every differentiable function is also continuous. Another way of looking
at this is that if you know a function is differentiable, you get the continuity
of your function for free. More precisely, I will show:

if a function f is differentiable at z, then it’s continuous at x. ‘

For example, we’ll show in Chapter 7 that sin(z) is differentiable as a function
of x. This will automatically imply that it’s also continuous in x. The same
goes for the other trig functions, exponentials, and logarithms (except at their
vertical asymptotes).

So, how do we prove our big claim? Let’s start by seeing what we want to
prove. To show that f is continuous at x, we're going to need to show that

ln f(u) = f(2),

remembering from Section 5.1.1 above that this equation can only be true
if both sides actually exist! Before we proceed farther, I want to substitute
h = u — x as we’ve done before. In that case, uw = = + h, and as u — z, we
see that h — 0. So the above equation can be replaced by

lim f(z+h) = ().

We need to show that both sides exist and that equality holds—then we’ll be
all done.

Now that we are aware of our destination, let’s start with what we actually
know. Well, we know that f is differentiable at z; this means that f’(z) exists,
so by the definition of f’, the limit

i flx+h)— f(x)

h—0 h

exists. Let’s first notice that f(z) is involved in this formula, so it must exist
or else the formula is all whacked. So we’ve already gotten somewhere: we
know that f(x) exists. We still need to do something clever. The trick is to
start with another limit:

h—0 h

lim (Mxh).

On the one hand, we can work out this limit exactly by splitting it into two
factors:

oy (L 10) )y St 1) 1

. _ ! _
h—0 h h—0 h X%lir%)h—f(x)XO—O

This works just fine because all the limits involved exist. (That’s where you
need the fact that f’(x) exists—otherwise it wouldn’t work.) On the other
hand, we could have taken the original limit and instead canceled out the
factor of h to get

lim (w X h) = }llii%(f(x—i-h) — f(x)).

h—0
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Comparing these two previous equations, we just have
lim (f(z+h) = f(z)) =0,

Of course, the value of f(x) doesn’t depend on the limit at all, so we can pull
it out and see that

(hm flz+ h)> — f(z) =0.

h—0

Now all we have to do is add f(x) to both sides to get
lim f(z +h) = (2)

which is exactly what we wanted! In particular, the limit on the left exists
and equality holds. So we have proved a nice result: differentiable func-
tions are automatically continuous. Remember, though, that continuous
functions aren’t always differentiable!






CHAPTER 6

How fo Solve Differentiation Problems

0.1

Now we’ll see how to apply some of the theory from the previous chapter to
solve problems involving differentiation. Finding derivatives from the formula
is possible but cumbersome, so we’ll look at a few rules that make life a lot
easier. All in all, here’s what we’ll tackle in this chapter:

e finding derivatives using the definition;

e using the product, quotient, and chain rules;

e finding equations of tangent lines;

e velocity and acceleration;

e finding limits which are derivatives in disguise;

e how to differentiate piecewise-defined functions; and

e using the graph of a function to draw the graph of its derivative.

Finding Derivatives Using the Definitfion

Let’s say we want to differentiate f(z) = 1/x with respect to x. We know
from the previous chapter that the definition of the derivative is

flz+h) - f(z)

/ — 1
(@) ey h ’
so in our case we have
11
’ — lim +h
fi(z) = lim ’

If you just replace h by 0 in the fraction, you end up with the indeterminate
form %. So you need to work a little. In this case, the idea is to simplify the
numerator by taking a common denominator. You get

x— (x+h)
f/(z) = lim _z@+h) li —h

h—0 h = s hx(x + h)



100 e How to Solve Differentiation Problems

Now cancel out a factor of h from top and bottom, then evaluate the limit by
setting h = 0:
-1 -1 1

f'(@) = }{li% x(x + h) - x(x) T2

a1y _ 1
de \z ) = 22’

On the other hand, to find the derivative of f(z) = /=, you have to employ
the trick that we used in Section 4.2 of Chapter 4. Here’s how it goes:

P = g LT ZIE) gy, SrERZYE

h—0 h h—0

That is,

and we are again in % territory. Let’s multiply top and bottom by the conju-
gate of the numerator to get

fla) = tim YEF=VE Verhtve o @Eh -z
- h “Vethtyi O h(Vzthtyz)

h—0
now we can cancel the x terms on the top, cancel a factor of h from top and
bottom, and take the limit to see that

h 1 1 1
lim ————=1i = = )
WO (VT h+ V) hoVath+ i VEtvE 2VE

In summary, we have shown that

f'(x) =

Now how would you find the derivative of f(x) = /= + 22 using the
definition of the derivative? Even if you can just write down the answer,
I've asked you to use the definition, so you must put all temptations aside
and use the formula:

f'(z) = lim flx+h) = flx) _ lim (Vz+h+(z+h)?) - (ﬁﬂz)'

h—0 h h—0 h

This looks pretty messy, but if we split it up into the terms involving the
square-root stuff and the terms involving the square stuff, we see that

f/(CC): lim V'r+ \/_ ($+h)2—$2

h—0 h—>0 h

We know how to do both of these limits; we have just seen that the first one
is 1/2y/x, and we did the second one in Section 5.2.6 of the previous chapter
and got the answer 2zx. You should try doing both of them without looking
back at the previous work and make sure you get the answer
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It’s now time to find the derivative of x™ with respect to z, where n is
some positive integer. Set f(x) = z™; then we have

o o LEER 1@ @R =

Somehow we have to deal with (z + h)™. There are several ways of doing this;
let’s try the most direct approach, which is to write

(x+h)"=(x+h)(x+h) - (x+h).

There are n factors in the above product. This would be a real mess to
multiply out, but it turns out we don’t need to do the whole thing—we just
need to get started. If you take the term x from each factor, there are n of
them, so you get one term z™ in the product. That’s the only way to get all
x factors, so we already have

(x+h)"=(x+h)(z+h) - (x+h)=2z" + stuff involving h.

We need to do a little more work, though. What if you take the term h from
the first factor and x from the others? Then you have one h and (n—1) copies
of z, so you get ha™~! when you multiply them all together. There are other
ways to choose one h and the rest x—you could take the A from the second
factor and all others z, or the A from the third factor, and so on. In fact,
there are n ways you could pick one h and the rest x, so you actually have
n copies of ha"~!. Together, this makes nha"!. Every other term in the
expansion has at least two copies of h, so every other term has a factor of h2.
All in all, we can write

(z4+h)" = (x+h)(x+h) - (x+h) = 2" +nha™ " +stuff with h? as a factor.

Let’s tidy this up one little bit: we’ll write the “stuff with A2 as a factor” in
the form h? x (junk), where “junk” is just a polynomial in # and h. That is,

(x+h)"=(@+h)(x+h) - (x+h)=2" +nhas" ' +h? x (junk).
Now we can substitute into the formula for the derivative:

vy v (@R =2 x" +nha" !t 4 h? x (junk) — 2"
o= =% h |

The 2™ terms cancel, and then we can cancel out a factor of h:

haz"~! + h? x (junk
f/(CC) _ ]}LIL%TL X +h (Jlln ) _ %ii%(nzn—l +hx (Junk))
As h — 0, the second term goes to 0 (since the junk is pretty benign and
doesn’t blow up!), but the first term remains as nz”~*. So we conclude that

d

E(m") =na"!

when n is a positive integer. In fact, we’ll show in Section 9.5.1 of Chapter 9
that

d

—(z%) = ax
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6.2

when a is any real number at all. In words, you are simply taking the power,
putting a copy of it out front as the coefficient, and then knocking the power
down by 1.

Let’s take a closer look at the above formula. First, when a = 0, then z¢
is the constant function 1. The derivative is then 0z~!, which is just 0. This
agrees with the computation we did in Section 5.2.8 of the previous chapter;
in summary,

d
if C' is constant, then d—(C) =0
T

Now, if a = 1, then z* is just . According to the formula, the derivative
is 120, which is the constant function 1. Again, this agrees with our results
from Section 5.2.8 of the previous chapter; we have confirmed that

d

%(:1:) =1.

When a = 2, then we see that the derivative of 22 with respect to z is 2!,
which is just 2z. This agrees with what we found previously. Similarly, when
a = —1, we can use our formula to see that the derivative of 7! is —1 x z72.
In fact, this just says that the derivative of 1/x is —1/2%, which we already
knew from the beginning of this section! This example comes up so often that
you should just learn it individually.

Now let’s try some fractional powers. When a = %, you see that the
derivative with respect to z of #1/2 is J271/2. By the exponential rules (see
Section 9.1.1 in Chapter 9 for a review of these!), you can rewrite this and see
that the derivative of \/x is 1/2y/z, which is exactly what we found above.
Again, this comes up so often that it’s worth learning it individually so that
you don’t have to mess around with powers of % and —%. Finally, let’s try

a= % Our formula says that

d a1 oasq 1 9
G LA L
Using exponential rules (again, you can find these in Section 9.1.1 of Chap-

ter 9), we can rewrite this whole thing as

4 oz) =
ZVD =

This one is a little more esoteric, so I wouldn’t worry about learning it. Just
make sure you can derive it using the formula for the derivative of #® with
respect to = from the box above.

Finding Derivatives (the Nice Way)

All this messing about with limits in order to find derivatives is getting a bit
tedious. Luckily, once you do it, you can build up other derivatives from the
ones you've already found by means of simple rules. Let’s define a function f
as follows:

327 4 2225 + 1521/3 — 23z + 9

f(x) 622 — 4
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The key to differentiating a function like this is to understand how it is syn-
thesized from simpler functions. In Section 6.2.6 below, we’ll see how to
use simple operations—multiplication by a constant, adding and subtracting,
multiplying, dividing, and composing functions—to build f from atoms of the
form ¢, which we already know how to differentiate. First we need to see how
taking derivatives is affected by each of these operations; then we’ll come back
and find f/(z) for our nasty function f above. (See Section A.6 of Appendix A
for proofs of the rules below, although there are intuitive justifications of some
of them in Section 6.2.7.)

Constant mulfiples of functions

It’s easy to deal with a constant multiple of a function: you just multiply by
the constant after you differentiate. For example, we know the derivative of
2?2 is 2x; so the derivative of 722 is 7 times 2z, or 14z. The derivative of —z2
is —2x, since you can think of the minus out front as multiplication by —1.
There’s actually an easy way to take the derivative of a constant multiple of
z®. Simply bring the power down, multiply it by the coefficient, and then
knock the power down by one. So for the derivative of 722, bring the 2 down,
mulitply it by 7 to get the coefficient 14, then knock the power of x down by
one to get 14z or just 14z. Similarly, to find the derivative of 13z%, multiply
13 by 4, giving a coefficient of 52, and then knock the power down by one to
get 523,

Sums and differences of functions

It’s even easier to differentiate sums and differences of functions: just differen-
tiate each piece and then add or subtract. For example, what’s the derivative
with respect to = of

7
3%5—21'24—%4—2?

First write 1/y/z as £~1/2, so this means that we really have to differentiate
3z% — 222 + 72~1/2 + 2. Using the method for constant multiples that we
have just seen, the derivative of 3z° is 15z*; similarly, the derivative of —222
is —4x, and the derivative of 72~1/2 is —%x_?’/ 2. Finally, the derivative of 2
is 0, since 2 is a constant. That is, the +2 at the end is irrelevant, as far as
taking derivatives is concerned. So, we can just put the pieces together to see
that

d 7 d
I (3965 — 227 + 7z + 2) = £(3$5—2CE2+7$_1/2+2) = 15$4—4LE—%LL‘_3/2.

By the way, it’s useful to realize that you can write z%/2 as z+/z, so you could
also write the above derivative as

151‘4—4$—Z 1

2T

Similarly, 2%/ is the same as z2y/z, and 27/ is the same as x3+/z, and so on.
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6.2.3 Products of functions via the product rule

It’s a little trickier dealing with products—you can’t just multiply the two
derivatives together. For example, let’s say we want to find the derivative of

h(z) = (z° + 22— 1)(32® — 227 — 2 — 32)

without expanding everything first (that would take way too long). Let’s set
f(z) = 2° + 22 — 1 and g(x) = 32% — 227 — 2* — 32. The function A is the
product of f and g. We can easily write down the derivatives of f and g: they
are f/(z) = 5z* +2 and ¢'(z) = 2427 — 1425 — 423 — 3. As I said, it’s not true
that the derivative of the product h is the product of these two derivatives.
That is, () # (5z* + 2)(2427 — 142% — 423 — 3). It’s no good saying what
B/ (x) isn’t—we need to say what it is!

It turns out that you have to mix and match. That is, you take the
derivative of f and multiply it by g (not the derivative of g). Then you also
have to take the derivative of g and multiply it by f. Finally, add the two
things together. Here’s the rule:

Product rule (version 1): if h(z) = f(x)g(z), then
W (z) = fl(z)g(x) + f(2)g'(x).

So, for our example of h(z) = (z° + 2z — 1)(32% — 227 — 2* — 32), we write
h as the product of f and g and then take their derivatives, as we did above.
Let’s summarize what we found, taking a column each for f and g:

flz)=2°+22—1 g(x) = 328 — 227 — z* — 32
f'(x) =52t +2 g (z) = 242" — 1425 — 423 — 3.

Now we can use the product rule and do a sort of cross-multiplication. You
see, we need to multiply f'(x) on the bottom left by g(x) on the top right,
then add to this the product of f(z) from the top left and ¢’(z) from the
bottom right. So we get

W(z) = f'(z)g(z) + f(z)g'(x)
= (521 +2)(32® — 227 — 2 — 3x)
+ (2% 4 22 — 1)(2427 — 142® — 42 - 3).

You could multiply this out, but it would be even worse than multiplying out
the original function h and then differentiating that. Just leave it as it is.
There’s another way to write the product rule. Indeed, sometimes you
have to deal with y = stuff in x, instead of the f(x) form. For example,
suppose y = (z® + 2x)(3x + /z + 1). What is dy/dz? In this case, it’s easier
to let u = 23 + 22 and v = 3z + /z + 1. Then we can take the above form of
the product rule and make some replacements: first, u replaces f(z), so that
du/dx replaces f'(z); we also do the same thing with v and g(x). We get

Product rule (version 2): if y = uv, then
dy du n dv
= =v— +u—.
dx dx dzr
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So, in our example, we have

u=a42z v=3xr++xr+1
du dv 1

— =322 +2 — =34 —.
dx v dx +2\/§

This means that

dy du dv 9 3 1
2y = Ve Tu Bz +Vr+1)(32° +2) + (2° + z)(3—|—2\/§>

What if you have a product of three terms? For example, suppose
y = (22 +1)(2® + 32)(2° + 22 +7)

and you want to find dy/dz. You could multiply it all out and differentiate,
or instead you could use the product rule for three terms:

Product rule (three variables): if y = uvw, then

dy _du oo dw
dz_d:cvw udzw uvd:c'

Before we finish the example, here’s a tip for remembering the above formula:
just add up wvw three times, but put a d/dz in front of a different variable in
each term. (The same trick works for four or more variables—every variable
gets differentiated once!) Anyway, in our example, we'll let u = z2? + 1,
v =122+ 3z, and w = 2% + 22* 4+ 7, so that y is the product uvw. We have
du/dx = 2z, dv/dr = 2x+3, and dw/dx = 5x*+8z>. According to the above
formula, we have
dy du dv w
Ir va —&—uaw—i—uva
= (22)(z® + 32)(2® + 22" + 7) + (2 + 1)(2z + 3)(2® + 22" + 7)

+ (2% 4 1) (2 + 3z)(5a* + 82°).

Since we didn’t multiply out and simplify the original expression for y above,
I'm certainly not going to simplify the derivative! I do want to mention,
however, that you can’t always multiply everything out. Sometimes you just
have to use the product rule. For example, after you learn how to differentiate
trig functions in the next chapter, you’ll want to be able to use the product
rule to find derivatives of things like zsin(z). You can’t really multiply this
expression out—it’s already as expanded as it can get. So if you want to
differentiate it with respect to x, there’s no easy way of avoiding using the
product rule.

Quotients of functions via the quotient rule

Quotients are handled in a way similar to products, except that the rule is a
little different. Let’s say you want to differentiate

72:103—3:5—1—1

(=) % — 8x3 + 2



106 o How to Solve Differentiation Problems

with respect to x. You can let f(z) =22 — 3z + 1 and g(x) = 2° — 823 + 2;
then you can write h as the quotient of f and g, or h(z) = f(x)/g(x). Now
here’s the quotient rule:

f(z)

Quotient rule (version 1): if h(z) = ——= then

g(z)

Notice that the numerator of the right-hand fraction is the same as the nu-
merator in the product rule, except with a minus instead of a plus. In our
example, we need to differentiate f and g and summarize our results:

flz) =22 -3z +1 g(x) = 2° — 8% +2
f'(x) =62% -3 g (z) = 5zt — 2422

By the quotient rule, since h(z) = f(x)/g(x), we have

f(x)g(x) — f(x)g'(x)
(9(x))?
(62% — 3) (25 — 82% +2) — (223 — 3z + 1)(52* — 242?)
(5 — 8x3 4 2)2 ’

B (z) =

There’s also another version, just as there is in the case of the product rule.
If instead you are given that

731724—1
T8

and you want to find dy/dx, then start by writing u = 322 +1 and v = 2287,
so that y = u/v. Now we use:

Quotient rule (version 2): if y = E, then
v

du_ dv
dy _ Vi~ "dx
dz v2 '
Our summary box looks like this:
uw=3z+1 v=2z% -7
du dv 7
I 6x T 16z2".
By the quotient rule,
du dv
dy _ Vgr " “dw _ (22% = 7)(62) — (32 4+ 1)(1627)
dr v2 N (225 — 7)2 :

As you can see, quotients aren’t any harder than products (just a bit messier).
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6.2.5 Composition of functions via the chain rule

Suppose h(z) = (2% +1)? and you want to find h'(x). It would be ridiculous
to multiply it out—you’d have to multiply x? + 1 by itself 99 times and it
would take days. It would also be crazy to use the product rule, since you’d
need to use it too many times.

Instead, let’s view h as the composition of two functions f and g, where
g(z) = 2> + 1 and f(z) = 2%°. Indeed, if you take your z and hit it with g,
you end up with 22 + 1. If you now hit that with f, you get (22 + 1)%, which
is just h(x). So we have written h(z) as f(g(x)). (Check out Section 1.3 in
Chapter 1 for more on how composition of functions works.) Now we can
apply the chain rule:

| Chain rule (version 1): if h(z) = f(g(x)), then I(x) = ['(g(x))¢'(x).]

The formula looks a little tricky. Let’s decompose it. The second factor is
easy: it’s just the derivative of g. How about the first factor? Well, you have
to differentiate f, then evaluate the result at g(x) instead of z.

In our example, we have f(x) = 2%, so f'(z) = 992%. We also have
g(z) = 2% + 1, so ¢’(z) = 2z. There’s our second factor: just 2x. How about
the first one? Well, we take f’(z), but instead of x, we put in 22 + 1 (since
that’s what g(z) is). That is, f'(g(z)) = f/(z* + 1) = 99(z% + 1)%. Now we
multiply our two factors together to get

K (z) = f'(9(x))g (x) = 99(z* + 1)?8(22) = 198z (2* + 1)%%.

This might seem a little tortuous, to say the least. Here’s another way to
solve the same problem.

We start with y = (22 + 1)% and we want to find dy/dxr. The (2% + 1)
term makes life difficult, so we’ll just call it u. This means that y = u®° where
u = 2?2 + 1. Now we can invoke the other version of the chain rule:

Chain rule (version 2): if y is a function of u,
and u is a function of x, then

dy  dydu
dr  dudx’
So in our case, we have
Y= u® u=2x%+1
dy 98 du
—_— = 99 - = 2 .
du b dx o

Using the chain rule formula in the box above, we see that

dy  dydu

_ 98 _ 98
e~ dude = 99u”° x 2x = 198xu°°.

Now you just need to tidy it up by replacing u by x? + 1 to see that we have
dy/dx = 198z (2% + 1) as we found above.
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Here’s another straightforward example. If y = Va3 — Ta, what is dy/dz?
Start by setting v = 2% — Tz, so that y = y/u. Our table looks like this:

dy 1 du 9
2 - — =3z -T.
du  2y/u dx “

So by the chain rule, we have

d dy d 1 2
dy_dyde 1 gy 3T
2V

de ~ dudz ~ 2y
Now we just have to get rid of the u in the denominator; since u = 2% — Tx,
we see that
dy 32> -7
de 223 =Tz

Not so bad when you get the hang of it.

Two quick comments on the chain rule. First, why is it called the chain
rule, anyway? Well, you start with = and it gives you u; then you take that
uw and get y. So there’s a sort of chain from z to y through the extra variable
u. Second, you might think that the chain rule is obvious. After all, in the
formula in the box on the previous page, can’t you just cancel out the factor
of du? The answer is no—remember, expressions like dy/du and du/dz aren’t
actually fractions, they are limits of fractions (see Section 5.2.7 in the previous
chapter for more on this). The nice thing is that they often behave as if they
were fractions—they certainly do in this case.

The chain rule can actually be invoked multiple times all at once. For
example, let

y = ((% — 102)° 4 22)%.
What is dy/dx? Simply let u = 2® — 102, and v = u? + 22, so that y = v®.
Then use a longer form of the chain rule:

dy  dydvdu

de  dvdudz’

You can’t get this wrong if you think about it: y is a function of v, which is
a function of w, which is a function of . So there’s only one way the formula
could possibly look! Anyway, we have

y =® v=u’+422 u=2%—10z
dy 7 dv s du 9
— =38 — =9 — =3z — 10.
dv v du b dx .
Plugging everything in, we have
dy dydvdu 7 s 9
T doduds (8v")(9u®)(3z° — 10).
We're close, but we need to get rid of the u and v terms. First, replace v by

uw? + 22:

% = (807)(9u®) (322 — 10) = (8(u® + 22)7)(9u®) (322 — 10).
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Now replace u by 22 — 102 and group the factors of 8 and 9 together to get
the actual answer:

d
% = (8(u?422)7)(9u®) (322 —10) = 72((2®—102)°+22)7 (2 — 102)8(32% - 10).

We've mostly used the second version of the chain rule above, but there are

) times when the first version comes in useful. For example, if you know that

h(z) = \/g(x) for some functions g and h, and all you know about g is that
g9(5) =4 and ¢'(5) = 7, then you can still find A'(5). Just set f(z) = /x so
that h(z) = f(g(z)), then use the formula 2'(x) = f'(g(x))g’(x) from above.
Since f(z) = +/z, we have f'(z) = 1/2/z; so

-
2@

’ o 1 ’

H(E) = 570 )
Since g(5) = 4 and ¢'(5) = 7, we have

ey L _T

W) = 52 = ]

One more example: suppose that j(z) = g(1/z), where g is as above. What
is j/(25)? Now we have j(x) = g(f(z)); here f(x) = /= as before. This time,
it works out that

So if z = 25, we have
-/ / / 1 7
J'(25) =g (V25) —= =g¢'(5)— = —

since ¢’(5) = 7. Compare these two examples: the order of composition makes
a big difference!

A nasty example

Let’s return to our function f from above:

327 + V225 + 15243 — 232+ 9
622 —4 '

fz) =

To find f/(z), we have to synthesize f from easier functions using the rules
from the previous sections. It’s not a bad idea to do this using the function
notation (version 1 of all the rules above). Try this now!

Meanwhile, I'm going to use version 2 of all the rules. We’'ll set y = f(z)
and try to find dy/dx. The first thing to notice is that y is the quotient of two
things: u = 327 + 2*v/225 4+ 1524/3 — 232+ 9 and v = 622 — 4. We're going
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to use the quotient rule to deal with the fraction, so we’ll need du/dz and
dv/dz. The second of these is easy: it’s just 12z. The first is a bit harder.
Let’s summarize what we know so far:

u=3z" + z*\/225 + 1224/3 — 232+ 9 v==6z2—4
du dv
— =777 —— = 12z.
dx dx r

If we just knew du/dzx, we could use the quotient rule and we’d be done. So
let’s find du/dx.

First, note that v is the sum of ¢ = 32" and the nasty quantity r defined
by r = z*v/2x5 + 1524/3 — 23z +9. We need the derivatives of both pieces.
The derivative of q is easy: it’s just 2125. Now, r is the product of w = z*
and z = V225 + 1524/3 — 232 + 9, so we’ll have to use the product rule to
find dr/dz. We’ll need to note the following:

w=a* 2 =/225 + 1524/3 — 232+ 9
dw dz
— =433 — =777

dx o dx

Darn, we don’t know what dz/dx is. We're going to need to find that. Here
we are taking the square root of a big expression, so let’s call it t. Specifically,
if ¢t = 22° 4 1524/3 — 232 + 9, then z = v/#. Now we can actually differentiate
everything! Let’s set up one last table:
t =2a° + 152%3 — 232 + 9 2=/t
dt dz 1

— =102* 4+ 202'/% — 23 gy —
ar e dt i

By the chain rule (changing the variables to the letters we need),

dz dzdt 1

S (102 +20 1/3—23).

dr  di dr 2\/5( S

Replacing t by its definition, 22° + 1524/3 — 23z + 9, we see that

dz 102" +202'/3 — 23
dr 2225 + 15243 — 23z +9

Great—we finally know dz/dz. Now we can fill in the question marks from

above:
w = 2t 2 =\/225 + 1524/3 — 232+ 9
dw 3 dz 1024 + 2021/ — 23
— =4z = = .
dx dr  2v/225 + 15243 — 232+ 9

Now look back above—we were trying to find dr/dz, where r = wz. Let’s use

the product rule:
dr dw dz

dr ~ Cdr ' Vdr
Again, notice that you have to be flexible with the variables—they’re not
always v and v! Anyway, if you substitute from the table above, you find that

dr 1024 + 2021/3 — 23

L (V2x5 4+ 1524/3 — 232+ 9) (423) + (22 .
dx ( )( ) ()2\/2175—1—151:4/3—231:4—9
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Taking a common denominator and simplifying reduces this (check it!) to

dr  262® +1402'%/% — 2072 + 7227
dx 2V225 + 15273 — 232 +9

Now go back to u. We saw that u = ¢ 4+ r, where we have ¢ = 327 and
r = 2*V225 + 152%/3 — 23z + 9. We know that dg/dz = 212°, and we just
worked out the messy formula for dr/dx, so we just add them together to get

du o6 262° 4 1402'3/% — 2072* 4 722°
da 2V225 + 15243 — 232 +9

Finally, we can come back to our original quotient rule computation from the
top of the previous page, and fill in du/dx:

w =327 + 22/ 225 + 1504/3 — 232 + 9 v=6x2—4
du 6 2628 +140213/3 — 2072 + 7223 dv
— =21z — = 12z.
dx 2v225 + 152473 — 232 + 9 dx

Since y = u/v, we just use the standard quotient rule

du dv

by @ a
dx v2

to see (after splitting up and canceling) that

2628 + 140213/3 — 2072% + 7223

2125 +
@ _ 2v245 + 15243 — 232+ 9
dx 622 — 4
(327 + 21227 + 152777 — 232+ 9) (122)
- (622 — 1) '

We're finally done! It’s certainly not pretty, but it’s certainly effective.

Justification of the product rule and the chain rule

Y You can find formal proofs of the product rule and chain rule in Sections A.6.3
and A.6.5 of Appendix A, but it’s not a bad idea to get an intuitive idea for
why these rules work. So let’s take a quick look.

In the case of the product rule, we’ll use version 2 of the rule from Sec-
tion 6.2.3 above. We start off with two quantities, u and v, which both depend
on some variable z. We want to see how the product uv changes when we
change = by a tiny amount Axz. Well, v will change to u + Au, and v will
change to v + Av, so the product changes to (u + Au)(v + Av). We can
visualize this by thinking of a rectangle with side lengths v and v units. The
rectangle changes shape a little bit so that its new dimensions are u + Au and
v 4+ Av units, like this:
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u Y— (u+ Au)(v + Av) v+ Av

u+ Au

The products uv and (u+ Au)(v+ Av) are just the areas of the two rectangles
in square units, respectively. So how much does the area change? Let’s see
by superimposing the two rectangles:

uv vAu v
uAv AuAv | Av
u Au

The change in areas is precisely the area of the shaded L-shaped region. This
region is made up of two thin rectangles (of areas vAu and uAwv square units)
and one little one (of area (Au)(Awv) square units). Since the change of areas
is A(uwv) square units, we have shown that

A(uwv) = vAu + uAv + (Au)(Av).

When the quantities Au and Av are very small, the little area is very very
small indeed, so we can basically ignore it. Here’s what we’re saying:

A(uv) 2 vAu + uAwv.

If you divide by Ax and take limits, the approximation becomes perfect and
we get the product rule

d (uv) du n dv
—(uwv) = v— 4+ u—-.
dx dx dx
This is actually pretty close to the real proof!
Before we move onto the chain rule, let’s prove the product rule for three
functions, which is (as we saw above) given by

— (uvw) = d—vw—i—ud—vw R e
dw dx dr’

The trick is to let z = vw, so that wvw is just uz. We can use the product

rule on 2z = vw first:
dz dv dw

dr ~ Yz " Vdx
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Now use the product rule on uz to get

d d du dz
%(uvw) = E(uz) =z— +u—.
All that’s left is to replace z by vw and dz/dz by the above expression to see

that
d du dz du dv dw
E(uvw) =2o —l—ua = vw—— +u (wa —I—UE) .
If you expand this, you get the desired formula.

Finally, let’s think about the chain rule for a little bit. Suppose y = f(u)
and u = g(z). This means that u is a function of z, and y is a function of w.
If we change = by a little bit, as a result u will also change by a little bit. As
a result of that, y will change too. By how much will y change?

Well, let’s start off by concentrating on u and seeing how it reacts to a small
change in x. Remember that u = g(z); so as we discussed in Section 5.2.7
in the previous chapter, the change in w will be approximately ¢’(z) times
the change in . You can think of ¢’(x) as a sort of stretching factor. (For
example, if you stand in front of one of those amusement park mirrors that
make you look twice as tall and skinny as you are, then stand on your toes,
your reflection will rise by twice as much as you do.) Here’s an equation that
describes this:

Au 22 ¢'(x) Ax.

Now we can repeat the exercise with y in terms of u. Since y = f(u), a change
in u will produce approximately f’(u) times as much change in y:

Ay = f'(u) Au.
Putting these two equations together, we get
Ay = f(u)g (x) Aa.

So the change in z is first stretched by a factor of ¢’(z), then again by a factor
of f'(u). The overall effect is to stretch by the product of the two stretching
factors f'(u) and ¢'(x). (After all, if you stretch a piece of chewing gum by
a factor of 2, then stretch that by a factor of 3, this would be the same
as stretching the original piece of gum by a factor of 6.) This last equation
suggests that p A
= = lim = = f/(u)g'(@).

From here, you can get to either of the two versions of the chain rule without
too much difficulty. To get version 1, remember that u = g(z) and y = f(u),
so that y = f(g(x)); then let y = h(z) and rewrite the above equation as

W(x) = f(u)g'(z) = f'(g(x))g' (@)

To get version 2, just interpret f’(u) as dy/du and also ¢'(x) as du/dx, so
that the above equation for dy/dz says that

dy dydu
dz  dudz’

The above explanation isn’t a formal proof, but it’s pretty close.
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6.3

FiInding the Equation of a Tangent Line

What’s the use of finding derivatives, anyway? Well, one benefit is that you
can use derivatives to find the equation of a tangent line to a given curve.
Suppose you have a curve y = f(x) and a particular point (z, f(z)) on the
curve. Then the tangent line through that point has slope f'(z) and passes
through the point (x, f(x)). Now you can just use the point-slope form to
find the equation of the tangent line. In gory detail:

1. find the slope, by finding the derivative and plugging in the given value
of x;

2. find a point on the line, by substituting the value of x into the
function itself to get the y-coordinate. Put the coordinates together and
call the resulting point (z¢, yo). Finally,

3. use the point-slope form y — yo = m(x — x¢) to find the equation.

Here’s an example. Let y = (2% — 7)%0. What is the equation of the tangent
line to the graph of this function at x = 27 First we need the derivative. We’ll
have to use the chain rule, as follows: let u = 2> — 7, so y = u°°. Then we
have dy/du = 50u*® and du/dx = 3z%. By the chain rule,

dy _ dy du
dr ~ dudx

(Remember, we have to replace u by #® — 7 in order to get everything in terms
of z.) Now we need to plug in x = 2; for this value of x, we have

dy 2793 49 49

%:150(2) (2° —7)* =150 x 4 x 1*° = 600.
Great—we’ve found the slope of the tangent line we're looking for. Now we
need to find a point it goes through: just put z = 2 and see what y is. In
fact, y = (23 — 7)%9 = 159 = 1. So the tangent line passes through (2, 1).
Using the point-slope form, we see that the equation of the tangent line is
(y — 1) = 600(z — 2), which you can rewrite as y = 600z — 1199 if you like.
And that’s all there is to finding tangent lines!

= 50u?® x 322 = 1502%(2® — 7)*.

6.4 \elocity and Acceleration

Another application of finding derivatives is to compute velocities and acceler-
ations of moving objects. In Section 5.2.2 of the previous chapter, we imagined
that an object moves along a number line. We saw that if its position at time
t is x, then its velocity™ at time t is given by

locit du
velocCl =V = —.
Y dt

Now, just as the velocity is the instantaneous rate at which the position
changes, the acceleration of the object is the instantaneous rate at which the

*From now on, we’ll drop the word “instantaneous”; the term “velocity” will always
refer to instantaneous velocity unless we actually say “average velocity.”
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velocity changes. That is, the acceleration is the derivative of the velocity
with respect to time ¢. Since the velocity is the derivative of the position, we
see that the acceleration is actually the second derivative of the position. So
we have

. dv d2x
acceleration = ¢ = — =

dt — de?”

For example, let’s say that we know that the position of an object at time
t is given by @ = 3t3 — 6t> + 4t — 2, where x is in feet and ¢ is in seconds.
What are the object’s velocity and acceleration at time ¢ = 37 Well, we get
the velocity by differentiating the position with respect to time, just like this:
v = dz/dt = 9t — 12t + 4. Now we differentiate this new expression with
respect to time to get the acceleration: a = dv/dt = 18t — 12. Now plug in
t =3togetv=9(3)2—12(3)+4 = 49 ft/sec, and a = 18(3) — 12 = 42 ft/sec?.

Why is the acceleration given in feet per second squared? Well, when you
ask what the acceleration of an object is, you are really asking how fast the
object’s speed is changing. If the speed changes from 15 ft/sec to 25 ft/sec
over a time period of 2 seconds, then it has (on average) changed by 5 ft/sec
per second. So acceleration should be written in feet per second per second,
or just feet per second squared. In general, you always have to square the
time unit when you are dealing with acceleration.

Constant negative acceleratfion

Suppose you throw a ball directly up in the air. It goes up and comes back
down (unless it hits something or someone else catches it!). This is because
the Earth’s gravitational pull exerts a force on the ball, pulling it toward the
Earth. Newton—one of the pioneers of calculus—realized that the effect of
the force is that the ball moves downward with constant acceleration. (We’ll
assume that there’s no air resistance.)

Since the ball is going up and down, we’d better reorient our number line
so that it points up and down. Let’s set the 0 point as being on the ground,
and we’ll make upward positive. Since the acceleration is downward, it must
be a negative quantity, and since it’s constant, we can just call it —g. On
Earth, g is about 9.8 meters per second squared, but it’s a lot less on the
moon. Anyway, if we're going to understand how this ball moves, we need to
know its position and its velocity at time ¢.

Let’s start off with velocity. We know that a = dv/dt. In the example
in the previous section, we knew what v was, so we differentiated it to find
a. Unfortunately, this time we know what a is (it’s the constant —g) and
we need to find v; so we're all topsy-turvy here. The same thing happens
for x, once we know v. In both cases, we need to reverse the process of
differentiation. Unfortunately, we’re not ready for this yet—that’s part of
what integration is all about. So I'm just going to tell you the answer, then
verify it by differentiating:

An object thrown at time ¢ = 0 from initial height ~ with
initial velocity u satisfies the equations

1
a=—g, v=-—gt+u, and x:—igtz—l—ut—kh.
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It’s not hard to check that these equations are consistent. Differentiating
with respect to ¢, we see that dv/dt = —g, which is equal to a; and that
dx/dt = —gt 4+ u, which is just v. So a = dv/dt and v = dx/dt after all. Also,
when ¢ = 0, we see that v = v and x = h. This means that the initial velocity
is w and the initial height is . Everything checks out.

Now, let’s look at an example of how to use the above formulas. Suppose
you throw a ball up from a height of 2 meters above the ground with a speed
of 3 meters per second. Taking g to be 10 meters per second squared, we want
to know five things:

How long does it take for the ball to hit the ground?
How fast is the ball moving when it hits the ground?
How high does the ball go?

If instead you throw the ball at the same speed but downward, how long
does the ball take to hit the ground?

5. In that case, how fast does it hit the ground?

Ll o

In the original situation, we know that g = 10, the initial height h = 2, and
the initial velocity u = 3. This means that the above formulas become

1
a=-10, v=-10t+3, and :c:—5(10)t2+3t+2:—5t2+3t+2.

For part 1, we need to find how long it takes for the ball to get to the ground.
This surely happens when its height is 0. So set x = 0 and let’s find ¢; we get
0 = —5t2 + 3t + 2. If you factor this quadratic as — (5t + 2)(t — 1), you can
see that the solution of our equation is t = 1 or t = —2/5. Clearly the second
answer is unrealistic—the ball can’t hit the ground before you even throw it!
So the answer must be ¢t = 1. That is, the ball hits the ground 1 second after
we throw it.

For part 2, we need to find the speed at the time when the ball hits the
ground. No problem—we know that v = —10t + 3, and that the ball hits the
ground when ¢ = 1. Plugging that in, we see that v = —10+ 3 = —7. So the
velocity of the ball when it hits the ground is —7 meters per second. Why
negative? Because the ball is going downward when it hits, and downward is
negative. The speed of the ball is just the absolute value of the velocity, or 7
meters per second.

To solve the third part, you have to realize that the ball reaches the top
of its path when its velocity is exactly 0. On the way up, the velocity is
positive; on the way down, the velocity is negative; it must be 0 when it’s
changing from up to down. So, when is v equal to 07 We just need to solve
—10t 43 = 0. The answer is ¢t = 3/10. That is, the ball reaches the top of its
trajectory three-tenths of a second after we release it. How high is it then?
Just plug t = 3/10 into the formula z = —5t? + 3t + 2 to see that

3\ 3 49
SESTEN PEA ]

That is, the ball reaches a height of 49/20 meters above the ground.
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For the last two parts, you're throwing the ball downward instead. We still
have g = 10 and the initial height h = 2, but what is the starting velocity u?
Don’t make the mistake of thinking that w is still 3! Since you are throwing
the ball downward, the initial velocity is negative. A speed of 3 meters per
second downward translates into an initial velocity v = —3. Omitting this
minus sign is a common mistake, so be warned. Anyway, our equations are
now

1
a=-10, v=-10t—3, and x:—§(10)t2—3t+2:—5t2—3t+2.

Notice how similar they are to the equations for the scenario when we threw
the ball upward. To solve part 4 of the problem, we need to find the time
the ball hits the ground. Just as we did in part 1, set * = 0; then we have
0=—5t2-3t+2=—(5t—2)(t+1). Sot =2/50rt = —1. This time we reject
t = —1, since it’s before we threw the ball, so we must have ¢ = 2/5. That
is, the ball hits the ground two-fifths of a second after we throw it. It makes
sense that it’s less than the time taken when we threw the ball up (which was
1 second), since the ball doesn’t have to go up and then down. For the final
part, we want to see how fast the ball is moving when it hits the ground; so put
t = 2/5 in the formula for velocity. We get v = —10(2/5) -3 =-4—-3 = —T.
Once again, the ball hits the ground with a speed of 7 meters per second.
Interesting that it doesn’t matter whether you throw the ball up or down (as
long as it’s from the same height and with the same speed in both cases): it
still hits the ground with the same speed, although the time taken to hit the
ground is different.

Limits Which Are Derivatives in Disguise

That’s enough motion for now. Consider how you’d find the following limit:

. V/32+h-2
lim ——.
h—0 h
It looks pretty hopeless. Even the trick of multiplying by the conjugate-type

expression v/32 + h+2 doesn’t work because it’s a 5th root, not a square root
(try it and see for yourself!). So let’s take a break from this and consider a

related limit:
lim Y + Vetho Vo
h—0
Note that h, not x, is the dummy varlable here. Now this limit looks pretty

difficult too, but perhaps it rings a bell. It’s pretty similar to the limit in our

formula et h) — f(o)
. z —J @ /
fimy = ['@)

All you have to do is set f(z) = {/z, and note that f'(z) = tz=%/5. (Here

we wrote {/z as x'/° in order to find the derivative.) The derivative equation

becomes
lim Ve + \/— lx_‘l/f’.

h—0 5
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So the limit on the left is a derivative in disguise! We had to create a function
f and differentiate it to solve the limit.
Now we can return to the original limit

. V32+h-2
lim ———
h—0 h
This is actually a special case of the limit
lim Ve + Vrth= e lx_‘l/ >
h—0 5 ’

which we just worked out. If you set = 32 in this limit, you get

lim V32 +h— V32 _ 1 39,
h—0 h 5

Since ¥/32 = 2 and 327%/® = 1/16, we have shown that

V32+h-2 1 1 1 1
AR PV STL
h—0 h 5 5716 80

Make no mistake: this is hard. There is a double disguise here: not only
are we dealing with a derivative, we’re actually evaluating the derivative at a
particular point (32 in this case). You're better off generalizing the situation
first, then substituting the specific value of x. Here’s another example:

3 _ _
-~ V@ +h)3—T(4+h) 6.
h—0 h

This one could be done by multiplying top and bottom by the conjugate, but
it’s also a derivative in disguise. Since we are dealing with 4+, let’s try replac-
ing 4 by x. The first term in the numerator becomes \/(z + h)3 — 7(z + h).
This suggests that we might try setting f(z) = va3 — 7z. In Section 6.2.5
above, we saw that f’(z) = (322 — 7)/2vx3 — Tz, so the equation

i flx+h)— f(x)

h—0 h

= f'(x)

becomes

V@+h)3—T(x+h) -V —Tx 3x2 -7

lim = .
h—0 h 223 — Tz

Finally, if you put = 4, and simplify everything (noticing that you have

Vad — T = /64 — 28 = /36 = 6), you get

oy VEFR?P—TE+D) =6 _ 3(4)°—7 41
h=o h Too206) 12

If you get stuck on a limit, it might be a derivative in disguise. Telltale
signs are that the dummy variable is by itself in the denominator, and the



Section 6.6: Derivatives of Piecewise-Defined Functions e |19

numerator is the difference of two quantities. Even if this doesn’t happen,
you could still be dealing with a derivative in disguise; for example,

i h
B (x + h)6 —ab

has the dummy variable in the numerator. No matter—just flip it over and
find this limit first:
h 6 _ .6
lim &R =2
h—0 h

To do this, set f(z) = 2°, so that f’(z) = 625. We have

o N0 SR I g

Now just flip it over again and get

1
lim ———m——— = —.
h—0 (z + h)6 — a6 625
We'll see a few other examples of limits which are derivatives in disguise in

the future (in Chapters 9 and 17, to be precise). Keep your eyes peeled: many
limits are derivatives in disguise, and your job is to unmask them.*

Derivatives of Piecewise-Defined Functions

Consider the following piecewise-defined function f:

1 if z <0,
f(x)_{:vQ—i—l if x > 0.

Is this function differentiable? Let’s graph it and see:

*Actually, if you use I’'Hopital’s Rule (see Chapter 14), you often don’t even need to
recognize when a limit is a derivative in disguise.
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Looks pretty smooth—mno sharp corners. In fact, it’s pretty obvious that the
function f is differentiable everywhere except perhaps at x = 0. To the left of
x = 0, the function f inherits its differentiability from the constant function
1, and to the right of 2 = 0, it inherits its differentiability from z? + 1. The
question is, what happens at x = 0, the interface between the two pieces?

The first thing to check is that the function is actually continuous there.
You can’t have differentiability without continuity, as we saw in Section 5.2.11
of the previous chapter. To see that f is continuous at x = 0, we need to show
that lim f(2) = f(0). Well, we can see from the definition of f that f(0) = 1.
As for the limit, let’s break it up into left-hand and right-hand limits. For the
left-hand limit, we have

since f(x) =1 when =z is to the left of 0. As for the right-hand limit,

. . 2 2
Jim f(z) = lim (2°+1)=0"+1=1,
since f(z) = #2+1 when z is to the right of 0. So the left-hand limit equals the
right-hand limit, which means that the two-sided limit exists and is 1. This
agrees with f(0), so we have proved that f is continuous at © = 0. (Notice
that for both the left-hand and right-hand limits, you effectively just have to
substitute z = 0 into the appropriate piece of f to get the limit.)

We still need to show that f is differentiable at z = 0. To do this, we have
to show that the left-hand and right-hand derivatives match at x = 0 (see
Section 5.2.10 in the previous chapter to refresh your memory of left-hand
and right-hand derivatives). To the left of 0, we have f(z) =1, so f'(z) =0
in this case. It turns out that we can push it all the way up to z = 0 like this:

lim f'(z) = lim 0=0.
r—0~ z—0~
This shows that the left-hand derivative of f at z = 0is 0. (See Section A.6.10
of Appendix A for more details.) To the right of 0, we have f(z) = 22 +1, so
f'(z) = 2x there. Again, we can push this down to z = 0:

. / .
Ili%hf (x) —mlir&?x— 2x0=0.
So the right-hand derivative of f at x = 0is 2 x0 = 0. Since the left-hand and
right-hand derivatives at = 0 match, the function is differentiable there.
So, to check that a piecewise-defined function is differentiable at a point
where the pieces join together, you need to check that the pieces agree at the
join point (for continuity) and that the derivatives of the pieces agree at the
join point. Otherwise it’s not differentiable at the join point.* If you have
more than two pieces, you have to check continuity and differentiability at all
the join points.

*Actually, this is only true if the left- and right-hand limits of the derivatives at the
join points exist and are finite. See Section 7.2.3 in the next chapter for an example of this.
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Let’s look at one more example of differentiating a piecewise-defined func-

tion. Suppose that
|z2 —4] ifz <1,
g9(z) = .
—2x+5 ifx>1.

Where is ¢ differentiable? You might think that the only issue is at the join
point z = 1, but actually the absolute value makes life more complicated.
Remember, the absolute value function is really a piecewise-defined function
in disguise! In particular, |z| = x when z > 0, but |x| = —z when z < 0. It
follows that
|x2_4|:{a:2—4 ?fz2—42(),
—(z2—4) ifa?-4<0.

In fact, the inequality 22 — 4 < 0 can be rewritten as 22 < 4, which means

that =2 < & < 2. (Be careful to include the —2 < z bit as well as the more
obvious x < 2 bit!) So we can simplify this a little to get

|2 4 x?—4 ifz>2o0rax< -2,
xr — =
—2244 if —2<ax<2.

Now, in the definition of g(x) above, the term |x? — 4| only appears when
x < 1. So, we can throw everything together and remove the absolute values
for once and for all, rewriting g(z) as follows:

2% —4 ifx < -2,
gx) =< —2?2+4 if —2<2<1,
—2z+5 ifx>1.
So actually there are two join points: z = —2 and x = 1. Since the three
pieces making up g are differentiable everywhere, we know that g itself is
differentiable everywhere except perhaps at the join points. Let’s check the

join points one at a time, starting with = —2. First, continuity. From the
left, we have

lim z)= lim 2> —-4=(-2)2-4=0,
z—(—2)~ g( ) z—(—2)~ ( )

while from the right, we have

lim g(z)= lim —2?+4=—(-2)2+4=0.

z—(—2)*t z—(—2)*t

Since the limits are equal, g is continuous at x = —2. Now, let’s check the
derivatives: for the left-hand derivative, we have

lim () = lim 2z =2(-2)=—4,
z—(—2)~ g ( ) z—(—2)~ ( )

whereas for the right-hand derivative, we have

lim ¢'(z)= lim —2zx=2(-2)=4.

= e—(=2)*
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Since these don’t match, the function g is not differentiable at z = —2.
How about at the other join point, x = 17 We repeat the exercise as
follows: left-continuity:

lim g(z) = lim —2? +4=—(1)>4+4=3.

r—1— r—1—
Right-continuity:

lim g(x) = lirn+ —2r+5=-2(1)+5=3.
rz—1

r—1t

So they match, and g is continuous at = 1. Now, left-differentiability:

lim ¢'(z) = lim —2z=-2(1) = —2.

r—1— rx—1—

As for right-differentiability:

lim ¢'(x) = lim —2= —-2.

r—1+ rz—1t

Since they match, the function g is in fact differentiable at = = 1.

We’ve answered the original question, but let’s draw a graph anyway and
see what’s going on. To sketch the graph of y = |22 — 4], let’s first graph
y = 22 — 4. This is a parabola with z-intercepts at 2 and —2 (that’s where
y = 0) and y-intercept at —4. To get the absolute value, we take everything
below the z-axis and reflect it in the z-axis. The bit that we flip over is part
of the curve y = —22 + 4. Finally, the line y = —2x 4 5 has y-intercept 5 and
x-intercept 5/2, so that graph is not hard to draw either. In the following
two graphs, the left-hand graph shows all the functions that are ingredients
for making g(x), and the right-hand graph takes only what we need and is
purely the graph of y = g(x):

y = |z? — 4

y =—-2x+5 -




6./

Section 6.7: Sketching Derivative Graphs Directly o | 23

It actually looks continuous everywhere and differentiable everywhere except
where there’s that sharp corner at (—2,0). In particular, everything’s nice at
the join point x = 1, just as we calculated.

Sketching Derivative Graphs Directly

Suppose you have a graph of a function but not its equation, and you want
to sketch the graph of its derivative. Formulas and rules aren’t going to help
you here: instead, you need a good understanding of differentiation.

Here’s the basic idea. Imagine the graph of the function as a mountain,
and imagine that there is a little mountain-climber walking up and down the
graph from left to right. At each point of the climb, the climber calls out
how difficult he or she thinks the climb is. If the terrain is flat, the climber
calls out the number 0 for the degree of difficulty. If the terrain goes uphill,
the climber calls out a positive number; the steeper the climb, the higher the
number. If the terrain goes downhill, then the climb is actually easy, so the
degree of difficulty is negative. That is, the climber will call out a negative
number. The more downhill the terrain, the easier it is, so the number will
be more negative. (If it’s really steep going downhill, it might be difficult to
climb down safely, but it’s certainly easy to descend quickly!)

One important point: the height of the mountain itself isn’t relevant. It’s
only the steepness that matters. In particular, you could shift the whole graph
upward, and the climber would still be calling out the same degree of difficulty.
A consequence of this is that if you are drawing the graph of a derivative from
the graph of a function, the x-intercepts of the function are not important!

Let’s look at an example: sketch the derivative of the following fearsome-
looking function:

Don’t panic. Just draw a little mountain-climber at a whole bunch of
different points and imagine the climber shouting out the degree of difficulty
at each point. Then all you have to do is plot these degrees of difficulty on
another set of axes. Of particular interest are the points where the path is
flat; this can occur in a long flat section (such as between z = 5 and « = 6 in
the above graph), or at the top of a crest (such as at z = —5 or = 1) or at
the bottom of a valley (such as at © = —2 or z = 3). You definitely want to
draw the mountain-climber there. Here’s what the graph of f looks like with
the climber in a bunch of positions:
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]);1 0 1 2%%%4:

:

Now let’s draw a set of axes for our graph of the derivative. Label the y-axis
as “degree of difficulty,” ranging from hard, down to flat at the origin, down
to easy. Then you should be able to pencil in some points based on what the
various copies of the little climber have shouted out. Remember, the climber
doesn’t care how high the mountain is, only how steep the climb is! Based
on this, you get the following points:

hard y=Flz)
I \.
| L e
| | .
X o e ® ® O |
° | L] |
[ ] d Il & L Il & Il ﬂa’t é Il 'Y | A ° )'. |‘ Il Il
-6 -5 —4 -3 -2 -1 0 1 2 3 4 5 6 *7 8 9
: ° LA ° :
o | I
U o
.\. I
! easy :

Here’s a detailed explanation of how we came to these conclusions:

e At the far left of the graph of y = f(x), the climber starts out going
only slightly uphill. So we’ll plot points of height a little above 0.

e Moving along to x = —6, the climber starts to go uphill, so the difficulty
has gone up, so the points get higher (more difficult).

e Then it starts getting a little easier, until when x = —5, the climber
has reached the top of the crest and it’s now flat. In particular, when
x = —5, the derivative has an x-intercept.

e After x = —5, the original curve starts to go downhill, first gently and
then more and more steely. This means that it’s getting easier and
easier, until it gets ridiculously easy. So the derivative also has a vertical
asymptote at r = —4.

e On the other side of the asymptote, the climb is also really easy—the
climber is going downhill, starting very steeply and then leveling out at
the valley when z = —2. So the vertical asymptote on the derivative
curve actually starts at —oo (really easy) and climbs up to 0 at x = —2.
(The fact that there are z-intercepts between —5 and —4 and also be-
tween —4 and —3 is irrelevant. The x-intercepts of the original function
don’t matter.)
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After the bottom of the valley at © = —2, the climber has to go uphill
for a while, so it gets harder. After x = 0, though, it gets a little easier,
until he or she reaches the top of the hill at £ = 1. This means that
the derivative curve goes up until z = 0, then comes back down to an
z-intercept at z = 1.

The reverse happens on the way to the bottom of the valley at z = 3:
it gets easier and easier until x = 2, then it flattens out while still being
downhill. So the derivative curve goes down, reaches a minimum at
x = 2, then comes back up for an x-intercept at z = 3.

From the bottom of the valley at x = 3, the climb gets steadily harder
until z = 4. Between x = 4 and = = 5, however, the climb is of uniform
difficulty, since the slope is constant. So the derivative curve increases
from x = 3 until x = 4, but then it stays at the same height (degree of
difficulty) between z = 4 and z = 5.

At x = 5, the slope abruptly changes—it becomes flat without any
warning, then stays flat until x = 6. So the derivative curve must
jump down to 0 and stay there until x = 6. The derivative will have a
discontinuity at = = 5.

After x = 6, the climber finds things easier and easier as the curve dips
down to the vertical asymptote at x = 7. The derivative curve also has
a vertical asymptote there.

To the right of the vertical asymptote, the climb is extremely difficult,
but it does get a little easier as x moves up to 9. So the derivative curve
will start very high on the right side of z = 7 and then get a little lower
as the climb becomes easier.

Now, just connect the dots! Here are the graphs of y = f(x) and y = f'(z):
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oo
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Let’s just summarize the ideas that we used:

e When the original graph is flat, the derivative graph has an z-intercept.
In the above example, this occurs at x = =5, x = =2, x =1, x = 3, and
everywhere in the interval [5, 6].

e When a portion of the original graph is a straight line, the derivative
graph is constant (this occurs in the interval [4, 5] in our example).

e If the original has a horizontal asymptote, it’s often true that the deriva-
tive also has one, but in that case it will be at y = 0 instead of the original
height of the asymptote (as at the left-hand edge of our example).

e Vertical asymptotes in the original usually lead to vertical asymptotes in
the derivative at the same place,* although the directions may change.
For example, in our graph above, at = 7 the original curve goes to —co
on both sides of the asymptote, but the derivative has opposite signs.
The vertical asymptote at x = —4 is similarly affected.

When in doubt, use the trusty mountain-climber!

*It’s not actually true in general that if a function has a vertical asymptote, then its
derivative also has a vertical asymptote at the same place. An example is y = 1/x+sin(1/x)
at z = 0. Can you see why?
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Trig Limits and Derivatives
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So far, most of our limits and derivatives have involved only polynomials
or poly-type functions. Now let’s expand our horizons by looking at trig
functions. In particular, we’ll focus on the following topics:

e the behavior of trig functions at small, large, and other argument values;
e derivatives of trig functions; and

e simple harmonic motion.

Limits Involving Trig Functions

Consider the following two limits:

lim sin(5z) and lim sm(5z).

x—0 x€X T — 00 x

They look almost the same. The only difference is that the first limit is taken
as £ — 0 while the second is taken as x — oo. What a difference, though! As
we’ll soon see, the answers and the techniques used have almost nothing in
common. So, it’s really important to note whether your limit involves taking
the sine—or cosine or tangent—of really small numbers (as in the first limit
above) or really large numbers (as in the second limit). We’ll look at these
two cases separately, then see what happens when neither case applies.

Before we do, it’s important to note that you can’t tell what case you're
dealing with just by looking at whether z — 0 or x — oo. You need to
see where you are evaluating your trig functions. For example, consider the
following pair of limits:

lim z sin <§) and lim zsin (§) .
x—0 x xr—00 x

In the first limit, you are taking the sine of 5/x, which is actually a huge
number (positive or negative, depending on the sign of x) when z is near 0.
So the first limit isn’t covered by the small case at all—it belongs to the large
case! Similarly, in the second limit, the quantity 5/x is very small when x is
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large, so that’s really the small case. We’ll solve all four of the above limits
in the next few sections.

The small case

We know sin(0) = 0. OK, so what does sin(x) look like when z is near 07?
Sure, sin(z) is near 0 as well in that case, but how near to 0 is it? It turns
out that sin(z) is approximately the same as x itself!

For example, if you take your calculator, put it in radian mode, and find
sin(0.1), you get about 0.0998, which is very close to 0.1. Try it with a number
even closer to 0 and you’ll see that taking the sine of your number leaves you
with something very close to your original number.

It’s always good to look at a picture of the situation. Here’s a graph of
y = sin(z) and y = x on the same set of axes, concentrating only on the values
of  between —1 and 1 (approximately):

cy=x

y = sin(x)

—1F

The graphs are very similar, especially when z is close to 0. (Of course, if we
graph a little more of y = sin(x), it starts making the familiar waves; it’s only
when we zoom in like this that we see how close sin(x) is to x.) So there’s
good justification for making the statement that sin(z) is close to x when x
is small. If sin(x) were actually equal to x, then
si
in(z) _1
x
would be true. In fact, the above equation is never true, but it is true in the
limit as x — 0:

lim sin(x)

x—0 x

=1

This is very important. It’s basically the key to doing calculus involving
trig functions. We'll use it in Section 7.2 to find the derivatives of the trig
functions, and we’ll actually prove it in Section 7.1.5 below.

How about cos(z)? Well, cos(0) = 1, so things are very different in this
case. For the moment, let’s just say that the cosine of a small number is very
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close to 1. We write

lim cos(z) =1

z—0

taking special care to notice that there’s no factor of = in the denominator
as there is in the previous formula involving sin(x). What if you do put a
factor of x in the denominator? We’ll see very soon, but first I want to look
at tan(z).

The key is to write tan(z) as sin(z)/cos(z). The numerator is sin(x),
which is close to x when x is small. On the other hand, the denominator is
close to 1. If there’s any justice in the world, then the ratio should behave
like /1, which is just . In fact, this is true, as we can see by isolating the
harmless factor cos(z) in the denominator:

sin(x)
t 252 =y <252 = (252) (5 ) =0 () =2

So we have shown that

lim 2@

z—0 T

This means that sin(z) and tan(z) behave in a similar way when z is small,
but cos(x) is the odd one out. Let’s take a look at what happens to cos(x)/x
as ¢ — 0. So we are trying to understand
cos
lim () .

x—0 x€X

If you just substitute = 0, then you get 1/0. This means that the graph of
y = cos(x)/x has a vertical asymptote at = 0. It looks very much like 1/z
for small x; in particular, you should try to convince yourself that
lim cos(z) = 00, lim M = —00, SO lim M DNE.
x

z—0*t x z—0— x z—0

(Remember, “DNE” stands for “does not exist.”) This is really different from
what happens with sin or tan in place of cos.

Solving problems—the small case

Here’s a simple example: find

: 2
e
z—0 x

2

First note that when x is near 0, so is z*, so we are indeed taking the sine of
a small number. Now, we know that the following limit holds:
|
Jim ()

x—0 x

=1

If you replace z by 22 (which is a continuous function of x), then you get the
following valid limit:

. sin(z?)
lim

z2—0 x

=1
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This is almost the limit we want. In fact, the only thing we need to note is
that 22 — 0 when 2 — 0, so we can finally evaluate our limit as
‘(2
S
tim ) _
z—0 X
Of course, there’s nothing special about x%; any other continuous function of
x that is 0 when x = 0 will do. In particular, we know all the following limits

automatically:
sin(5z) Y sin(3z7) ~ 1. andeven lim sin(.sin(x)) .
z—0 br z—0 3z z—0  sin(z)

These are all true with “sin” replaced by “tan,” but not by “cos”! Anyway,
we can summarize the whole situation by noting that

and lim tan(small) _
z—0 same small

sin(small)

z—0 same small

It’s vital that the denominator matches the argument of sin or tan in the
numerator, and also that this quantity is small when x is small. Of course,
for cosine, the best we can say is

lin% cos(small) = 1.

There’s no need to worry about matching anything in this case!
Now let’s return to one of the examples from the beginning of the chapter:

lim sin(5z) .
z—0 x

The problem is that we are taking the sine of 5z, but we only have x in the
denominator. These two quantities don’t match. Never mind—we’ll take that
sin(5x) term and divide it by 5z, which does match, then multiply it again to
make it work out. That is, we’ll rewrite sin(5z) as

sin(5x)
o

x (5z).

This is almost the same trick as the one we used in Section 4.3 of Chapter 4
for limits involving rational functions! Let’s see how it works in this case:

sin(5x)

in(5
lim sin(52) = lim — 2
z—0 x x—0 x

x (5z)

Now keep the sin(5x)/5x part together, but cancel out a factor of x from the
other two factors to get

lim sin(5x) ~ lim sin(5x) 5.
z—0 x z—0 bx
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As we saw above, since we have matched the 5z terms—once in the denomi-
nator and once in the argument of sin—we know that the fraction has limit
1, so the total limit is 5. In one line, the solution looks like this:

sin(5x)
: x (5z) :
lim sin(5x) i Oz  lim sin(5x)
z—0 X z—0 x z—0 bx

Xxb=1x5=05.

Now let’s check out a harder example. What is

sin®(2z) cos(5219)

o
z—0  mztan(bx?)

Let’s look at the four factors of this expression one at a time. First, consider
sin®(2x). This is just another way of writing (sin(2x))3. To deal with sin(2x),
we’d divide and multiply by 2x; so to deal with its cube, we divide and
multiply by (2z)3 instead. That is, we’ll replace (sin(2z))® by

(sin(27))?

22)? x (2x)3.

How about the cos(5x'?) factor? Well, when z is small, so is 52'?, so we are
just taking the cosine of a small number. This should be 1 in the limit, so we
don’t touch this second factor.

In the denominator, we have a factor z, which we can’t do anything with
(nor do we want to—it’s really easy to deal with already!). That leaves the
tan(5x?) factor. We simply divide and multiply by (5z?), so that we will be
replacing tan(5x2) by

tan(5z?)
5x?

Putting all of this together, we have

x (5z?).

(sin(27))?
fiy S0 c0s0at?) [W g <2w>3] cos(52'9)
T wtmBe) e {tar;(%z‘)x(w)]

Now let’s pull out all the powers of x that don’t match the trig functions: the
(22)® term on the numerator and the z and (522) terms in the denominator.
Then we rewrite the fraction (sin(2z))3/(2x)3 as (sin(2z)/2z)% and simplify
to see that the limit becomes

(sin(2z))3 19 sin(2x) \’ (519
. 22)° cos(5z1”) ) (22 . 5o cos(5z1?) ) E
=0 tan(5x?) z(5x2) =0 tan(5x?) 5a:3°
52 52

Finally, we can cancel out 23 from top and bottom, and take limits. Since
the sin and tan terms have matching numerators and denominators, and
cos(small) — 1, the limit is
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Here’s another example from the beginning of the chapter: what is

5
lim zsin (—) ?
xr—00 x

As we saw, this example does belong in this section, because when z is large,
the quantity 5/x is small. So we use the same method, in this case dividing
and multiplying sin(5/z) by 5/, to write:

NE
(5 o \E) s
lim zsin{ — ) = lim - ————% X —.
T—00 €T r—00 5 €T

x

Now we can cancel out a factor of x to simplify this down to

im 5 x S2O/2).
T—00 5/x

Thinking of “small” as 5/x, we can immediately see that the limit of the big
fraction as z — oo is 1, and so the overall answer is 5.

It’s also possible to have trig limits involving sec, csc, or cot. For example,
what is

lim sin(3x) cot(5z) sec(7x)?

xr—

To do this, the best bet is to write it in terms of cos, sin, or tan, as follows:

liny, (sin(32)) (tan%Sx)) (ooszm)) '

Now we can do our standard trick of multiplying and dividing for the sin and
tan terms, but ignoring the cos term, to see that the limit is equal to

(252 0) () ()

Now the (3z) and the (5x) terms cancel to leave 3/5, and all the other fractions
tend to 1 in the limit, so you can see that the overall limit is 3/5.

There is one thing you have to be very careful of: when you say that sin(x)
behaves like  when x is small, you should only use this fact in the context of
products or quotients. For example,

i £ sin(x)
z—0 3

cannot be done by the methods of this chapter. It is a mistake to say that
sin(x) behaves like z, so x — sin(z) behaves like 0. (In fact, nothing behaves
like 0 except for the constant function 0 itself!) In order to solve the above
limit, you need 1'Hopital’s Rule (see Chapter 14) or Maclaurin series (see
Chapter 24). On the other hand, here’s a limit which has a similar difficulty
that we can nevertheless solve now:

1— 2
Jim L= (@)
x—0 (E2
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Again, you can’t just say that cos(z) behaves like 1 when 2z is small, so
1 — cos?(z) behaves like 1 — 12 = 0. So we just use cos?(z) + sin?(z) = 1
to rewrite the numerator as sin’(x):

. 1—cos?(x) .
lim = lim
x—0 (E2 x—0 X
2

sin?(x) .

Since sin?(x) is another way of writing (sin(x))?, we can rewrite the limit as

i Oy (00,

z—0 2 z—0 x

This limit is simply 12 = 1. So

_ cos?
lim 1 — cos*(x)

=1.
x—0 (E2

In effect, we're saying that 1 — cos?(x) behaves like 22 when z is small, not
like 0 after all. Anyway, let’s use the same idea to solve some other limits:

1 — cos(z)

1 — cos(z)
5 .

lim

z—0 T

and lim

x—0 x

We’ll do both of these limits with the same clever trick. The idea is to multiply
top and bottom by 1+cos(z) so that the numerator becomes 1—cos?(x), which
we write as sin?(x). In the first case, we have

1 — cos(z)  lim 1 — cos(x) " 1+ cos(z)

.
i 22 e—0 2 1 + cos(z)
T cos?(z) " 1 — im sin?(x) " 1
=0 x? 1+cos(x) z—0 a2 1+ cos(z)

i 1 1 1
= lim sin(z) X =1Px —— = .
z—0 x 1 + cos(z) 1+1 2

Here we used the fact that cos(0) = 1. The second example is similar:

lim 1 — cos(z) — lim 1 — cos(z) " 1+ cos(x)
=0 x x—0 x 1+ cos(x)
. 1—cos?(z) 1 . sin®(2) 1
= lim X = lim X .
2—0 T 1+ cos(x) z—0 T 1+ COS(.%‘)

At this point, we could divide and multiply the sin?(z) term by z2, but here’s
a simpler way to handle the limit: simply write sin®(z) as sin(z) x sin(z),
and group one of the sin(z) factors with the z in the denominator. The limit
becomes

i 1 1
lim ( sin(x) x sin(z) X =0x1x——=0,
x—0 T 1+ cos(x) 1+

since sin(0) = 0. This last limit will be useful in Section 7.2 below, so let’s
summarize it as something to keep in mind:

i L= 08@) _ o
x—0 X

Enough of the small case—let’s see how to deal with limits involving trig
functions evaluated at large numbers.
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Consider the limit
sin(x)

lim
T—00 €T
As we just saw, if x — 0 instead of oo, then the limit is 1. This is because
sin(x) behaves like z when z is small. How does sin(z) behave when = gets
larger and larger? It just keeps on oscillating between —1 and 1. So it doesn’t
really “behave” like anything when z is large. Often one is forced to resort to
one of the simplest things you can say about sin(x) (and also cos(z)):

‘ —1<sin(z) <1 ‘ and ‘ —1<cos(z) <1 ‘ for any z.

This is pretty darn handy for applying the sandwich principle (see Section 3.6
in Chapter 3). In fact, we saw on page 53 that
lim sin(x)

T—00 xT

=0.

Take a look back at the proof right now to refresh your memory.

Remember how cos(x) is the odd one out when z is small? Unlike sin(z)
and tan(z), it doesn’t behave like x itself. When z is large, on the other hand,
tan(x) is the odd one out. There are no inequalities for tan(z) similar to the
boxed inequalities for sin(z) and cos(z) above; this is because tan(z) keeps
on having vertical asymptotes and never settles down when x becomes large
(see page 37 for the graph of y = tan(z)).

Here’s a much harder example using the sandwich principle: find

zsin(1127) — §
T—00 2;54 ’

The gut feeling is that the sin(1127) term isn’t doing much, so the top is really
of size about . The z* on the bottom should overwhelm the numerator, so
the whole thing should go to 0 as * — co. In order to show this, let’s look at
the numerator first. We know that the sine of any number is between —1 and
1, so it’s true that

—1 <sin(112") < 1.

The numerator isn’t just sin(11z7), though: we need to multiply by x and
then subtract 1/2. We can in fact multiply by = and then subtract 1/2 from
all three “sides” of the above inequality to get
1 ) 7 1 1

T 5 < zsin(llz") 5 <z 5
for any « > 0. (If instead = < 0, which would be the case if the limit were as
xr — —o0, then multiplying by the negative number = would just mean that
you’d have to flip those less-than-or-equal signs around to become greater-
than-or-equal signs. Otherwise the solution would be identical.) Anyway,
that takes care of the numerator. We still need to divide by the denominator.
Since 2z* > 0, we can divide the above inequality by 2z to get

1
2 2 2
24 274 - 2t

—z— 3% wsin(1127) — T — 3
<
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This is all we need. I leave it to you to use the methods of Section 4.3 of
Chapter 4 to show that the limits of the outside terms are both 0 as x — oo,

that is,
1

1
: 2 _ ; 2 _
A —0 ad i =0

(Don’t be lazy! These are pretty easy limits, but you should try to justify
them now.) Now we invoke the sandwich principle; since our original function
is trapped between two functions which tend to 0 as x — oo, it also tends to
0 then. That is,
. wsin(11z7) — 1
i,

Another consequence of the inequality —1 < sin(z) < 1 (and the similar
one for cos(x)) is that you can treat sin(anything) or cos(anything) as being
of lower degree than any positive power of x, so long as you are only adding
or subtracting. More precisely, if you are solving a problem of the form

A8 ()’
where p and ¢ are polynomials or poly-type functions but with some sines
and cosines added on, then the degrees of the top and bottom are the same
as they would be without the sines and cosines added on. The only exception
is when p or ¢ has degree 0; then the trig part could be significant.

Here’s an example of how adding sines and cosines doesn’t make much of
a difference: what is

. 3z + 2z 4+ 5+ sin(300029)
lim ?
T— 00 2:62 -1 - COS(QQI)

In the numerator, the dominant term is still 322, since the sin(30002°) term
is only between —1 and 1 and is insignificant in comparison. Compare this
to the previous example, where we multiplied the highest-degree term x by
sin(11z7); there the sine factor matters. In our current example, the sine term
is added instead.

How about the denominator? Well, the cosine term is much smaller than
the dominant term 2x2. All up, we’ll multiply and divide the numerator by
322 and the denominator by 2z2:

322 + 2z + 5 + sin(300027)

2
322 + 22 +5 +sin(30002%) 322 x (327)
lim = lim 5
T—00 222 — 1 — cos(22x) T—00 2x* — 1 — cos(22z)
X (2x2)
222
1+ 2 n 5 n sin(30002°)
— lim 3r  3z2 3z2 % 3_552
w00 L 1 cos(227) 222
2x2 22

Now what happens? We certainly know that 2/3x, 5/3z2, and 1/22% go to 0
in the limit, but how about the sin(30002%)/3z% and cos(22x)/2z? terms? If
you want to give a complete solution, you need to use the sandwich principle



136 e Trig Limits and Derivatives

j% (once for each term) to show that they both go to 0. I suggest you try it as
/ an exercise now. In practice, most mathematicians would automatically write
down the answer 0, having established the general principle that
sin(anythin,
i Sin(anything)

T—00 xr

=0

for any positive exponent «, and similarly when sine is replaced by cosine. In
any case, the above limit works out to be

1+O+0+OX§ 3
1-0-0 2

Finally, let’s return to the example

. . (5)
lim zsin | — |,
x—0 xT

which was mentioned at the beginning of this chapter. As we saw then, this
does belong to the large case even though the limit is taken as © — 0, because
5/x is a large number (positive or negative) when z is near 0. So the best we
can do is to use the sandwich principle, combined with the fact that the sine
of any number is between —1 and 1. In particular, we have

5
—1 <sin (—) <1
T

for any x. Now the temptation is to multiply by x:

. 5
—x < zsin (—) <ux.
T

Unfortunately, this is only true for z > 0. For example, if x = —2, then the
leftmost part of the inequality would be 2 and the rightmost part would be
—2, which is crazy. So let’s worry about the right-hand limit first:

. . (5>
lim zsin| — ).
z—0t T

Now we can use the above inequalities and note that both —x and z go to 0
as ¢ — 0%, so the sandwich principle applies and the above limit is 0. As for
the left-hand limit (as £ — 07), now we start off with the same inequality for
sin(5/x) and multiply it by z, but this time we have to reverse the inequalities
since z is negative. In particular, when x < 0, we have

5
—x > xsin (—) > .
T

It doesn’t matter much, though—the outer quantities still go to 0 as x — 07,
so the middle quantity also goes to 0. Since the left-hand and right-hand
limits are both 0, so is the two-sided limit; we have proved that

5
lim x sin (—) =0.
x—0 X

(This example is very similar to the one on page 52.)

5"
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The "other” case

Consider the limit

i, €50,
z—=m/2 T — 5

The trig function, cosine in this case, is being evaluated near 7/2. This is
neither small nor large, so apparently the previous cases don’t apply. If you
just plug in & = /2, you get the indeterminate form 0/0, which sucks. If you
know your trig identities, though, you’re golden. Here’s why.

A good general principle when dealing with a limit involving z — a for
some a # 0 is to shift the problem to 0 by substituting t =z — a. So
in the above limit, set ¢ = 2 — 7/2. Then when © — 7/2, you can see that
t — 0. Also, z =t + /2, so we have

lim COS(? = lim M.

z—w/2 T — 5 t—0 t
Notice that we still need to know the behavior of cosine near 7/2 (as you
can see by setting ¢ near 0 and looking what you’re taking cosine of!); the
substitution hasn’t changed that fact. Now, this is where you need to know
the following trig identity from Section 2.4 of Chapter 2:

cos (g - :c) = sin(x).

In our limit, we have cos(§ +t), so we need to apply the above trig identity
with z replaced by —t in order for it to be useful. We get

cos (g + t) = sin(—t).

The other thing we need to remember is that sine is an odd function, so in
fact -
cos (5 + t) = sin(—t) = —sin(t).

Now we can put this into the limit and finish the problem. All in all,

cos(z cos(t+ 5 —sin(t
lim —(gzlimgzlimi()z—l.
T—om/2 T — 5 t—0 t t—0 t
Not so easy, but knowing the trig identities certainly helps in situations like

these.

Proof of an important limit

g We've been using the following limit over and over again in this chapter, and

now it’s time to prove it:
sin(x)

lim

x—0 x€X

=1

The proof has to rely on the geometry of right-angled triangles, since that’s
where the sine function comes from. Let’s start with the right-hand limit (as
x — 07). Once we get that, we’'ll see that the two-sided limit is pretty easy.
So, we’ll start off by assuming that x is near 0 but positive. Let’s draw a
wedge OAB of a circle of radius 1 unit with angle x:
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We're going to doctor this figure a little, but first, a question: what is the
area of this wedge? Imagine that the wedge is a slice from a big pizza. The
pizza has radius 1 unit, so its area is 7r? = 7 square units. Now, how much
of the pizza do we have in our slice? The whole pizza has 27 radians of angle,
while the slice has x radians, so the slice accounts for 2/27 of the pizza. The
area is therefore (2/27) x m, or simply x/2 square units. That is,

area of wedge OAB = g square units.

(This is a special case of the general formula: the area of a wedge of angle
radians in a circle of radius r units is simply zr?/2 square units.)

Now let’s do a few things to the figure. First, we’ll draw in the line AB.
Then we’ll drop a perpendicular from A down to the line OB; call the base
point C. We’ll also extend the line OA out a little bit, and finally draw the
tangent line to the circle at the point B. That tangent line intersects the
extended line OA at a point D. After we do all that, we get the following

picture:
A D
I
|
1 : tan(z)
I
sin(x) !
|
z -
O C B
1

I marked the lengths of AC' and DB on the diagram. To see how I worked out

these lengths, note that sin(z) = % (remember, |AC| means “the length of



Section 7.1.5: Proof of an important limit e |39

the segment AC”). Since |OA| = 1, we have |AC| = sin(z). Also, we have
tan(z) = {gf, and |OB| = 1, so | DB| = tan(z).

I want to focus attention on three objects. One is the original wedge; we
already found that the area of this is /2 square units. Let’s also look at the
triangles AOAB and AOBD. The base of AOAB is OB, which has length 1
unit. The height is AC, which has length sin(z) units. So the area of AOAB
is half the base times the height, or sin(z)/2 square units. As for AOBD, its
base OB has length 1 unit and its height DB has length tan(z) units, so the
area of AOBD is tan(x)/2 square units. The crucial observation is that

AOAB is contained in the wedge OAB which is contained in AOBD.

This means that the area of AOAB is less than the area of the wedge OAB,
which itself is less than the area of AOBD:

area of AOAB < area of wedge OAB < area of AOBD.

We know all three of these quantities in terms of the variable x; substituting
them in, we have
sin t
() o _ tan()
2 2 2
Multiplying this by 2, we get a really nice inequality which is worth remem-
bering:

sin(z) < z < tan(z) for0 <z < g

Now we can find our limit. Let’s first take reciprocals of the nice inequality.
Remember, this forces us to switch the less-than signs to greater-than signs.
Writing tan(x) = sin(x)/ cos(z), the reciprocal inequality is
1
sin(x)

cos(x

~

1
> — >
x ~ sin(x)

Finally, multiply by the positive quantity sin(z) to see that

1> sin(x)
x

> cos(z).

If it creeps you out to write it backward like this, you can always rewrite it as

sin(x)

cos(z) < < 1.

x
(Remember, this is true for any x between 0 and 7/2.) Now we use the
sandwich principle: since cos(0) = 1 and y = cos(z) is continuous, we know
that lim , cos(z) = 1. Also, lim, (1) = 1; so the quantity sin(z)/z is squished
between cos(z) and 1, both “of Wthh tend to 1 as z — 0". By the sandwich
principle,

sin(x) _

lim
z—0t x

as well. So we’ve got our right-hand limit.



140

Trig Limits and Derivatives

We still have to deal with the left-hand limit and show that

sin(x)

lim =1.

z—0~ x
If we can do it, then we will have proved that both the left-hand and right-
hand limits are 1, so the two-sided limit is also 1 and we’ll be done.
To prove that the left-hand limit is 1, set ¢t = —x. Then when z is a small
negative number, t is a small positive number. In math symbols, we can say
that as * — 07, we have t — 0%. So the above limit can be written as

sin(—t
lim in( )
t—0+ —t
Now we know that sin(—t) = —sin(¢) (since sine is an odd function), so we
can simplify the limit down to
—sin(t in(?
i —500) gy, S0
t—0+ —t t—0+ t

We've already seen that this limit is 1 (well, with z instead of ¢, but so what?),
so we're all done.

Before we move on to differentiating trig functions, I want to consider the
graph of f(z) = sin(z)/x. The argument for the left-hand limit has in fact
shown that f is an even function (can you see why?). This means that the
y-axis acts as a mirror for the graph of y = f(x). If you look back at page 51,
you can see that we have already drawn the graph of y = f(x) when z > 3.
We didn’t do < 3 since we didn’t know what happens. Now we know:
as * — 0, the quantity f(z) = sin(z)/xz — 1. In fact, we have shown that
sin(x)/x lies between cos(z) and 1. This allows us to extend the graph down
to x > 0. Finally we use the evenness of f to give the complete graph of
y = sin(z)/x in all its glory (note the different scales on the z- and y-axes):

_1};

The graphs of the envelope functions y = 1/x and y = —1/2 are shown as
dotted curves. Also, the z-intercepts are at all the multiples of 7 except for



/.2

Section 7.2: Derivatives Involving Trig Functions e 141

0. Finally, as you can see, the function isn’t continuous at x = 0 since it isn’t
defined there. However, if we define the function g by g(x) = sin(x)/z if 2 # 0
and g(0) = 1, then we have effectively filled in the open circle at (0,1) in the
above picture, and the function g is continuous.

Derivatives Involving Trig Functions

Now, time to differentiate some functions. Let’s start off by differentiating
sin(x) with respect to . To do this, we’re going to use two of the limits from
Section 7.1.2 above:

lim M =1 and lim Los(h)

h—0 h h—0 h =0

(OK, so I changed z to h, but no matter—the h is a dummy variable anyway
and could be replaced by any letter at all.) Anyway, with f(z) = sin(x), let’s
differentiate:

fl@+h)— f(x) . sin(xz + h) — sin(z)

! . . _
(@) = Jimy 2 = Jmy

Now what? Well, you should remember the formula
sin(A + B) = sin(A) cos(B) + cos(A) sin(B);

if not, you’d better look at Chapter 2 again. Anyway, we want to replace A
by  and B by h, so we have

sin(x + h) = sin(x) cos(h) + cos(x) sin(h).

Inserting this in the above limit, we get

) = ,%1310 sin(z) cos(h) + coz(m) sin(h) — sin(z) '

All that’s left is to group the terms a little differently and do a bit of factoring;
we get

flz) = %IL% sin(z)(cos(h) — 2) + cos(x) sin(h)

~ Jim (sin(z) (7“8(}2 — 1) + cos(x) <¥>) .

Notice that we separated as much z-stuff as we could from h-stuff. Now we
actually have to take the limit as h — 0 (not as  — 0!). Using the two limits
from the beginning of this section, we get

f/(z) =sin(z) x 0+ cos(x) x 1 = cos(x).

That is, the derivative of f(z) = sin(z) is f'(x) = cos(x), or in other words,

% sin(x) = cos(x).
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Now you should try to repeat the argument but this time with f(x) = cos(x).
You just need the identity

cos(A + B) = cos(A) cos(B) — sin(A) sin(B)

from Chapter 2. It’s a really good exercise, so try to do it now. If you've done
it correctly, you should see that

. cos(x) = —sin(x).

Anyway, it’s a piece of cake to get the derivatives of the other trig functions
now; you don’t need to use any limits. You can just use the quotient rule and
the chain rule. Let’s start with the derivative of y = tan(xz). We can write
tan(z) as sin(x)/ cos(z), so if we set v = sin(z) and v = cos(x), then y = u/v.
We just worked out that du/dx = cos(z) and dv/dx = —sin(z). Using the
quotient rule, we get

du dv
@ B Ua - uﬂ ~ cos(x)(cos(x)) — sin(x)(— sin(:z:))'

dx v2 cos?(x)
The numerator of this last fraction is just cos?(z) + sin®(x), which is always

equal to 1; so the derivative is just

dy 1
dr  cos?(x)

= sec?(x).

We've just shown that

. tan(z) = sec?(x).

Now let’s calculate the derivative of y = sec(z). Here we are able to write
y = 1/ cos(z), so you might think that the quotient rule is best. Indeed, you
can do it by using the quotient rule, but the chain rule is nicer. If u = cos(z),
then y = 1/u. We can differentiate both of these things: dy/du = —1/u?, and
du/dx = —sin(z). By the chain rule,

dy  dy du 1 . sin(x)
2_Z2_ (_E> (—sin(z)) = co2(2)’

where we had to replace u by cos(z) in the last step. Actually, you can tidy
up the answer as follows:
sin(x) 1 sin(x)

cos?(x) - cos(z) cos(z) = sec(x) tan(z),

so we’ve shown that

I sec(z) = sec(x) tan(z).

As for y = csc(x), that should be written as 1/sin(z). Once again, it’s
best to use the chain rule, letting v = sin(z) and writing y = 1/u. But I
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know you want to use the quotient rule, since it’s a quotient, even though it’s
inferior. You just don’t believe me. Well, check this. To use the quotient rule
on y = 1/sin(z), we'll actually let u = 1 and v = sin(xz). Then du/dz = 0
and dv/dz = cos(x). By the quotient rule,

du dv
dy Vg gz _ sin@)(0) — 1(cos(x))

dx v?2

~ cos(z)

sin?(x) -~ sin®(z)
OK, it wasn’t that bad, but the chain rule is still nicer. Anyway, by splitting

up the answer as we just did for the derivative of y = sec(z), you should be
able to simplify it to get

. cse(xz) = — esce(x) cot(z).

Finally, consider y = cot(z), which of course can be written as either
y = cos(z)/sin(z) or y = 1/tan(z). You could use the quotient rule on
y = cos(x)/sin(x), or now that we know the derivative of tan(z), you could
use the chain rule (or even the quotient rule) on y = 1/tan(z). You could even
write cot(x) as the product cos(z) csc(z) and use the product rule. Whichever
way you do it, you should get

. cot(z) = — csc?(x).

You should learn all six boxed formulas by heart. Notice that the three
cofunctions (cos, csc, cot) all have minus signs in front of them, and the
derivatives are the co- versions of the regular ones. For example, the derivative
of sec(x) is sec(z) tan(x), so throwing a “co” in front of everything and also
putting in a minus sign, we get that the derivative of csc(z) is — cse(z) cot(x).
The same is true for cos and cot, remembering (in the case of cos) that co-co-
sine is just the original sine function.

By the way, what is the second derivative of f(z) = sin(x)? We know
that f’(x) = cos(x), and so f”(x) is the derivative of cos(x), which we saw is
—sin(x). That is,

z .

w(sm(z)) = —sin(z).
The second derivative of the function is just the negative of the original func-
tion. The same is true for g(z) = cos(x). This sort of thing doesn’t happen at
all with (nonzero) polynomials, since the derivative of a polynomial is a new
polynomial whose degree is one less than the original one.

Examples of differentiafing frig functions

Now that you have some more functions to differentiate, you’d better make
sure you still know how to use the product rule, the quotient rule, and the
chain rule. For example, how would you find the following derivatives:

%( sin(z)), d (sec(z)) and i(cot(acg))?

dx 5 dx
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Let’s take them one at a time. If y = 2%sin(x), then we can write y = uv

where u = 22 and v = sin(x). Now we just need to set up our table:

u = 2? v = sin(z)
du dv
= 2x = cos(x).

Using the product rule (see Section 6.2.3 in the previous chapter), we get

dy  du dv . 9
=V + U = sin(x) - (2z) + 2° cos(z).

This would normally be written as 2x sin(x) + 22 cos(x). Anyway, let’s do the

second example. If y = sec(x)/x®, this time we set u = sec(z) and v = 2% so

that y = u/v. Our table looks like this:

u = sec(x) v =2z’
d d
ﬁ = sec(x) tan(x) é =5z,

Whipping out the quotient rule leads to

du dv
dy  Ygr  “dr _ #°sec(z)tan(z) — sec(z) -5zt sec(x)(z tan(z) —5)

dx v2 (x)? 0

Note that we canceled out a factor of z* at the end. Now, moving on to the
third example, set y = cot(z3). Here we are dealing with a composition of
two functions, so we’d better use the chain rule. The first thing that happens
to x is that it gets cubed, so let u = z3. Then y = cot(u). Our table is

y = cot(u) u=x3
d d
d—z = —csc?(u) ﬁ = 322
By the chain rule, we have
dy _ dy du

T dude —csc?(u) - 322
We can’t just leave that u term lying around—we need to replace it by z3.
Altogether, then, our derivative is —3z2 csc?(23).

Before we move on, I want to show you a neat trick. Suppose you have
y = sin(8z) and you want to find dy/dz. You could do it by using the chain
rule, setting u = 8x, so that y = sin(u). It’s an easy exercise (try it!) to show
that dy/dx = 8 cos(8x). Of course, there’s nothing special about the number
8; it could have been anything. So the general rule is that

%(sin(aw)) = q cos(ax)

for any constant a. Basically, if x is replaced by ax, then there is an
extra factor of a out front when you differentiate. This also works
for the other trig functions. For example, the derivative with respect to z
of tan(z) is sec?(z), so the derivative of tan(2z) is 2sec?(2x). In the same
way, the derivative of csc(z) is — cse(x) cot(z), so the derivative of csc(19z) is
—19 ¢csc(19z) cot(19z). This saves you the trouble of using the chain rule in
this easy case.
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/.2.2  Simple harmonic motion

One place where trig functions appear naturally is in describing the motion
of a weight on a spring bouncing up and down. It turns out that if z is the
position of a weight on a spring at time ¢, taking upward as positive, then a
possible equation for z is something like 2 = 3sin(4¢). The numbers 3 and 4
might change, and the “sin” might be a “cos,” but that’s the basic idea. The
equation is reasonable—after all, cosine keeps bouncing back and forth, and
so does the weight. This sort of motion is called simple harmonic motion.

So, if * = 3sin(4t) is the displacement of the weight from its starting
point, what are the velocity and the acceleration of the weight at time ¢? All
we have to do is differentiate. We know that v = dx/dt, so we just have to
differentiate 3 sin(4t) with respect to t. We could use the chain rule, but it’s
simpler to use the observation at the end of the previous section. Indeed, to
differentiate sin(4t) with respect to ¢, we just observe that the derivative of
sin(t) would be cos(t), so the derivative of sin(4t) is 4 cos(4t). (Don’t forget
that factor of 4 out front!) All in all, we have

v = %(3 sin(4t)) = 3 x 4 cos(4t) = 12 cos(4t).

Now we can repeat the exercise for acceleration, which is given by dv/dt, using
the same technique:

= g cos(at)) = —12 x 4sin(4t) = —48sin(4?).

Tt T dt

Notice that the acceleration—which of course is the second derivative of the
displacement—is basically the same as the displacement itself, except that
there’s a minus out front and the coefficient is different (48 instead of 3).
The minus means that the acceleration is in the opposite direction from the
displacement. In fact, we have shown that

a = —16x,

since 48 = 3 x 16. Now let’s interpret this equation by examining the motion
of the weight a little more closely.

The position z is given by « = 3sin(4t), with the understanding that the
rest position of the weight is at * = 0. Now, if we multiply the inequality
—1 < sin(4¢) < 1 (which is true for all t) by 3, we get —3 < 3sin(4¢) < 3. That
is, =3 < x < 3. So we can see that z is oscillating between —3 and 3. When
x is positive, the weight is above its rest position; then a is negative, which
is good: the acceleration is downward, as it should be. As z gets bigger and
bigger, the spring compresses even more, causing the weight to experience a
greater force and acceleration downward. Eventually the weight starts going
down, and after a little while x becomes negative. Then the weight is below
its rest position, so the spring is expanded and tries to pull the weight back
up. Indeed, when z is negative, a is positive, so the force is upward. The
following picture shows what’s going on:
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7.2.3

a<0 a=0 a>0 a=0

When the weight is at the top of its motion, the velocity is 0. Since we have
v = —12cos(4t), this occurs whenever 4t is an odd multiple of 7/2, that
is, when ¢ = (2n + 1)m/8 for some integer n. Now, enough about simple
harmonic motion—Ilet’s just look at one more example of trig differentiation
before moving on to implicit differentiation in the next chapter.

A curious function
Consider the function f given by

f(z) = 2% sin (é) .

What is its derivative? We’d better not worry about z = 0, since f isn’t
defined there, but we’ll be fine for other values of z. Set y = f(x); then y
is the product of u = 22 and v = sin(1/z). It’s easy to differentiate u with
respect to x (the answer is just 2z), but v is a little harder. The best bet is
to set w = 1/x, so that v = sin(w). Then we can draw up our standard table:

1
v = sin(w) w= =
x
dv _ cos(w) dw _ 1
dw de 22’

Now we can use the chain rule:

dv  dv dw s(w)< 1>:_M

x2

dv ~ dwdr

x2

Now that we have du/dx and dv/dz, we can finally use the product rule on
Yy = uv:

dy du dv . (1 of cos(l/x)\ . (1 1
T de+udx = sin <3:) (2z)+x < e = 2z sin ~)eos (),

g and we’re done.

It turns out that the function f is pretty curious. Let’s see why. (If you
don’t feel like it, I guess you can go on to the next chapter and come back to
it later.) Anyway, to investigate further, we’ll need the following three limits:

1 1 1
lim 22 sin (—) =0, limzsin <—> =0, and lim cos (—) DNE.
z—0 €T z—0 €T x—0t T
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You can do the first two of these limits using the sandwich principle and the
fact that sine or cosine of anything (even 1/z) is between —1 and 1. The third
limit is a little trickier, but we did it for sin(1/z) in Section 3.3 of Chapter 3,
and changing sin to cos doesn’t make any difference. The issue (as you may
recall) is that the oscillations of cos(1/x) between —1 and 1 become more and
more wild as £ — 07, so the limit doesn’t exist.

Anyway, the first limit says that lim f (x) = 0, even though f(0) is un-
defined. This means that we can extend f to be continuous by filling in the
point f(0) = 0. So we’ll throw away the old f from above and define a new
one by the following formula:

1
22 sin <—> if x #0,

fz) = x
0 ifz=0.

We have just shown that this new, improved f is continuous everywhere. We
have already found its derivative when x # 0:

o) 2 (1) oo (1),

So, what’s the derivative of f at x = 07 None of our fancy-shmancy rules will
help here: we have to use the formula for the derivative:

£(0) = lim f0+h) - f(0) — lim M — lim hsin (l) )

h—0 h h—0 h h—0

Now this last limit is the middle of our three limits from above (with & replac-
ing ), and it exists and equals 0. This means that f is actually differentiable
at = 0, and in fact f/(0) = 0. Can you tell that from the graph of y = f(z)?
Here’s what it looks like for —0.1 < = < 0.1, along with the envelope functions

y=a?and y = —z2:

1
y = 2%sin (—)
x
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It looks pretty wobbly at = 0 to me, so it’s not clear at all that the derivative
should even exist there—but we’ve just shown that it does! This leads to the
following question: what is
li "(z)?
Jim ()
Since we know that f/(0) = 0, you might think that the above limit is just 0.
Let’s check it out by using the above formula for f'(z) when z # 0:

: s 1 (1Y 1
mlin& fl(x) = wligﬁ (296 sin (x cos(— ).

We have two terms to deal with here. The first term (2zsin(1/x)) goes to 0
in the limit, since it’s just twice the middle of our three limits from above.
On the other hand, the second term (cos(1/z)) has no limit as  — 0; this is
exactly what the third limit from above says. The conclusion is that glﬁiglm f'(x)
doesn’t exist. By symmetry (check that f is an odd function), neither does
lin, (o)

Now let’s summarize what we’ve found. Our function f is continuous
everywhere and also differentiable everywhere, even at * = 0. Indeed, at
x = 0, the derivative f'(0) equals 0, but near 0, the derivative f’(x) oscillates
wildly: %i@of'(:v) doesn’t exist even though f/(0) does. In particular, we have
now shown that the derivative function f’ is not itself a continuous function.
So, there are functions out there which are differentiable, yet their derivatives
aren’t continuous. That’s pretty darned curious!



CHAPTER 8

Implicit Differenfiation and Related Rates

8.1

Let’s take a break from trying to work out how to differentiate everything in
sight. It’s time to look at implicit differentiation, which is a nice generalization
of regular differentiation. We’ll then see how to use this technique to solve
word problems involving changing quantities. Knowing how fast one quantity
is changing allows us to find how fast a different, but related, quantity is
changing too. Anyway, the summary for this chapter is the same as the title:

e implicit differentiation; and
e related rates.

Implicit Differentiation

Consider the following two derivatives:

d, 5 d
E(x) and E(y ).

The first is just 2z, as we’ve seen. So isn’t the second one 2y? That would be
the answer if the differentiation were with respect to y, but it isn’t: the dz in
the denominator tells us that the differentiation is with respect to x. How do
we unravel this?

The best way is to say to yourself that the first of the derivatives above is
asking how much the quantity z? changes when we change x a little bit. As
we saw in Section 5.2.7 of Chapter 5, if we do change = by a little bit, then
22 changes by approximately 22 times as much.

On the other hand, if you change = by a little bit, what does that do to
y?? This is what we need to know in order to find the second of our above
derivatives, d(y?)/dx. Think of it this way: if you change x, then y will change
a little bit; this change in y will cause y? to change. (All this is true only if y
depends on z, of course—if not, then when you change x, nothing at all will
happen to y.)

If you think that it sounds as if I'm hinting at the chain rule here, you're
quite right. Here’s how it actually works. Let u = y2, so that du/dy = 2y.
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By the chain rule,

Ay du_du dy ) dy
dz Y Cdr  dy dr Yaw

So if you change z by a little bit, then y? changes by 2y(dy/dx) times as
much. Now you might complain that the answer contains dy/dz in it, but
what did you expect? If you want to know how the quantity y? changes when
you change z a little, then first you need to know something about how y
changes! (Again, if y doesn’t depend on z, then dy/dz equals 0 for all x, so
d(y?)/dx is also 0 for all z. That is, y> doesn’t depend on x either.)

Technigues and examples

Now it’s time to get practical. Consider the following equation:

22yt =4

The quantity y isn’t a function of z. In fact, when —2 < x < 2, there are two
values of y satisfying this equation. On the other hand, the graph of the above
relation is the circle of radius 2 units centered at the origin. This circle has
nice tangents everywhere, and we should be able to find their slopes without
having to write y = +v/4 — 22 and differentiating. In fact, all we have to do
is whack a d/dx in front of both sides:

d , 4 oy d
) = (1)

As we know, the left-hand side can be split into two pieces without any prob-
lem. In fact, normally one would just automatically start by writing

+d
dzr

o d
T dx

(*) (4).

To simplify this, note that we have already identified the two quantities on the
left-hand side in the previous section, and the right-hand side is 0 because 4
is constant. Be careful not to write 4 instead—this is a very common mistake!

Anyway, here’s what we get:
d
2z + 2y = 0.
dx

Dividing by 2 and rearranging leads to

dy =

de '
This formula says that at the point (x, y) on the circle, the slope of the tangent
is —z/y. If the point isn’t on the circle, then the formula doesn’t say anything
(at least as far as we're concerned). Now, let’s use the formula to find the
equation of the tangent to the circle at the point (1, \/§) This point certainly
does lie on the circle, since 22 + y? = 12 4 (v/3)2 = 4. By the above formula,
the slope is given by dy/dz = —1/+/3. So, the tangent line has slope —1/+/3
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and goes through (1,4/3). Using the point-slope formula, we see that the
equation of the line is
1
Vi —Lt o)
y \/g( )
This can be simplified slightly to y = (4 — x)/v/3, if you like.
Here’s another example: if

5sin(x) 4 3sec(y) = y — x* + 3,

what is the equation of the tangent at the origin? Unlike the previous example,
it’s impossible to solve this equation for y (or x). So we have to use implicit
differentiation. Let’s first verify that the origin actually lies on the curve.
Plugging in = 0 and y = 0 gives 5sin(0) + 3sec(0) on the left-hand side,
which is just 3 (remember that sec(0) = 1/ cos(0) = 1). The right-hand side is
also 3, so the origin is on the curve. Now let’s differentiate the above equation,
splitting it up as we do so:

%(5 sin(z)) + %(3 sec(y)) = % - %(:62) + %(3)

The only one of these quantities that’s hard to simplify is the second one
on the left-hand side. It’s not too bad, though: let v = 3sec(y). Then
du/dy = 3sec(y) tan(y), so by the chain rule, we have

d du du dy dy
—_ 3 = —— = — . — = 3 S t -
T Bsec(y) = T = - T = Bsee(y) tan(y) 7

So we can return to the previous equation and differentiate everything, getting

dy _ dy
5 3 t — == —2z.
cos(x) + 3sec(y) tan(y) T e 2%
Note that when you differentiate the constant 3, you get 0. In any case, we
could solve for dy/dx here: just throw all the stuff involving dy/dx on one
side and everything else on the other side:

dy dy _
2 3sec(y) tan(y)a = 22 4 5 cos(x).
Now factor—
d
d—y(l — 3sec(y) tan(y)) = 2z + 5 cos(x)
x

—and then divide to get

dy 2z +5cos(x)
dr  1—3sec(y)tan(y)’

Finally, plug in x = 0 and y = 0 to see that

dy _ 2(0)+5cos(0) _ 2(0)+5(1) _
dr ~ 1—3sec(0)tan(0) 1—2(1)(0)
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Since the tangent line has slope 5 and goes through the origin, its equation is
just y = 5z, and we’re done. But do you see how we might have saved a little
effort? Go back to the equation
dy _ dy
5cos 3sec(y) ta - =—-—-2
s(2) + Bsee(y) tan(y) - = 5L — 22

from above. We manipulated this to find the general expression for dy/dz,
but actually we only care about what happens at the origin. So we could have
saved a little time by plugging x = 0 and y = 0 into the above equation. We
would have gotten

W_W a0

5 cos(0) + 3sec(0) tan(0) T = I

This easily reduces to dy/dx = 5. So a good rule of thumb is that if you
only need the derivative at a certain point, substitute before rear-
ranging—it often saves time.

So far, we’ve only used the chain rule. Sometimes you might need to use
the product rule or the quotient rule. For example, if

ycot(z) = 3esc(y) + 27,
then you’ll need the product rule and the chain rule to find dy/dx. Indeed, if
we differentiate, we get

d d d, -

T (yeot(z)) = - (3ese(y)) + - (27).
The left-hand side is the product of y and cot(z). We should give it a name—
I'll call it s, so that s = ycot(z). If we also set v = cot(x), then s = yv, and
we can use the product rule to differentiate s with respect to x:

ds dy dv

o dy 2
=V + Ui cot(x) == + y(— csc*(x)).

dz
(Remember that the derivative of cot(x) with respect to x is — csc?(x).) Now,
let’s worry about the right-hand side of our original equation from above. For
the first term, 3csc(y), we'll use the chain rule. Let’s call the term u, so
u = 3csc(y). We can see that du/dy = —3 csc(y) cot(y), so by the chain rule
we have

du  dudy

Gyl —3cse(y) cot(y) —.

Finally, the derivative of the last term, z”, with respect to z is just 7a9.
Putting it all together, we see that when we differentiate both sides of our
original equation

ycot(z) = 3csc(y) + x”

with respect to x, we get

d d
cot(x)ﬁ —yesc?(z) = —3csc(y) cot(y)d—i + 725,
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Let’s throw everything involving dy/dx on the left and everything else on the
right:

d d
cot(z)% + 3 csc(y) cot(y)d—z = yesc?(z) + 7S,
Now factor the left-hand side and divide to solve for dy/dx:

dy yesc?(x) + T
dr  cot(x) + 3ese(y) cot(y)’

and we're done.
Finally, consider the equation

:v—ycos(%) =7+1.
x

What is the equation of the tangent to the point (1,7) on the curve? I leave
it to you to substitute = 1 and y = m, and make sure that the left- and
right-hand sides agree, so that the point is indeed on the curve. Now we have
to differentiate. We get

o= e () = e 0.

The first term is easy: it’s just 1. Also, the right-hand side is 0, since 7 + 1
is constant. This leaves us with an awful mess in the middle. Suppose we set

5 = 9 cos (i)
xt/)

Then s is the product of y and v, where v = cos(y/x*). By the product rule,
we have

ds dy dv

@ e
There’s no escape: we are going to have to differentiate v. Suppose we set
t = y/2*. Then v = cos(t), so dv/dt = —sin(t), and the chain rule tells us

that
do _dv dt —sin(t)ﬁ = —sin (ﬁ) dat
de dt dx dr x4/ do’
We're not out of the woods yet, though—we need to find dt/dz. Now t = y /x4,
soset U =y and V = 2%, (I already used a little v, so I'll use the capital

letter here.) The quotient rule says that

dUu dav dy d dy dy
Ve -U— A2y —(2* 422 4q? — —4
ﬂz dx dx :x dx ydx(ac)_:v dx xy:xdx Y
dx V2 (x4)2 x8 x>

Now we just need to unwind everything. Working backward, we can now
finish the calculation of dv/dx:

dv . y\ dt . y xa—ély
=) g = e ()
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This in turn allows us to find ds/dx:
xdy 4y
ds dy dv Y\ dy . (Y de
dr Uz TV T (F) dzr _ysm(ﬁ) T

Finally, we can go back to our original differentiated equation

70~ g5 (oo () = )

from above and simplify this down to

d r—— —4y
1—cos(%)£+ysin(x—y4) xdr " _

Don’t bother solving for dy/dz! We only need to know what happens when
x =1 and y = 7. So plug those in. Noting that cos(r) = —1 and sin(r) = 0,
you should check that the whole darn thing simplifies to

d
1- (—1)d—y + 7 x 0 x irrelevant junk = 0,
x
or just dy/dx = —1. Our tangent line therefore has slope —1 and goes through
(1,7), so its equation is y—7 = —(x—1); you can rewrite this asy = —z+m7+1
if you like.

We still have to look at how to find the second derivative using implicit
differentiation. Just before we do that, here’s a brief summary of the above
methods:

e in your original equation, differentiate everything and simplify using the
chain, product, and quotient rules;
e if you want to find dy/dzx, rearrange and divide to solve for dy/dx; but

o if instead you want to find the slope or equation of the tangent at a
particular point on the curve, first substitute the known values of x and
y, then rearrange to find dy/dxz. Then use the point-slope formula to
find the equation of the tangent, if needed.

Finding the second derivative implicitly

It’s also possible to differentiate twice to get the second derivative. For ex-

ample, if
2
, x
2y + sin(y) = — +1,

then what is the value of d?y/dz? at the point (m,7/2) on the curve? Once
again, you should verify that the point does lie on the curve by plugging in
these values of x and y and seeing that the equation checks out. Now, if you
want to differentiate twice, you have to start by differentiating once! You

should get
dy dy 2z
25 + cos(y)a =—
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having used the chain rule to tackle the sin(y) term. Now we need to differ-
entiate again. Do not substitute first! In order to differentiate, we need to see
what happens when x and y are varying. This can’t happen if we fix them
at certain values (like 7 and 7/2). Instead, differentiate the above equation
with respect to x:

d dy d dy d (2x

dx (2d:c) + dx ( os(y )d:c) dx (?) ’
The right-hand side is just 2/7, and the first term on the left-hand side is just
2(d?y/dxz?). The tricky bit is the second term on the left. We’ll need to use

the product rule: set s = cos(y)(dy/dz), and also u = cos(y) and v = dy/dz,
so that s = uv. By the product rule,

ds du dv dy du d (dy) dy du

&2 W24 cosfy) o Ay A cos() Y
dr Cdr " “dz  dx dx dz \dz )~ dr dx a2

We still need to find du/dx, where u = cos(y). This is just the chain rule once
again:
du du dy sin )d
— = — . —= = —sin(y)—.
de dy dx Y dx
Putting it all together, we see that

ds dy du

d*y dy . dy dy
T dr dn ¢ ”W——'<‘Sm<y>@)+m@)w

Beware: the quantities

dy > q d*y

bl an hatll 4

dx dz?
are completely different! The left one is the square of the first derivative, while
the right one is the second derivative. Anyway, let’s put everything together.

Starting from
d dy d dy d (2zx
a(%x)u—( de)—@(?)’

we can now write this as

d?y dy 2 d’y 2
2@ — sin(y) (ﬂ —l—COS(y)@ =

Phew. That was exhausting. We're not done yet, though: we still need to
find d%y/dz? when x = 7 and y = m/2. So plug that in to the above equation:

you get
d?y /N [ dy > d’y 2
25— (3) (m) teos(3) g =7
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8.2

This simplifies down to
oy (dyY _ 2
dx? de ) w
The problem is, we still need dy/dx! No problem: in our equation

dy dy 2x
2—= s(y)=—= = —
dz + cos(y) dz T

from way above, put £ = 7w and y = 7/2 (I didn’t let you do this before!) and
you get
dy dy 2w

2—+0—==—=2
dz+ dx T ’

so dy/dx = 1. Put that into our second derivative equation and we get

d?y 2
This means that
d?y 1 1

dr2 71 2

when z = 7 and y = 7/2, so we're finally done!

Related Rates

Consider two quantities—they can measure anything you like—that are re-
lated to each other. If you know one, you can find the other. For example, if
you keep your eyes on an airplane that passes over your head, then the angle
that your line of sight makes with the ground depends on the position of the
plane. In this case, the two quantities are the position of the plane and the
angle I just described.

Of course, as one of the two quantities changes, so does the other. Suppose
that we know how fast one of the quantities is changing. Then how fast is
the other one changing? That is exactly what we mean by the term related
rates. You see, a rate of change is the speed at which a quantity is changing
over time. We have two quantities which are related to each other, and we
want to know how their rates of change are related to each other. (By the
way, sometimes we’ll abbreviate and say “rate” instead of “rate of change.”)

The above definition of a rate of change was a little sketchy. If you want
to know how fast something is changing over time, you simply have to dif-
ferentiate with respect to time. So, here’s the real definition: the rate of
change of a quantity @ is the derivative of Q with respect to time.
That is,

d
if @ is some quantity, then the rate of change of @ is d_Cf

When you see the word “rate,” you should automatically think “d/dt.”
So, how do you go from an equation relating two quantities to an equation
relating the rates of change of these quantities? You differentiate, of course!
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If you differentiate both sides implicitly with respect to ¢, you’ll find that
the rates just pop out, giving you a new equation. The same thing works if
you are dealing with three or more quantities which are related (for example,
the length, width, and area of a rectangle). Just differentiate implicitly with
respect to t and you’ll relate the rates of change.

So, let’s look at a general overview of how to solve problems involving
related rates. Then we’ll use it to solve a bunch of examples.

1. Read the question. Identify all the quantities and note which one you
need to find the rate of. Draw a picture if you need to!

2. Write down an equation (sometimes you need more than one) that relates
all the quantities. To do this, you may need to do some geometry,
possibly involving similar triangles. If you have more than one equation,
try to solve them simultaneously to eliminate unnecessary variables.

3. Differentiate your remaining equation(s) implicitly with respect to time

t. That is, whack both sides of each equation with a %. You end up

with one or more equations relating the rates of change.
4. Finally, substitute values for everything you know into all the equations
you have. Solve the equations simultaneously to find the rate you need.

The only difference between these types of problems and the word problems
you've already seen is that step 3 was absent. Here, it makes all the dif-
ference. Just one more thing before we look at examples: it’s vital that you
substitute values at the end, after differentiating! That is, don’t switch
steps 3 and 4. If you substitute values first, denying the quantities the ability
to change, then your rates will all be 0. That’s what you get for freezing
everything in place. ...

A simple example

Here’s a relatively simple example to illustrate the above method. Suppose
that a perfectly spherical balloon is being inflated by a pump. Air is entering
the balloon at the constant rate of 127 cubic inches per second. At what rate
does the radius of the balloon change at the instant when the radius itself is
2 inches? Also, at what rate does the radius change when the volume is 367
cubic inches?

OK, let’s write down our quantities (step 1). These are the volume and
the radius of the balloon. Let’s call the volume V' (in cubic inches) and the
radius 7 (in inches). We need to find the rate of change of the radius r. Now,
we need an equation relating V' and r (step 2). Here’s where the geometry
comes in. Since the balloon is a sphere, we know that

V = —mre.

3

This relates the quantities. Now we need to relate the rates (step 3). Differ-
entiate both sides implicitly with respect to t:

d d (4
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The left-hand side is just dV/dt; to handle the right-hand side, let s = 73, so
ds/dr = 3r2. By the chain rule,

ds dsﬁi?)zdr

dt “drdt T dt

Now we can put this in our above equation and get

av._ 4 pdr) o dr
E—gw(?ﬂ“ dt)—élm“ I

So we have an equation relating the rate of V' with the rate of r. Finally, we’re
ready to substitute (step 4). In both parts of the question, the rate of change
of volume is 127 cubic inches per second. In symbols, we have dV/dt = 12m.
Plugging this into the above equation, we get

d
127 = 47rr2—r.
dt

Rearranging leads to
dr 3

dt 2’

Great—that means that if we know the radius 7, then we can find the rate at
which the radius is changing, which of course is dr/dt. Notice that the rate
of change of the radius is itself a changing quantity: it depends on the radius.
You’ve probably noticed that when you blow up a balloon, it grows in size (or
radius) faster at the beginning, and then starts to slow down, even though
you’re blowing the same amount of air into the balloon all the time. This is
consistent with the above formula for dr/dt, which is decreasing in 7.

Armed with the formula, we can quickly do both parts of the question. In
the first part, we know that the radius is 2 inches, so set r = 2 in our formula
from above:

dr 3 3

dt 22 4
So the answer is %. But % what? It’s important to write a sentence summariz-
ing the situation, as well as including the units of measurement. In this case,
we’d say that when the radius is 2 inches, the rate of change of the radius is
% inches per second.

Now, for the second part of the question, we know that the volume is 367
cubic inches. That means that V' = 36w. The problem is that we need to
know what r is in order to find dr/dt. Now we need to go back to the equation
relating V' and r, which was V = %FT3. If you put V = 367 and solve for
r, you should be able to see that » = 3 inches. Finally, substituting into the
equation for dr/dt gives

dr 3 3 1

dat 2 33

So when the volume is 367 cubic inches, the rate of change of the radius is %

inches per second.
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8 2 2 A slightly harder example

Let’s look at another relatively straightforward example, this time involving
three quantities. Suppose there are two cars, A and B. Car A is driving on a
road heading directly north away from your house, and car B is driving on a
different road heading directly west toward your house. Car A travels at 55
miles per hour and car B travels at 45 miles per hour. At what rate is the
distance between the cars changing when A is 21 miles north of your house
and car B is 28 miles east of your house?

To answer this question, we’d better draw a picture (step 1). Draw your
house H and the cars A and B. Let the distance between H and A be given
by a; let the distance between H and B be called b; and let the distance
between the cars be called c¢. The diagram looks like this:

Al N

B

Note that it would be wrong to mark in 21 instead of a or 28 instead of b.
You need to see what happens as a and b change, not when they are fixed at
a certain number, so they need to have the flexibility of being variable. Also
note that c is the quantity we need the rate of, since it’s the distance between
the cars.
Time for step 2. The equation relating a, b, and c is nothing other than
Pythagoras’ Theorem:
a’ + 0% =2
Moving on to step 3, we differentiate implicitly with respect to time t. Make
sure you agree that we get
9g da o db _ 9 dc
dt + dt dt’
Now, we know that car A is moving at 55 miles an hour away from your
house. This means that the distance a is increasing by 55 miles per hour, so
da/dt = 55. As for B, it is moving at 45 miles an hour toward your house.
This means that b is decreasing by 45 miles an hour, so db/dt = —45. You
need that negative sign in there! Otherwise you’ll screw the whole thing up.
Plugging these values in to the above equation leads to
de

2a(55) 4 2b(—45) = 205

which can be simplified to

de
%€ 550 — 45b.
“ar
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Finally, we can see what happens at the instant of time we’re interested in.
This is when a = 21 and b = 28. At that instant, we know that ¢? = 2124282,
which works out to be ¢ = £35. Since ¢ is positive (it’s the distance between
the two cars!), we have ¢ = 35. Put those numbers into the above equation
and you get

dc
dt
You can compute this easily by canceling a factor of 5 and a factor of 7 from
both sides. The end result is that dc/dt = —3. This means that the distance
between the cars is decreasing at a rate of 3 miles per hour (at the moment
in time we are considering).

That’s the answer we need. Notice that the cars are actually getting closer
together at the moment of time we’re considering, even though A is moving
away from the house faster than B is coming toward it. If we wait a little
bit, car A will be farther away from the house and car B will be closer;
by staring at the equation for de/dt, you might convince yourself that this
quantity eventually becomes positive (although this observation isn’t required
to complete the question).

(35)= = 55(21) — 45(28).

A much harder example

Here’s a tougher example involving similar triangles: suppose there’s a freakin’
huge water tank in the shape of a cone (with the point at the bottom). The
height of the cone is twice the radius of the cone. Water is being pumped into
the tank at the rate of 87 cubic feet per second. At what rate is the water
level changing when the volume of water in the tank is 187 cubic feet?

There’s a second part as well: assume that the tank develops a little hole
at the bottom that causes water to flow out at a rate of one cubic foot per
second for every cubic foot of water in the tank. I want to know the same
thing as before: at what rate is the water level changing when the volume of
water in the tank is 187 cubic feet, but now with the leak in the tank?

Let’s start with the first part. Here’s a diagram of the situation:
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We have marked some quantities on the diagram. The height of the tank is H
and its radius is R. The height of the water level is h and the radius of the top
of the water surface is r. All these quantities are measured in feet. Let’s also
let v be the volume of water in the tank, measured in cubic feet. (You could
let V' be the volume of the whole tank, but we’ll never need that quantity
since the tank will never be full—it’s that huge!). Anyway, that takes care of
step 1.

For step 2, we have to start relating some of these quantities. We are
given that the tank’s height is twice the radius, so we have H = 2R. We're
more interested in relating h and r, though. There are some similar triangles
in the diagram: in fact, AABO is similar to ACDO, so H/R = h/r. Since
H = 2R, we have 2R/R = h/r, which means that h = 2r. So the water is
like a mini-copy of the whole tank. Anyway, we still need to find the volume
of water in the tank in terms of h and r. The volume of a cone of height h
units and radius r units is given by v = %wrzh cubic units. It would be nice
to eliminate one of h and r at this point; since we’re more interested in the
water level h than the radius r (read the question and see why!), it makes
sense to eliminate . Using the equation r = h/2, we have

1 1 (h)Qh_wh?’ wh?
5 ) b=

R PR e
’U—37T'f‘h 37T 12 TR

Now, for step 3, let’s differentiate this with respect to time ¢. By the chain
rule,

dv 2dh 7wh? dh dv  wh?dh

— = —X = —— —_— = ——.

dt 12 dt 4 dt’ ST 4 dt
Great—mnow for step 4, substitute in everything we know into the two equa-
tions above. We know that dv/dt = 87 and we’re interested in what happens
when v = 187. Substituting, we get

7h3 7h? dh
1871'—6 and SW—TE
The first equation tells us that h3 = 18 x 12 = 216, so h = 6. That is, when
the water volume is 187 cubic feet, the water level is at 6 feet. Putting that
into the second equation, we get

i 5 dh
8T = 1 X 6 Tk
which means that dh/dt = 8/9. That is, the water height is increasing at a
rate of 8/9 feet per second at the moment we care about (when the volume is
187 cubic feet).

The second part is almost the same. In fact, the only difference occurs at
step 4. We still want to substitute in v = 187, which will mean that h = 6
once again. On the other hand, it’s wrong to put dv/dt = 8, since that
doesn’t take into account the leak. We know that 87 cubic feet of water is
entering into the tank per second, but one cubic foot is leaving per second for
every cubic foot of water in the tank. Since there are v cubic feet of water in
the tank (by definition!), the rate of outflow from the leak is v cubic feet per
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second. So the rate of inflow is 87 and the rate of outflow is v (both in cubic
feet per second), which means that

d

d—: =81 —w.
Now, when v = 187, we have dv/dt = 87 — 187 = —107. So we need to
substitute dv/dt = —107 and h = 6 into our previous equation

dv wh? dh

dt 4 dt’
The answer works out to be dh/dt = —10/9, which means that the water

level in the tank is falling at a rate of 10/9 feet per second at the time we'’re
considering. Even though we’re pumping water in, the leak is letting even
more water out and so the level is falling.

A really hard example

Here’s one more problem. Now that you have seen a number of related rate
problems, perhaps you should try to solve it before reading the solution.

Suppose that a plane is flying eastward directly away from you at a height
of 2000 feet above your head. The plane moves at a constant speed of 500
feet per second. Meanwhile, some time ago a parachutist jumped out of a
helicopter (which has since flown away). The parachutist is floating directly
downward, 1000 feet due east of you, at a constant speed of 10 feet per second.
The situation is summarized in the following picture:

? S

2000

1000

In the picture, what you might call the inter-azimuthal angle between the
parachutist and the plane (with respect to you) is marked as 6. The question
is, at what rate is # changing when the plane and the parachutist have the
same height but the plane is 8000 feet due east of you?

We have two objects to worry about, the plane and the parachutist. We
know that the height of the plane is always 2000 feet (relative to your head),
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but we don’t know how far east the plane is—the distance keeps on changing.
Let the plane be p feet to the east of you. As for the parachutist, this time
we know exactly how far east the parachutist is: 1000 feet. The problem is,
how high is the parachutist? Let the height be h feet. By drawing a few extra
lines, we can recast the above diagram as follows:

‘%

2000

Notice that the quantities 1000 and 2000 never change, but the quantities p
and h do change. In particular, the plane is heading to the right, so p is getting
bigger; and the parachutist is heading down, so h is getting smaller. Even
though the question asks us to concentrate on the moment when p = 8000
and h = 2000 (the same height as the plane), it’s important that we allow p
and h to vary so that we can work out the rate of change. After all, if p and
h stay the same, then the plane and the parachutist just stay suspended in
space in the same spot, and of course the angle § wouldn’t change. That’s
hardly realistic—so we need to let p and h vary, in which case 6 varies and we
can work out how fast it varies. That completes step 1.

Speaking of 6, it’s clear from the diagram that it is simply the difference
between the angle § the parachutist makes with the ground and the angle «
the plane makes with the ground. (Let’s assume that you have no height, or if
you prefer, you are lying on the ground.) So we know that § = 8—«. Actually,
we should probably write § = |8 — «|, just in case the parachutist is much
lower than the plane. At around the time we’re interested in, the heights are
the same but the plane is much farther to the east than the parachutist, so 3
must be bigger than o and we don’t need the absolute values.

Now, let’s do some trig. We have two right-angled triangles. From one of
them (the one with the plane), we get tan(«) = 2000/p. From the other one,
we have tan(3) = h/1000. Let’s write these equations down in one place:

_ 2000 and tan(8) = L

t
an(a) = — 1000
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Step 2 is finally done, and we can move on to step 3, differentiating these
two relations implicitly with respect to time. Starting with the first one, let
u = tan(a) and v = 2000/p, so our equation just becomes u = v. This means
that du/dt = dv/dt. Let’s find these two quantities using the chain rule. First,
du/dt:

da

cnn2 () 2
sec(a)dt.

du B du do
dt  da dt

And now for dv/dt:
dv  dv dp ~ 2000 dp

dt  dpdt  p? dt’
Since du/dt = dv/dt, we have

sec2(a)d—a = 2000@.
dt p? dt

That’s just the first of our two trig equations. We need to repeat the exercise

for the second one involving tan(/3). The left-hand side is handled exactly the

same way as we did tan(«), but the right-hand side is much easier. Make sure

you agree that we get
ds 1 dh

2 - =
sec’(B) G = Tooo ar

Remember, we also know that § = 3 — «, so we can differentiate this also with
respect to time ¢ and get df/dt = df/dt — da/dt. Since there are so many
equations, let’s write all six of them down in one place:

2000 o, wda 2000 dp
tan(a) = » sec’ () Gl
h . dB 1 dh
t = e
an(8) = 1900 5o (8) % = 1000 @z
49 dB da
9 == — _— = —— = —,
f-a dt  dt dt

Now we’d better make some substitutions and get to the bottom of this mess.
What do we know? Well, the speed of the plane is 500 feet per second, which
means that dp/dt = 500. The speed of the parachutist is 10 feet per second,
but the height is decreasing, so dh/dt = —10. If you forget the minus sign,
you’ll get the answer wrong! So be very careful. For example, if the plane were
coming toward you, then p would be decreasing, so dp/dt would be negative.
Anyway, we're interested in what happens when the plane is 8000 feet away,
so p = 8000, and when the parachutist is at height 2000 feet (the same as the
plane), so set h = 2000. The first four of our equations become a lot simpler:

2000 1 , da 2000 1
£ == — = =——
anf@) = 2000 = 1 sec (@) g = ~g0002 X 0= "2
2000 g1 1
" —9 (B = i (—10) = ——
an(f) = 1500 sec’ (02 = 1000 X 719 = ~100

From the top right equation, we could find dav/dt if only we knew what sec?(«)
was. But wait a second—we do know that tan(a) = 1/4, so surely we can
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find sec?(a). Remembering our trig identities (see Section 2.4 in Chapter 2),
we get

2
1 17
2 2 — ) = =
sec’(a) =1+ tan (a)—1+(4) 6

So the top right equation becomes

17da 1
16 dt 64’
which works out to be
do 1
dt ~— 68

This rocks—we now need to do the same with 8 and we’ll be done. Here we
know that tan(8) = 2, so

sec?(B) = 1 +tan*(f) = 1+ 2% = 5.

Substituting into the bottom right equation above, we have

5dﬁ 1
dt 100’
which means that
g 1
dt 500

So we know da/dt and df/dt; from the final one of our original six equations
above,

o dp da 1 1\ -—174+125 27
dt  dt dt 500 68/ 8500 2125

So the angle  is increasing at a rate of 27/2125 radians per second (at the
moment we’re considering), and we’re finally done.






CHAPTER 9

Exponentials and Logarithms

9.1

Q.1.1

Here’s a big old chapter on exponentials and logarithms. After we review
the properties of these functions, we need to do some calculus with them. It
turns out that there’s a special base, the number e, that works out particularly
nicely. In particular, doing calculus with e* and log,(z) is a little easier than
dealing with 2% or logs(x), for example. So we need to spend some time
looking at e. There are other things we want to look at as well; all in all, the
plan is to check out the following topics:

e review of the basics of exponentials and logs, and how they are related
to each other;

e the definition and properties of e;

e how to differentiate exponentials and logs;

e how to solve limit problems involving exponentials and logs;
e logarithmic differentiation;

e exponential growth and decay; and

e hyperbolic functions.

The Basics

Before you start doing calculus with exponentials and logarithms, you really
need to understand their properties. Basically, in addition to the actual def-
inition of logs, you need to know three things: the exponential rules, the
relationship between logs and exponentials, and the log rules.

Review of exponentials

The rough idea is that we’ll take a positive number, called the base, and raise
it to a power called the exponent:

baseexponent .

For example, the number 27%/2 is an exponential with base 2 and exponent
—5/2. Tt’s essential that you know the so-called exponential rules, which
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effectively tell you how exponentials work. You’ve seen these before, no doubt,
but here they are again to remind you. For any base b > 0 and real numbers
x and y:

1. The zeroth power of any nonzero number is 1.

2. The first power of a number is just the number itself.
3. When you multiply two exponentials with the same base,
you add the exponents.
bx
4. W b*7Y.| When you divide two exponentials with the same base,
: you subtract the bottom exponent from the top one.
5.1 (b")Y = b"Y.| When you take the exponential of the exponential, you

multiply the exponents.

You should also know what the graphs of exponentials look like. We looked
at this a little in Section 1.6 in Chapter 1, but in any case we’ll revisit the
graph shortly.

Review of logarithms

Logarithms—a word that strikes fear into the hearts of many students. Watch
carefully, and we’ll see how to deal with these beasts. Suppose that you want
to solve the following equation for x:

2Y =1.

The way you can bring z down from the exponent is to hit both sides with a
logarithm. Since the base on the left-hand side is 2, the base of the logarithm
is 2. Indeed, by definition, the solution of the above equation is

x = logy(7).

In other words, to what power do you have to raise 2 in order to get 77 The
answer is logy (7). This particular number can’t be simplified, but how about
log,(8)? Ask yourself, to what power do you raise the base 2 in order to get
87 Since 2% = 8, the power we need is 3. So log,(8) = 3.

Let’s go back to the equation 2* = 7. We know that this means that
x = logy(7). If we now plug that value of z into the original equation, we get

the bizarre looking formula
210g2(7) = 7.

In more generality, log,(y) is the power you have to raise the base b
to in order to get y. This means that z = log,(y) is the solution of the
equation b* = y for given b and y. Plugging this value of y in, we get the
formula

blOgb(y) =y

which is true for any y > 0 and b > 0 (except b = 1). Hey, why do I insist
that b and y be positive? First, if b is negative, then many weird things can
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happen. The quantity b* may not be defined. For example, if b = —1 and
x = 1/2, then b® is (—1)'/2, which is /=1 (urk). So we avoid all this by
requiring b > 0. Then there’s no problem taking any power b*. On the other
hand, b is always positive! So if y = b* then y > 0 by necessity. This means
that it’s nonsense to take the log of a negative number or 0. After all, if
log, (y) is the power that you raise b to in order to get y, and you can’t ever
raise b to a power and get a negative number or 0, then y can’t be negative
or 0. You can only take the logarithm of a positive number.

You might also have noticed that I mentioned that b = 1 is bad. If you put
b = 1 in the formula b'°2(¥) = ¢ from above, you get 1'°81(#) = yy. The problem
is, 1 raised to any power still equals 1, but y may not be 1, so the equation
doesn’t make sense. There just isn’t any base 1 logarithm. How about base
1/2? That’s OK, but there’s rarely any need for a base 1/2 logarithm, since
it turns out that log; /(y) = —log,(y) for any number y. (You can prove this
by setting y = (1/2)* and noting that y also equals 27%.) The same sort of
thing is true for any base b between 0 and 1: log,(y) = —log; ;,(y) for all y,
and 1/b is greater than 1. So from now on, we’ll always assume that our base
b is greater than 1.

Logarithms, exponentials, and inverses

We can describe everything we’ve seen above in a more sophisticated manner
by using inverse functions. Fix a base b > 1 and set f(z) = b*. The function
f has domain R and range (0, 00). Since it satisfies the horizontal line test, it
has an inverse, which we’ll call g. The domain of ¢ is the range of f, which
is (0, 00), while the range of g is the domain of f, which is R. We say that ¢
is the logarithm of base b; in fact, g(x) = log,(x) by definition. Remembering
that the graph of the inverse function is the reflection of the original function
in the mirror line y = x, we can draw the graphs of f(x) = b* and its inverse
g(x) = logy(z) on the same axes:

=4 == 1 1

Since f and g are inverses of each other, we know that f(g(z)) = z and
g(f(z)) = x. (The first fact is only true for z > 0, as we will see.) Let’s
interpret these two facts, one at a time.
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1. Well start off with f(g(x)) = z. Since g is the logarithm function, x
had better be positive—remember, you can only take the log of a positive
number. Now let’s take a close look at the quantity f(g(z)). You start out
with a positive number x, and hit it with g, which is the base b logarithm. You
then exponentiate the result: that is, you raise b to the power of g(x). You end
up with your original number! In fact, since f(z) = b* and g(x) = log,(z),
the formula f(g(z)) = x just says that

blOgb(I) =ux,

which was one of our formulas from the previous section (with y replaced
by z). The exponential of the logarithm is the original number—
provided that the bases match!

2. Our other fact is that ¢g(f(x)) = z, which is true for all z. Now we take
a number z, raise b to the power of our number x, then take the base b
logarithm. Once again, we get the original number x back. It’s sort of like
taking a positive number, squaring it and then taking the square root: you get
the original number back. Since f(x) = b* and g(z) = log,(x), the equation
g(f(z)) = z becomes

log, (b*) = x| for any real z and b > 1.

For example, when we looked at the equation 2* = 7 in the previous section,
you can take log, of both sides to get

log,(27) = log,(7).

The left-hand side is just x, because the logarithm of the exponential
is the original number (provided that the bases match!). One more quick
example: to solve

371 =19

simply take log, of both sides:

log; (39”271) = log,(19).

The left-hand side is just 22 — 1, so we have 22 — 1 = log4(19). This means
that z = £4/log4(19) + 1.

Log rules

The exponential rules from Section 9.1.1 above all have log versions, which are
(strangely enough) called log rules. There’s actually an extra log rule—the
change of base rule—that doesn’t have a corresponding exponential rule (see
#6 below).* So, here are the rules, which are valid for any base b > 1 and
positive real numbers z and y:

* Actually, there is a change of base rule for exponentials too: b* = ¢* logc(b) for b > 0,
¢ > 1, and > 0. This isn’t normally included in the list of exponential rules because it
involves logarithms!
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a0 =1]

. |log, (b) = 1.

3. ‘1ogb(:vy) =log,(z) + log;(y). ‘ The log of the product is the
sum of the logs.
4. ‘1ogb(a:/y) = log,(z) — log; (y). ‘ The log of the quotient is the
difference of the logs.
5. ‘ log, (z¥) = ylog, (). ‘ The log moves the exponent down in front

of the log. In this equation, y can be any real
number (positive, negative or zero).

6. Change of base rule:

T los.(@)
108,(®) = 156, ®)

for any bases b > 1 and ¢ > 1 and any number z > 0. This means that
all the log functions with different bases are really constant multiples of
each other. Indeed, the above equation says that

1Ogb(x) = KlOgC(I),

where K is constant (it happens to be equal to 1/log.(b)). When I say
“constant,” I mean it doesn’t depend on z. We can conclude that the
graphs of y = log,(x) and y = log,.(z) are very similar—you just stretch
the second one vertically by a factor of K to get the first one.

Now, let’s see why these rules are all true. If you want, you can skip to the
§ next section, but believe me, you’ll understand logs a whole lot better if you
read on. Anyway, #1 above is pretty easy: because b’ = 1 for any base b > 1,
we have log, (1) = 0. The same sort of thing works for #2: since b! = b for
any b > 1, we can just write down log,(b) = 1.

The third rule is harder. We must show that log, (zy) = log, () + log; (v),
where z and y are positive and b > 1. Let’s start off with our important fact,
which we’ve noted a couple of times above (with A replacing the previous

variable): e (4)
bose) = A

for any A > 0. If we apply this three times with A replaced by x, y, and zy,
respectively, we get

plogs (@) = g ploss(W) — ¢ and  ploB (V) = gy,
Now you can just multiply the first and second of these equations together,
then compare with the third equation to get
ploss (@) plogs(y) — zq) — plogs(=y)
So what? Well, use exponential rule #3 on the left-hand side; since we have
to add the exponents, the equation becomes

plosy (z)+log, (y) — plogy (zy) .
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Now hit both sides with a base b log to kill the base b on both sides; we’re
left with our log rule log,(z) + log, (y) = log,(zy). Not so bad!

As for rule #4 above, I leave it to you to show this; the proof is almost
identical to the one we just did for #3. So, let’s go on to #5. We want to
show that log,(z¥) = ylog,(x), where x > 0, b > 1, and y is any number at
all. To do this, start with the important fact from above but with A replaced
by z¥. We get

plogs(@¥) — v

This gives us a weird way of expressing z¥. We could also replace A instead
by x to get
blogb(m) =z,

then raise both sides to the power y:

(bloge(@yy — 2

The left-hand side of this is just b¥1°%(*) by exponential rule #5 (see Sec-
tion 9.1.1 above). So we have two different expressions for 2¥, which must be

equal to each other:
blogb(my) — Y logb(w)'

Again, hitting both sides with a logarithm base b reduces everything to our
log rule

logy (2¥) = ylog, ().
Finally, we just need to prove the change of base rule. We’re actually going
to show that
logy(z) log,.(b) = log. ().
You see, if that’s true, then just divide both sides by log.(b) to get the rule as

it’s described in #6 above. Anyway, let’s take the equation above and raise ¢
to the power the left-hand side and right-hand side separately. We get

clogy () log. (b) and cloge(@)

respectively. The right-hand side is easy: it’s just x because of our important
fact. How about the left-hand side? We use exponential rule #5 again in a
tricky way to write
1
clogb(z)logc(b) — Clogc(b)xlogb(w) — (Clogc(b)) Ogb(w).

Since ¢°%:(®) = b and b'°%(*) = 2 by our important fact (twice), we conclude
that

(o, (¢) log..(b) (Clogcw))l"gb(m) _ plosy (@) _
So both of the quantities
clogy (@) log, (b) and clog. (@)
from above simplify down to just 2! They must be equal to each other, then,
and if we knock out the base of ¢ (using a base ¢ logarithm), we get our desired
equation
1Ogb(‘r) logc(b) = logc(x)
Well done if you took the trouble to understand all these proofs.
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Definition of e

So far, we haven’t done any calculus involving exponentials or logs. Let’s start
doing some. We'll begin with limits and then move on to derivatives. Along
the way, we need to introduce a new constant e, which is a special number in
the same sort of way that 7 is a special number—it just pops up when you
start exploring math deeply enough. One way of seeing where e comes from
involves a bit of a finance lesson.

A guestion about compound inferest

A long time ago, a dude named Bernoulli answered a question about com-
pound interest. Here’s the setup for his question. Let’s suppose you have a
bank account at a bank that pays interest at a generous rate of 12% annu-
ally, compounded once a year. You put in an initial deposit; every year, your
fortune increases by 12%. This means that after n years, your fortune has
increased by a factor of (14 0.12)™. In particular, after one year, your fortune
is just (1 4+ 0.12) = 1.12 times the original amount. If you started with $100,
you’d finish the year with $112.

Now suppose you find another bank that also offers an annual interest rate
of 12%, but now it compounds twice a year. Of course you aren’t going to get
12% for half a year; you have to divide that by 2. Basically this means that
you are getting 6% interest for every 6 months. So, if you put money into this
bank account, then after one year it has compounded twice at 6%; the result
is that your fortune has expanded by a factor of (1 + 0.06)2, which works out
to be 1.1236. So if you started with $100, you’d finish with $112.36.

The second account is a little better than the first. It makes sense when
you think about it—compounding is beneficial, so compounding more often
at the same annual rate should be better. Let’s try 3 times a year at the
annual rate of 12%. We take 12% and divide by 3 to get 4%, then compound
three times; our fortune has increased by (1 + 0.04)3, which works out to be
1.124864. This is a little higher still. How about 4 times a year? That’d be
(1 + 0.03)*, which is approximately 1.1255. That’s even higher. Now, the
question is, where does it stop? If you compound more and more often at the
same annual rate, do you get wads and wads of cash after a year, or is there
some limitation on all this?

The answer fo our guestion

To answer our question, let’s turn to some symbols. First, let’s suppose that
we are compounding n times a year at an annual rate of 12%. This means
that each time we compound, the amount of compounding is 0.12/n. After
this happens n times in one year, our original fortune has grown by a factor

of
0.12\"
(1+22).
n
We want to know what happens if we compound more and more often; in
fact, let’s allow n to get larger and larger. That is, we’d like to know what
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happens in the limit as n — co: what on earth is

0.12Y\"
lim (1 + —) ?

n— o0 n

It would also be nice to know what happens at interest rates other than 12%.
So let’s replace 0.12 by r and worry about the more general limit
L=1lm (1+2)".
n—o00 n

If this limit (which I called L) turns out to be infinite, then by compounding
more and more often, you could get more and more money in a single year.
On the other hand, if it turns out to be finite, we’ll have to conclude that
there is a limitation on how much we can increase our fortune with an annual
interest rate of r, no matter how often we compound. There would be a sort
of “speed limit,” or more accurately, a “fortune-increase limit.” Given a fixed
annual interest rate r and one year to play with, you can never increase your
fortune by a factor of more than the value of the above limit (assuming it’s
finite) no matter how often you compound.

The quantity (1 + 7/n)™ which occurs in the limit is a special case of the
formula for compound interest. In general, suppose you start with $4 in cash
and you put it in a bank account at an annual interest rate of r, compounded
n times a year. Then over ¢ years, the compounding will occur nt times at
a rate of r/n each time; so your fortune after ¢ years will be given by the
following formula:

fortune after ¢ years, compounded n times a

rant
year at a rate of r per year = A (1 + —) .
n

So we are just starting with $1 (so A = 1) and seeing what happens after one
year (so t = 1), then seeing what happens in the limit if we compound more
and more times a year.
Now let’s attack our limit:
n
L=lim (14+52),
n—oo n
First, let’s set h = r/n, so that n = r/h. Then as n — oo, we see that h — 07

(since r is constant), so

L= lim (14 h)/"
h—0t

Now we can use our exponential rule to write

L= lim ((1+h)"")".
Jim ((1+h)T)

Let’s pull a huge rabbit out of the hat and set

e= lim (14 h)Y"
h—0t

Where is the trickery? Well, the limit might not exist. It turns out that it
does; see Section A.5 of Appendix A if you want to know why. In any case, we
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have a special number e, which we’ll look at in more detail very soon. Back
to our limit, though; we now have

L= lim ((1+h)Y")" ="

Jim ((1+h)7H)" =e
That’s the answer we’re looking for! Let’s put all the above steps together to
see how it flows. With h = r/n, we have

L= lim (1 + f)" = lim (1+h)"7" = lim ((1+h)/*) =
n—oo n h—0t h—0+

This means that if you compound more and more frequently at an annual

rate of r, your fortune will increase by an amount very close to e”, but never

more than that. The quantity e” is the “fortune-increase limit” we’ve been

looking for. The only way you get this rate of increase is if you compound

continuously—that is, all the time!

So, suppose you start with $A4 in cash and put it in a bank account which
compounds continuously at an annual interest rate of r. After 1 year, you'll
have $A4e”. After two years, you'll have $4e” x e = Ae?". It’s easy to keep
repeating this and see that after ¢ years, you'll have $A4e™. It actually works
for partial years as well, because of the exponential rules. So, starting with
$A, we have:

fortune after ¢ years, compounded continuously
at a rate of r per year = Ae'.

Compare this to the formula for compounding n times a year on the previous
page. The quantities A(1+r/n)" and Ae" look quite different, but for large
n they’re almost the same.
©.2.3 More about e and logs
Let’s take a closer look at our number e. Remembering that
lim (1 + Z) =e",
n—oo n

we can replace 7 by 1 to get

1 n
lim (1 + —> =e.
n—oo n

Of course, 7 = 1 corresponds to an interest rate of 100% per year. Let’s draw
up a little table of values of (14 1/n)" to three decimal places for some
different values of n:

n |1] 2 | 3 | 4 | 5 | 10 | 100 | 1000 | 10000 | 100000
(1+2)" |2 ‘ 2.25 ‘ 2.353 ‘ 2.441 ‘ 2.488 ‘ 2.594 ‘ 2.705 ‘ 2.717 ‘ 2.718 ‘ 2.718

n

Even compounding once a year at this humongous interest rate doubles your
money (that’s the “2” in the bottom row of the second column). Still, it
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seems as if we can’t do much better than about 2.718, even if we compound
many many times a year. Our number e, which is the limit as n — oo of the
numbers in the second row of the above table, turns out to be an irrational
number whose decimal expansion begins like this:

e = 2.71828182845904523 . ..

It looks like there’s a pattern near the beginning, with the repeated string
“1828,” but that’s just a coincidence. In practice, just knowing that e is a
little over 2.7 will be more than enough.

Now if z = e", then r = log.(z). It turns out that taking logs base
e is such a common thing to do that we can even write it a different way:
In(x) instead of log, (x). The expression “In(z)” is not pronounced “lin z” or
anything like that—just say “log x,” or perhaps “ell en x,” or if you're feeling
particularly geeky, “the natural logarithm of z.” In fact, most mathematicians
write log(z) without a base to mean the same thing as log,(z) or In(z). The
base e logarithm is called the natural logarithm. We’ll see one of the reasons
why it’s so natural when we differentiate log, (x) with respect to x in the next
section.

Since we have a new base e, and a new way of writing logarithms in that
base, let’s take another look at the log rules and formulas we’ve seen so far.
See if you can convince yourself that the following formulas are all true for
x>0andy>0:

@ — g ‘ In(e®) =z ‘ ‘ln(l) =0 ‘ ‘ln(e) =1 ‘

‘ln(:vy) = In(z) + In(y) ‘ In (g) = In(z) — In(y) ‘hl(ﬂ;‘y) = yln(x) ‘

(Actually, in the second formula, 2 can even be negative or 0, and in the last
formula, y can be negative or 0.) In any case, it’s really worth knowing these
formulas in this form, since we will almost always be working with natural
logarithms from now on.

One more point before we move on to differentiating logs and exponentials.
Suppose you take the important limit

lim (1 + Z) =e,
n—oo n
and this time substitute h = 1/n. As we noticed in the previous section, when
n — 0o, we have h — 0%. So, replacing n by 1/h, we get
lim (1+rh)Y/" =e".
h—0t
This is a right-hand limit. In fact, you can replace h — 07 by h — 0 and the
two-sided limit is still true. All we need to show is that the left-hand limit is

e”, and then, since both the left-hand and right-hand limits are the same, the
two-sided limit equals e” as well. So consider

lim (1+rh)Y/" =7
h—0—
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Replace h by —t; then ¢ — 0T as h — 0~. (When h is a small negative
number, t = —h is a small positive number.) So

lim (1 +7R)Y" = lim (1 —rt)~ Y%
h—0~ t—0+

Since A=! = 1/A for any A # 0, we can rewrite the limit as

1
lim ————.
20+ (1+ (—r)t)i/t

The denominator is just the classic limit but with interest rate —r instead of
r. This means that in the limit as ¢ — 0T, the denominator goes to e™". So
altogether we have

1 1
g (= I (=)= i o~ e e
The last step works because e = 1/e". So we have shown what we want
to show. Let’s change r to z in all our formulas (why not?) and summarize
what we’ve found:

lim (1+E) =e” and lim (1 4 zh)/" = e®.
n h—0

n—oo

When x = 1, we get two formulas for e:

1V
lim (1-1-—) =e and lim(l—i—h)l/h =e.
n— oo n h—0

These are important! We’ll look at some examples at how to use them in
Section 9.4.1 below. We’ll also use one of them to differentiate the log function,
right now.

Differentiation of Logs and Exponentials

Now the plot thickens. Let g(z) = log,(z). What is the derivative of g? Using
the definition,

— lim log,,(z + h) — logb(x)'
h—0 h h—0 h

How do we simplify this mess? We use the log rules, of course! First, use rule
#4 from Section 9.1.4 above to turn the difference of logs into the log of the

quotient:
1 r+h
/ T -
g(I)—}g%hlogb( " >

We can simplify the fraction down to (1 4+ h/x), but we also need to use log
rule #5 to pull the factor 1/h up to be an exponent. So

N
’ BT 1
g'(x) = ;llli%logb (1+ :1:) .
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Forget about the log;, for the moment. What happens to

BAL/R
(+3)
x
as h goes to 07 That is, what is

N
lim (1 + —> ?
h—0 x
In the previous section, we saw that

lim (1 4 hr)/" = e;
h—0

so if we replace r by 1/x, then this leads to

N
lim <1—|——) =el/®,
h—0 xr

So, if we go back to our expression for ¢'(x), we see that

1/h
'(z) = lim 1 1+-] =1 1),
g'(x) = lim Ogb( + x) ogy (/)
In fact we can even make the expression simpler by using log rule #5 again—
the power 1/x comes down out front and we have shown that
d 1
Ir log, (z) = > log, (€).

Now, let’s set b = e, so that we are taking the derivative of the log function
of base e. We get

d 1
o loge (‘T) = E loge (6)

dx
But wait a second—Dby log rule #2, log,(e) is simply equal to 1. So this means
that p .
E loge (‘T) = E .

That’s pretty nice. It’s actually really really nice. Kind of amazing, really.
Who would have thought that the derivative of log,(z) is just 1/2? This is
one of the reasons why the logarithm base e is called the natural logarithm.
Writing log, () as In(z) (we made this definition in the previous section), we
get the important formula

d 1

Also, the above expression < log, (e) for the derivative of log () can be written
in terms of natural logarithms by using the change of base formula (that’s #6
in Section 9.1.4 above). You see, by changing to base e, we get

~log.(e) 1

1084(¢) = 10 @) = ()"
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So we have

1
xIn(b)’

d
ar log, (z) =

This is the nicest way to express the derivative of a logarithm of a base other
than e. Now watch this: if y = b*, then we know that x = log,(y). Now
differentiate with respect to y; using the above formula with x replaced by v,
we get

de 1
dy  yln(b)’
By the chain rule, we can flip both sides to get
dy
=yln(b
7 = yn(b).

Since y = b, we have proved the nice formula

d T\ _ 1T
— (") =" In(h).

In particular, if b = e, then In(b) = In(e) = 1. (That is just log rule #1 in
disguise—remember, In(e) = log,(e) = 1.) So if b = e, this formula becomes

This is a pretty freaky formula. If h(x) = e®, then h/(z) = e* as well—the
function h is its own derivative! Of course, the second derivative of e (with
respect to x) is also e, as are the third derivative, the fourth derivative, and
SO on.

Examples of differentiating exponentials and logs

Now let’s look at how to apply some of the above formulas. First, if y = e =37,

) what is dy/dz? Well, if u = —3z, then y = e*. We have

dy d du d
du  du (") =e an dr dz (=32) 3

By the chain rule,

dy _dydu _ _ —3z.
dr  dudz e'(=3) = =3¢

notice that we replaced v by —3z in the last step. In fact, this is a special
case of a nice rule: if a is constant, then

d
dzr

axr — aeam

This formula can be proved in the same way by letting ©v = ax. In fact,
it’s exactly the same as the principle we saw at the end of Section 7.2.1 in
Chapter 7: if x is replaced by ax, then there is an extra factor of
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!

a out front when you differentiate. So it should be no problem, for
example, to differentiate In(8z) with respect to x. In fact,

d

—(In(8z)) =8 x —
(In(82)) =8 x .
since the derivative of In(z) with respect to = is 1/z. Now, the factors of 8
cancel and we see that

d 1 1
E(ln(&t» =8 X i
That’s weird—the derivative of In(8x) is the same as the derivative of In(x)!
Not so weird when you think about it: In(8z) = In(8) + In(z), so in fact the
quantities In(8z) and In(z) just differ by a constant and therefore have the
same derivative with respect to x.

Here’s a harder example:

d
ify = e logs (5% — sin(z)), what is d—y?
x

Let’s use the product rule and the chain rule. Start off by setting u = e and

v = logg(5” —sin(x)), so y = uv. For the product rule, we need to differentiate

u and v (with respect to x), so let’s do them one at a time. Starting with
z? 2 t ; :

u=¢e", let t = x° so that u = e*; then, using the chain rule, we have

du dudt ‘ 22
5—55—6(296)—2356 .
As for v, let s = 5* — sin(z) so that v = logs(s). By the chain rule,
dv  dvds 1 5% 1n(5) — cos(x)

= *1 — = .
(5" In(5) = cos(®)) = { 3515w —sin(2))

Here we’ve used the formulas from the previous section for the derivatives of

log, (z) (with b = 3) and b (with b now equal to 5). Anyway, since y = v,

we have

dy du dv ) 2 2 57 In(5) — cos(z)
+u 0g5(5” — sin(z))2ze” +e m(3)(5* — sin(@)

dz  dsdr  sln(3)

dx v dx dzr

As usual, it’s a bit of mess, but the example does illustrate the main points
involved; as long as you know the basic formulas for differentiating exponen-
tials and logs (they are the boxed equations in the previous section), then
you’ll be all set.

How fo Solve Limit Problems Involving
Exponentials or Logs

Now it’s time to see how to solve a bunch of limit problems. As in the case of
all the previous limits we’ve looked at, it’s really important to note whether
you are evaluating functions near 0 (that is, at small arguments), near co or
—oo (large arguments), or somewhere else that’s neither small nor large. We’ll
examine some of these cases in some detail with respect to exponentials and
logarithms. Let’s start off, though, with limits involving the definition of e.
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Limits involving the definition of e

Consider the following limit:

lim (1 + 3h2)1/3°

h—0

It looks pretty similar to the limit involving e from Section 9.2.3 above:

lim (1 + h)Y" =e.
h—0

If we take this limit, and replace h by 3h2 everywhere we see it, then we get

lim (14 3h2)/30° = ¢
3h2—0
This is almost exactly what we want. All we have to do is note that 3h%2 — 0
as h — 0, so
2
lim (1 + 323 — ¢

Using the same logic, we can show (for example) that

lim (1 4 sin(h))Y/ s = ¢,

h—0
Indeed, if you replace h by any quantity that goes to 0 as h — 0, such as 3h?
or sin(h), then the limit is still e. So how about

Jim (1 + cos(h))L/ cosh)?

You can’t just repeat the previous argument, since cos(h) — 1 as h — 0. In
fact, if you just substitute » = 0 into the expression (1 + cos(h))'/ ®5(") then
you get (1 + 1) = 2, so the above limit is in fact equal to 2.

Now consider ,
lim (1 + h2)1/3%",
h—0
There is a mismatch between an h? term and a 3h? term. They are similar,
but the coefficients aren’t the same. We need to write the exponent 1/3h? as
(1/h?) x (1/3) and use an exponential rule:
lim (1 + A2)Y/3° = lim (1 4 A2)M/P)*A/3) = Yiy ((1 + h2)1/h2)1/3 :
h—0 h—0 h—0
Since the h? terms match up, the part inside the big parentheses goes to e,
and the whole limit is therefore e!/3.
Here’s a slightly harder example: what is the value of
lim (1 — 5h%)2/""7
h—0
It’s annoying, but the small quantities —5h% and h® don’t quite match, and
there’s also that 2. We need to match them up by fiddling with the exponent
2/h? to match the —5h3 term. The best way to look at it is to see how nice
everything would be if we instead wanted to find

lim (1 — 5h)1/ (-51%)
h—0 ’
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4.2

because this limit is just e. Yup, the —5h> terms match and so this is nothing
more than our classic limit

lim (1 4+ h)Y" =,
h—0

with h replaced by —5h3. Unfortunately, we have to do a little more work.
Somehow we need to turn 1/(—5h?) into 2/h?. To do that, we have to multiply
by —5 to get rid of the —5 in the denominator, and then multiply again by
2 to fix up the numerator. The overall effect is that we should multiply by
—10. So, we have

lim (1 — 5%)%/7° = lim (1 — 5h3)1/(=5h*)x(=10)
h—0 h—0

—10
— lim ((1 - 5h3)1/(*5h3>) — 10,

—0

Behavior of exponentials near 0
We’d like to understand how e® behaves when x is really close to 0. In fact,

since €? = 1, we know that

lim e® = e = 1.

z—0

Of course, you can replace x by another quantity that goes to 0 when z — 0
and get the same limit. For example,

. 2 2
lime® =¢e% =1

x—0
as well. So, we can find
2 .
. e sin(x)
lim
x—0 T

e*” sin(z) sin(x)
lim ————= = lim (ezz) ( ) .
r—0 T z—0 T

Both factors tend to 1 as  — 0, so the overall limit is 1 x 1 = 1. Now, here’s
a trickier example:

As z gets very large, 1/ gets very close to 0; so el/®

can be ignored. Your best bet is to write the limit as

is very close to 1 and

. 1 202 +3x—1
ILHOIO el/ 2 -7 ’

The first fraction goes to 1, and using the techniques from Section 4.3 of
Chapter 4, you can show that the second factor goes to 2; so the limit is 2.
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This sort of approach works well if your exponential term appears in a
product or a quotient, but it fails miserably with something like this:
el —1

lim .
h—0

It’s tempting to replace the e® by 1, which is fair enough, except that you
get a useless 0/0 case. The problem is that we have a difference between e”
and 1, which gets very small when h is near 0. So what do we do? As we
saw in Section 6.5 in Chapter 6, when the dummy variable is by itself on the
bottom, your limit might be a derivative in disguise. Try setting f(z) = e”,
so that f/'(z) = e® as well (as we saw in Section 9.3 above). In this case, the

standard formula L
o S+ D) = f(@)
h—0 h

~ /')

becomes
ew-i—h —e7
lim —— = ¢€”.
h—0 h

Now all we need to do is replace = by 0. Since e® = 1, we get the useful fact
that

h
1
¢ —1.

lim
h—0

Once again, you can replace h by any small quantity. For example,

3s® 3s®

.oe’d —1 Coed —1
ili% P —gli% 355 x3=1x3=23.

The standard matching trick works; this is really the same trick we used
in poly-type limits (Chapter 4), trig limits where the arguments are small
(Chapter 7), and the limits in Section 9.4.1 above.

Behavior of logarithms near 1

Now let’s look at how logs behave near 1. It turns out that the situation is
pretty similar to the case of exponentials near 0. We know that In(1) = 0,
but what is
lim In(1+ h) ?
h—0 h
Believe it or not, this is another example of a limit which is a derivative
in disguise (see Section 6.5 in Chapter 6). Set f(x) = In(z) and note that

f(x) =1/z, as we saw in Section 9.3. Now the equation

flz+h) - f(z)

. Y
po h = /'@
becomes | L | )
(k) —n(@) 1
h—0 h X

for any x. All that’s left is to put z = 1 and get

. In(14+h)-In(1) 1
) 3 T
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Since In(1) = 0, this simplifies to

In(l1+h
i A+ )

=1.
h—0 h

Once again, h can be replaced by any quantity which goes to 0 as h — 0 and
the limit will still be 1. For example, to find

. In(1—7h?)
=

you have to mess with the denominator to make it look like —7h? as follows:

B YO 0
h—0 5h2 h—0  —Th? 5h2

It’s just our old trick of multiplying and dividing by a useful quantity (—7h?
in this case). Anyway, the first fraction has limit 1 since the small quantity
—T7h? matches, and the second fraction just cancels down to be —7/5. So the
limit is —7/5.

4.4 Behavior of exponentials near oo or —oo

Now we want to understand what happens to e® when z — o0 or z — —o0.
Let’s take another look at the graph of y = e*:

10

4 -3 —2 -1 O 1 o 3 4

Beware: the curve above looks as if it touches the z-axis at the left side of
the graph, but it doesn’t; remember, ¢ > 0 for all z, so there are no z-
intercepts. (This is a good argument against relying too strongly on graphing
calculators in order to understand what’s going on!) In any case, it seems
that we should at least have

lim e* = oo and lim e* =0.

r—00 r——00

What if the base e is replaced by some other base? For example, consider

lim 27 and lim (%) .

Tr—00 Tr— 00
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To handle the first one, let’s use the identity A = e™(4) with A = 2% to write
9T — eln(2“r) — 1n(2).

Now as & — oo, we also have xIn(2) — oo, so the first limit is co. As for the
second limit, this time we can use the same trick to write

1y 11
g _3_m_ezln(3)'

As & — 00, we see that e*™B) — oo, so the reciprocal goes to 0. We have
proved that

lim 2% = o0 and lim <%) =0.

Tr—00 Tr— 00

These are special cases of the following important limit:

o0 if r>1,
lim r* =<1 ifr=1,
0 ifo<r<l.

The middle case, when r = 1, is obvious, since 1 = 1 for all x > 0. The other
two cases can be shown in the same way as we handled the limits of 2% and
(1/3)* above—just write r* as e ("),

This is not the whole story. The limit

lim e* = o0

r— 00
says that e® gets larger and larger—as large as you want—when x gets larger;
but how fast does this happen? After all,

lim 22 = oo
as well. Which one grows faster, 2 or e*? The answer is that e” kicks butt
over z2 when x is large. After all, when z = 100, the quantity z2 is only
100 x 100, while

€100:€><€><~-~><6.

There are a hundred factors of e but only two factors of 100, so €' is much

bigger than 1002. The situation is even more in favor of e* when z is larger
still. Since e® is so much bigger than 22, when you divide 22 by e* you should
get a tiny number. In fact,

We won’t prove this until we look at I’'Hopital’s Rule in Chapter 14. For the
moment, I want to point out that the above limit is also true if you replace
22 by any power of . Even 2999 can’t compete with e*. When z is a billion,
2999 is 999 copies of a billion, multiplied together—but e is a billion copies
of e, multiplied together! Even though e is a lot smaller than a billion, e” just
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walks all over £°?9 in terms of size when x is large. So in general we have the

following principle:

Exponentials grow quickly: lim — = 0| no matter how large n is.

In fact, by tweaking this a little, you can get a more general statement:
I poly-type stuff

im =
z—oo exponential of large, positive poly-type stuff

For example,
. 28410027 — 4
lim ——=0.
T—00 e
To see why, simply split up the fraction into three pieces, each of which goes
to 0 because exponentials grow quickly. More subtly,

2199 4 3002° +32 _

Jim 0225 —1922 100
Here the crucial fact is that 223 — 1922 — 100 behaves like 223 when z is large,
so the exponential is indeed of large, positive poly-type stuff.* In fact, the
base e can be replaced by any other base greater than 1. For example,

210090 430027 +32 0

JE{}O 9223 —1922—100

as well. Another variation involves the fact that e™®
writing 1/e*. Here’s an example of this:
lim (25 + 3)1%%e72,

r—00

is just another way of

We can just write this as

5 3 101
lim (z° +3)'%e¢™* = lim @+3) =0
T—00 T—00 e

here the limit is 0 because exponentials grow quickly. Now consider the very
similar limit

lim (2 4 3)'%%".
r——00
This of course involves the behavior of e* near —oo, but you can just throw
the situation over to 400 by setting t = —x. We can see that as x — —oo,
we have t — +00. So
(—t5 + 3)101

=0,

lim (25 +3)'1%%® = lim ((—t)° 4+ 3)!%e™" = lim

T— —00 t—o0 t—o0 e

Once again, the limit is 0 because the numerator is a polynomial (it doesn’t

matter that its leading coefficient is negative). So you can deal with e* as

x — —oo by substituting ¢ = —x; this means that you now have to deal with
e~ as t — oo, and you just handle that by writing e~ as 1/¢’.

*If you really want to nail it, you must write something clever like 223 — 1922 —100 > 3
for large enough z. After all, if 223 — 1922 — 100 behaves like 223, then clearly it must
eventually be larger than z3. So our denominator is bigger than e’ Now replace z3 by
u, so that the denominator is just e* and the numerator is some easy-to-deal-with mess.
Finally, use the sandwich principle.
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?.4.5 Behavior of logs near 0o

The saga continues. Let’s look at what happens to In(z) when z is a large
positive number. (Remember, you can’t take the log of any negative number,
so there’s no point in studying the behavior of logs near —oo!) Here’s the
graph of y = In(z) once again:

Again, it’s important to note that the curve never touches the y-axis, even
though it looks as if it does. It just gets very, very close. In any event, it
seems as if

lim In(z) = co.

This is actually easy to show directly. Do you believe that In(z) ever makes
it up to 10007 Sure, it does: In(e!???) = 1000. The same trick works for any
number N. Just take x = eV and you will find that In(z) = In(e’V) = N. So
there’s no limit to how big In(x) gets: it goes to oo as * — oo ... but how
fast?

It’s pretty easy to see that it must be quite slow. As we just noted,
In(e'%%9) = 1000. The number %% is positively humongous—much greater
than the number of atoms in the universe—yet its log is only 1000. Talk about
cutting things down to size!

More precisely, it turns out that In(z) goes to infinity much more slowly
than any positive power of z, even something like 229901, So if you take
the ratio of In(z) to any positive power of x, the ratio should be small (at
least, when z is very large). In symbols, we have

1
n(x) = 0| no matter how small a is.

Logs grow slowly: |if a >0, lim

r—oo ¢

Just as in the case of exponentials, it’s not too hard to extend this to a more
general form:

log of any positive poly-type stuff

im
z—o0 poly-type stuff of positive “degree”
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O

9.4.6

This works for logs of any base b > 1, not just the natural logarithm. (That’s
because of the change of base rule.) For example,

3 —
lim log;(z° 4+ 3z — 1)

=0
Tr—00 {I;O'l — 99

even though the power z%! is very small.

Actually, we shouldn’t be surprised that logs grow slowly, once we know
that exponentials grow quickly. After all, logs and exponentials are inverses
of each other. More precisely, if you take In(x)/xz® and replace z by e, you
get

In(x) . In(eY) .t

lim = lim —~ = lim — =0.
r—oo % t—o0 (et)a t—o0 ot

The last limit is 0 because the exponential e%* on the bottom grows much

more quickly than the polynomial ¢ on the top. So we have shown that the
fact that exponentials grow quickly automatically leads to the fact that logs
grow slowly.

Behavior of logs near O

It’s tempting to write In(0) = —oo, but it’s just not true: In(0) is not defined.
On the other hand, the graph of y = In(x) above suggests that

xlir& In(z) = —o0.

You need to use the right-hand limit here, since In(z) isn’t even defined for
x < 0. Once again, though, we need to say more. Sure, In(z) goes to —oo as
x — 07, but how quickly? For example, consider the limit

wlirgh xIn(z).
If you just plug in 0, it doesn’t work at all, since In(0) doesn’t exist. When z
is a little bigger than 0, the quantity x is small and In(z) is a large negative
number. What happens when you multiply a small number by a large one? It
could be anything at all, depending on how small and how large the numbers
are.
Here’s one way to solve the above problem. Replace x by 1/t. Then as
x — 01, we can see that t — co. So we have

1 1
lim zln(z) = lim - 1In (—> .
z—0+t t—oo { t

Of course, In(1/t) is just In(1) — In(¢), which equals —In(t), since In(1) = 0.
So we get

lim zln(z) = lim %ln (%) =

x—0t t—o0

where the limit is 0 because logs grow slowly.
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The trick of replacing = by 1/t to transfer the behavior near 0 to behavior
near oo works because In(1/t) = —In(¢). You can use it to show the following
principle, of which the above example is a special case:

lim z°In(z) = 0 no matter how

Logs “grow” slowly at 0: [|if a > 0, )
z—0F small a is.

(I put “grow” in quotation marks because In(x) really grows downward to
—oo as ¢ — 0T.) Once again, you can replace x® by poly-type stuff, as long
as it becomes small when x — 0%, and “In” can be replaced by “log,” for any
other base b > 1 (that is, not just the base e).

Logarithmic Differentiation

Logarithmic differentiation is a useful technique for dealing with derivatives
of things like f(x)9(®), where both the base and the exponent are functions of
x. After all, how on earth would you find

d .

%/, .sin(x)
G
with what we have seen already? It doesn’t fit any of the rules. Still, we have
these nice log rules which cut exponents down to size. If we let y = x5,
then

In(y) = In(z*™®)) = sin(z) In(z)

by log rule #5 from Section 9.1.4 above. Now let’s differentiate both sides
(implicitly) with respect to z:

d d

= (in(y)) = ~(sin(a) In(x).

Let’s look at the right-hand side first. This is just a function of = and re-
quires the product rule; you should check that the derivative works out to be
cos(x) In(z) + sin(z)/x. Now let’s look at the left-hand side. To differentiate
In(y) with respect to  (not y!), we should use the chain rule. Set v = In(y),
so that du/dy = 1/y. We need to find du/dx; by the chain rule,

du  dudy 1dy
der dydx ydx’
So, implicitly differentiating the equation In(y) = sin(z) In(z) produces

ldy _ cos(z) In(z) +

sin(x)
y dx x

Now we just have to multiply both sides by y and then replace y by z5"(®):

sin(z) ) xsin(z) )

T

Z—z = (coS(x) In(z) + #) y = (cos(x) In(z) +
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That’s the answer we’re looking for. (By the way, there is another way we
could have done this problem. Instead of using the variable y, we could just
have used our formula A = ™) to write

xsin(w) _ eln(wSi"(I)) _ esin(w) ln(w)'
Now I leave it to you to differentiate the right-hand side of this with respect
to x by using the product and chain rules. When you’ve finished, you should
replace 5@ 10(x) Ly 2510(2) and check that you get the same answer as the
original one above.)

Let’s review the main technique. Suppose you want to find the derivative
with respect to = of

y = f(x)?,
where both the base f and the exponent g involve the variable x. Here’s what
you do:

1. Let y be the function of z you want to differentiate. Take (natural) logs
of both sides. The exponent g comes down on the right-hand side, so
you should get

In(y) = g(z) In(f ().

2. Differentiate both sides implicitly with respect to . The right-hand
side often requires the product rule and the chain rule (at least). The
left-hand side always works out to be (1/y)(dy/dz). So you get

ldy = nasty stuff in z.

y dx

3. Multiply both sides by y to isolate dy/dz, then replace y by the original

expression f(z)9(*), and you're done.

Here’s another example: what is

% ((1 + 1:2)1/9”3)?

According to the first step, we let y = (1 + ;1:2)1/933, then take logs of both
sides, bringing the exponent down; we get

In(1 + 2?)

3

tny) = n ((14+22)"/) = L in(1 44%) =

The second step is to differentiate both sides implicitly with respect to x.
The left-hand side, as always, becomes (1/y)(dy/dz), but we’ll have to use
the quotient rule on the right-hand side. First, differentiate z = In(1 + 22)
using the chain rule: if u =1 + 22, then z = In(u), so
dz dzdu 1 2z
dr  dudx u( ?) 1+ 22
Now you can use the quotient rule; you should check that when you implicitly
differentiate the equation In(y) = In(1 + 22?)/2® from above, you get (after
simplifying)
2z
3 2 2
ldy Tl 2 =327 In(1 +27) ~ 227 = 3(1+2%) In(1 + 2?)
ydr (x3)2 N (1 4 22)
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Finally, multiply through y and replace y by (1 + 22)/ = to get

dy (22 —3(1+2?)In(1 +2?))y
dr x4 (1 + z2)
(222 — 3(1 + 22) In(1 + 22))(1 + 22)1/*°
(14 22)
(222 — 3(1 + %) In(1 + 22))
2A(1 + 22)l- 1/

and we're all done.

Even if the base and exponent are not both functions of x, logarithmic
differentiation can still come in handy. If your function is really nasty and
involves lots of products and quotients of powers (like #2) and exponentials
(like ™), you might want to try logarithmic differentiation. For example,

(CC2 _ 3)1003scc(z)
225 (logz(x) + cot(x))?

d
if y= ,  what is &
dx

I must be joking, right? How can you be expected to differentiate something
so foul? By logarithmic differentiation, that’s how. Just take natural logs
of both sides, and you’ll find that the right-hand side becomes much more
manageable (provided that you remember your log rules), like this:

B ($2 _ 3)1003sec(z)
0) =1 (o et
= In((z2 — 3)'%) + In(3%(®)) — In(2) — In(2®) — In((log, () + cot(z))")
=1001In(2? — 3) + sec(x) In(3) — In(2) — 5In(z) — 9In(log, () + cot(x)).

Make sure you understand these log manipulations before reading on. Any-
way, now we can differentiate this expression implicitly with respect to x
without too much drama:

d

——(In(y))

e d (100 In(z* — 3) + sec(z) In(3)

—In(2) — 51In(z) — 91n(log;(z) + cot(x))) .

The left-hand side is (1/y)(dy/dx) as usual, so let’s take a look at the right-
hand side, term by term.

e The first term is 100 In(2% — 3); it’s a straightforward chain rule exercise
to see that the derivative is 100 x (2x)/(z% — 3), which is of course
200z /(22 — 3).

e The second term is sec(z)In(3). Before you whip out the product rule,
remember that In(3) is a constant, so in fact you can just take the
derivative of sec(z) and then multiply by In(3) to get In(3) sec(x) tan(zx).

e The third term is — In(2), which is a constant, so its derivative is just 0.

e The fourth term is —51n(z), which has derivative —5/x.

e The fifth term, —9In(log,(z) + cot(z)), which I'll call z, requires the
chain rule. Here are the details, although you should be able to work
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this out for yourself. Let u = log,(z) + cot(x), so z = —91In(u). Then

we have

dz dz du 9 1 csc? (2)

_—=—— = —— _ €T
dr  dudx u \ zIn(7)

-t T ()~ )

Let’s put it all together to get

ldy 200z
ydr x2-3

+ In(3) sec(x) tan(z) — g

9 2y 1
+ log; () + cot(x) (CSC (z) :vln(?)) '

Now multiply by y to get

dy
dx

200x )
= <x2 — + In(3) sec(z) tan(x) — .

g e ()~ ) <

Finally, replace y by the original (horrible) expression to get

dy ( 200z

)
9r = \22—3 + In(3) sec(x) tan(z) — -

9 CSC2 2 1 (ZC2 _ 3)1003sec(m)
+ log, (z) + cot(x) ( () xln(?))) % 22°(logz(z) + cot(x))?”

It seems nasty, but just imagine trying to do it without logarithmic differen-
tiation!

951 The derivative of ¢

Now we can finally show something that we’ve been taking for granted:

i(a:a) =ax

dzr

a—1

for any number a, not just integers as we’ve seen before. Let’s suppose = > 0.
Now use logarithmic differentiation: set y = z%, so that In(y) = aln(x). If
you differentiate both sides implicitly, you get
ldy a
ydr
Now multiply both sides by y and replace y by x*:

dy ay az®

a—1

= ax
dzr T T

This is exactly what we want, at least when > 0. When z < 0, we have a
bit of a problem. For example, you can’t even take (—1)/2 because this is the
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square root of a negative number. So what on earth should (—1)V2 be? In
fact, without using complex numbers (after all, we won’t look at these until
Chapter 28), you can only make sense of z® for £ < 0 when «a is a rational
number with an odd denominator (after canceling out common factors). For
example, z%/3 makes sense for negative x since you can always take a cube
root—we’re OK because 3 is odd. In the case where £ makes sense for x < 0,
it turns out that it’s either an even or an odd function of x; you can use that
fact to show that the derivative is still az®~!.

Here are a couple of simple examples of using the formula. Working on the
domain (0, c0), what is the derivative of 2V? with respect to x? How about
2™? Just use the formula to show that

d V2y V2-1 d T T—1
@(x ) =V2z and %(x ) =7z
for z > 0. It’s not really any different from what we’ve done before—just that

we can handle non-integer exponents now.

Exponential Growth and Decay

We've seen that bank accounts with continuous compounding grow exponen-
tially. We don’t need to look to such human-made devices to find exponen-
tial growth, though: it occurs in nature too. For example, under certain
circumstances, populations of animals, like rabbits (and humans!), grow ex-
ponentially. There’s also exponential decay, where a quantity gets smaller
and smaller in an exponential fashion (we’ll see what this means very soon).
This occurs in radioactive decay, allowing scientists to find out how old some
ancient artifacts, fossils, or rocks are.

Here’s the basic idea. Suppose y = €**. Then, as we saw at the beginning
of Section 9.3.1 above, dy/dx = ke*®. The right-hand side of this equation
can be written as ky, since y = e¥*. That is,

dy

de
This is an example of a differential equation. After all it’s an equation involv-
ing derivatives. We'll look at many more differential equations in Chapter 30,
but let’s just focus on this one for the moment. What other functions satisfy
the above equation? We know that y = ¢** does, but there must be others.
For example, if y = 2e**, then dy/dx = 2ke*®, which is once again equal to
ky. More generally, if y = Ae*®, then dy/dx = Ake*®, which is once again
equal to ky. It turns out that this is the only way you can have dy/dx = ky:

ky.

d
if d—y = ky, then y = Ae*® for some constant A.
x

We'll see why in Section 30.2 of Chapter 30. In the meantime, let’s take a
closer look at the differential equation dy/dx = ky. The first thing we’ll do is
change the variable x to t, so that we are looking at

dy_

= ky.
ar Y



194 o Exponentials and Logarithms

9.6.1

This means that the rate of change of y is equal to ky. Interesting! The rate
that the quantity is changing depends on how much of the quantity you have.
If you have more of the quantity, then it grows faster (assuming k& > 0). This
makes sense in the case of population growth: the more rabbits you have, the
more they can breed. If you have twice as many rabbits, they also produce
twice as many rabbits in any given time period. The number k, which is
called the growth constant, controls how fast the rabbits are breeding in the
first place. The hornier they are, the higher k is!

Exponential growth

So, suppose we have a population which grows exponentially. In symbols, let
P (or P(t), if you prefer) be the population at time ¢, and let k be the growth
constant. The differential equation for P is

dP
pr kP.
This is the same as the differential equation in the box above, except that
some symbols have changed. Instead of y, we have P; and instead of x, we
have t. Never mind, we're good at adapting to these situations; we’ll just
make the same changes in the solution y = Ae**. We end up with P = Ae*
for some constant A. Now, when t = 0, we have P = AeF(©) = Ae® = A, since
e? = 1. This means that A is the initial population, that is, the population
at time 0. It’s customary to relabel this variable as well. Instead of A, we’ll
write Py to indicate that it represents the population at time 0. Altogether,
we have found the

exponential growth equation: P(t) = Pyet.

Remember, P is the initial population and k is the growth constant.

This formula is easy to apply in practice, provided that you know your
exponential and log rules (see Sections 9.1.1 and 9.1.4 above). For example,
if you know that a population of rabbits started 3 years ago at 1000, but now
has grown to 64,000, then what will the population be one year from now?
Also, what is the total time it will take for the population to grow from 1000
to 400,0007

Well, we have Py = 1000, since that’s the initial population. So the
equation in the box above becomes P(t) = 1000e**. The problem is, we don’t
know what k is. We do know that P = 64000 when t = 3, so let’s plug this
in:

64000 = 10003,

This means that e3* = 64. Take logs of both sides to get 3k = In(64), so
k = £1In(64). Actually, if you write In(64) = In(2°) = 61n(2), then you can
simplify down to k& = 21n(2). This means that

P(t) = 1000e?™(2)

for any time t. Now we can solve both parts of the problem. For the first
part, we want to know what happens a year from now. This is actually 4
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years from the initial time, so set t = 4. We get
P(4) = 1000e2™m2)*4 = 100032,
Now we get a little tricky: write 81n(2) as In(2%) = In(256), so
P(4) = 1000™2%9) = 1000 x 256 = 256000.

Here we have used the crucial formula e™4) = A for any number A > 0. The
conclusion is that the population will be 256,000 a year from now. Now let’s
tackle the second part of the problem. We want to see how long it will take
for the population to get up to 400,000, so set P = 400000 to get

400000 = 1000e2™m)t,

This becomes €22 = 400. To solve this, take logs of both sides; we get
21n(2)t = In(400), which means that

In(400)
2In(2)

t =

This is the number of years it takes for the population to grow from 1000
to 400,000, but it’s not very intuitive. You could use a calculator to get an
approximation; but suppose you don’t have one handy. You just have to know
that In(5) is approximately 1.6 and In(2) is approximately 0.7. Start off by
writing 400 = 202, so In(400) = In(20%) = 21n(20). We can do even better,
though: In(20) =In(4 x 5) = In(4) + In(5) = 21n(2) + In(5). All told, we get

_ In(400)  2(2In(2) +1In(5))
- 2In(2) 21n(2) =2 In(2)’

Using our approximations, we get

1.6 16
t224+ = =2+ — =42
+ 0.7 + 7 7
So although it takes 4 years to get up to a population of 256,000, it only takes
approximately two-sevenths of a year more—about 3% months—to get up to
400,000. That’s the power of exponential growth. ...

Exponential decay

Let’s turn things upside-down and look at exponential decay. To set the
scene, let me tell you that there are certain atoms which are radioactive.
They are like little time bombs: after awhile they break apart into different
atoms, emitting energy at the same time. The only problem is that you never
know when they are going to break apart (we’ll say “decay” instead of “break
apart”). All you know is that over a given time, there’s a certain chance that
the decay will happen.

For example, you might have a certain type of atom which has a 50%
chance of decaying within any 7-year period. So if you have one of these
atoms in a box, close the box, and then open it up in 7 years, there’s a 50-50
chance that it will have decayed. Of course, it’s pretty difficult to see an
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individual atom! So let’s suppose, a little more realistically, that you have a
trillion atoms. (That’s still a tiny speck of material, by the way.) You put
them in the box and come back 7 years later. What do you expect to find?
Well, about half the atoms should have decayed, while the other half remain
intact. So you should have about half a trillion of the original atoms. What
if you come back in another 7 years? Then half the remaining original atoms
will be left, leaving you with a quarter of a trillion of the original atoms.
Every 7 years, you lose half of your remaining sample.

So let’s try to write down an equation to model the situation. If P(t) is
the number (population?) of atoms at time ¢, then I claim that

ap
= — kP
dt

for some constant k. This says that the rate of change of P is a negative
multiple of P. That is, P decays at a rate proportional to P. The more
atoms you have, the faster the decay. This agrees with our above example: in
the first 7 years, we lost half a trillion atoms, but in the next 7 years, we only
lost a quarter of a trillion. In another 7 years, we’ll only lose one-eighth of a
trillion atoms. The more we have, the more we lose. Anyway, the solution to
the above differential equation is

P(t) = Pye ",

where Py is the original number of atoms (at time ¢ = 0). This is exactly
the same as the equation for exponential growth from the previous section,
except that we have replaced the growth constant k£ by a negative constant
—k, which is called the decay constant.

In the above example, we know that it takes 7 years for any sample of
atoms to halve in size. This length of time is called the half-life of the atom (or
material). In the above equation, this means that if you start with P, atoms,
then in 7 years, you'll have Py atoms. So, setting ¢ = 7 and P(7) = 1P, in
the above equation, we have

1

EPO = Poeik(n.

Now cancel out the factor of P from both sides and take the log of both sides

to get
1
In{-|=-Tk.
(3)

Since In(1/2) = In(1) — In(2) = — In(2), the above equation becomes

This means that
P(t) — Poeft(ln(Q)/'?)

in this case.
Now let’s generalize a little. Suppose you have some other radioactive
material with a half-life of ¢ /o years. This means that half of any size sample
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of the material will decay in ¢, /o years. It doesn’t mean that the whole sample
will decay in twice that many years! Anyway, by the same reasoning as in the
previous paragraph, we can show that k& = In(2)/t; /5. In summary,

In(2)

for radioactive decay with half-life ¢, /5, P(t) = Ppe *  with k =
1/2

For example, if the half-life of the material is still 7 years, and you start off
with 50 pounds of the material, how much do you have after 10 years, and
how long does it take before you are down to 1 pound of the material? We
know t,9 = 7, so k = In(2)/7, as we saw before. Since Py = 50 (in pounds),
the decay equation P(t) = Pye™* becomes

P(t) = 50e 1 n@/7),
So when t = 10, we have

P(10) = 50~ 103)/T,

That is, we are down to 50e~19(2)/7 pounds. If we use our approximation
In(2) = 0.7 from above, then we see that we have approximately 50e ~! pounds,
which we can further approximate to about 18.4 pounds.

As for the second part of the question, now we need to find out how long
it takes before we are down to one pound of material, so set P(t) = 1 in the

above equation for P(t) to get

1 = 50e 12/,

Divide both sides by 50 and take logs to get

n (5_10> _ _tln7(2).

Since In(1/50) = —In(50), we have —71n(50) = —t1n(2); that is,

. 71n(50)
 In(2)
We can estimate this using our previous approximations In(5) = 1.6 and

In(2) 2 0.7. Write In(50) = In(2 x 5 x 5) = In(2) + 21n(5) to see that

_ TIn(50) _ 7(In(2)+2In(5)) __ 14In(5) _ . 14(1.6)

t

m2) n(2) Tt e o

which works out to be 39 years. So it takes approximately 39 years for the
sample to decay from 50 pounds down to a single pound. By the way, 39 years
is a little more than 53 half-lives (since one half-life is 7 years). So if you have
50 pounds of a different radioactive material with a half-life of 10 years, then
this material will take a little more than 55 years to decay to 1 pound. (The
actual number is 101n(50)/In(2) years, which is closer to 561 years.)
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Q.7

Hyperbolic Functions

Let’s change course and look at the so-called hyperbolic functions. These
are actually exponential functions in disguise, but they are similar to trig
functions in many ways. We won’t be using them much but they do come up
occasionally, so it’s good to be familiar with them.

We'll start by defining the hyperbolic cosine and hyperbolic sine functions:

et +e” et —e 7"

cosh(z) = 5 sinh(z) = 5

No triangles needed! This isn’t trigonometry, after all.* These functions
behave somewhat like their ordinary cousins, but not exactly. For example,
if you square cosh(z) and sinh(z), you find that

cosh?(z) =

et 4+ e % 2 e2m+e—21+2
2 4 ’

and

x —z\2 2x —2x
e’ —e et +e -2
inh? = = .
sinh*(x) ( 5 ) 1

(We used the fact that e?e™® = 1.) Anyway, let’s take the difference of these
two quantities:

e2m+e—21+2 621+e—2w_2_4_1
4 4 4

cosh?(z) — sinh?(z) =

So we’ve proved that

cosh?(x) — sinh?(z) = 1

for any z. Not quite the same as the regular old trig identity—the minus
makes all the difference. (Indeed, 22 —y? = 1 is the equation of a hyperbola.)

How about calculus properties? Well, let’s differentiate y = sinh(x); we’ll
need the fact that the derivative of e™ is —e™7:

d . d (e —e " et +e’ "
. sinh(z) = . ( 5 ) = 5 = cosh(x).

So the derivative of hyperbolic sine is hyperbolic cosine. That’s just like what
happens with regular old sine and cosine. On the other hand,
d d (eﬂ”—i—e_ﬂv) v —e %

. cosh(z) = . 5 = 5 = sinh(x).

If these were ordinary trig functions, then the derivative would be negative
hyperbolic sine, but we don’t have a negative here. In any case, we have
shown that

d . d .
e sinh(z) = cosh(x) and I cosh(z) = sinh(x).

*There is actually a branch of geometry called hyperbolic geometry, in which the trian-
gles have wacky properties that lead to hyperbolic functions.
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Now let’s look at the graphs of these functions. First, you should try to
convince yourself that cosh(x) is an even function of  and that y = sinh(x) is
an odd function of . (Just plug in —2 and see what happens.) Furthermore,
cosh(0) = 1 and sinh(0) = 0 (check this too). Finally, let’s note that

lim cosh(z) = lim ¢ fe

xr—00 Tr— 00

The term e* goes to 0o, but e~* goes to 0. The overall effect is that the limit
is 0co. The same thing works for sinh(x), so our graphs must look something
like this:

y = cosh(x) y = sinh(x)

Of course you can define tanh(x) as sinh(z)/ cosh(x), as well as the reciprocals
sech(z), csch(x), and coth(x). Each of the functions sech, csch, and coth can
be differentiated by replacing them with the appropriate exponentials—for
example,

1 1 2
h = = =
sech(x) cosh(z) e +e @ e¥4e®’
2

which you can then differentiate using the chain rule or the quotient rule.
There are also identities connecting the functions, the most important of
which is

1 — tanh?(x) = sech?(x).

This follows directly from the identity cosh®(z) — sinh?(z) = 1 by dividing
both sides by cosh? (). Now I'm just going to list the derivatives of the other
hyperbolic functions and display their graphs—I leave it to you to check that
the derivatives all work out and that the graphs at least make sense. First,
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the derivatives:

d _ 2 d _

. tanh(x) = sech”(z) T sech(z) = — sech(z) tanh(x)
< h(xz) = — csch(z) coth(z) < th(z) = — csch?(x)
= c5ch(z) = — csch() coth(z = coth(z) = —csch™(z).

Now the graphs:

y = tanh(x) y = sech(z)

y = csch(x) y = coth(x)

From the definitions of the functions, you can see that all the hyperbolic trig
functions are odd functions except for cosh and sech, which are even. This is
the same as in the case of regular old trig functions! Also, y = tanh(z) and
y = coth(x) both have horizontal asymptotes at y = 1 and y = —1, whereas
y = sech(z) and y = csch(z) both have a horizontal asymptote at y = 0.



CHAPTER 10

INnverse Functions and Inverse Trig Functions

10.1

10.1.1

In the previous chapter, we looked at exponentials and logarithms. We got a
lot of mileage out of the fact that e” and In(z) are inverses of each other. In
this chapter, we’ll look at some more general properties of inverse functions,
then examine inverse trig functions (and their hyperbolic cousins) in greater
detail. Here’s the game plan:

e using the derivative to show that a function has an inverse;
e finding the derivative of inverse functions;
e inverse trig functions, one by one; and

e inverse hyperbolic functions.

The Derivative and Inverse Functions

In Section 1.2 of Chapter 1, we reviewed the basics of inverse functions. I
strongly suggest you take a quick look over that section before reading further,
familiarizing yourself with the general idea. Now that we know some calculus,
we can say more. In particular, we're going to explore two connections between
derivatives and inverse functions.

Using tThe derivative to show that an inverse exists

Suppose that you have a differentiable function f whose derivative is always
positive. What do you think the graph of this function looks like? Well, the
slope of the tangent has to be positive everywhere, so the function can’t dip
up and down: it has to go upward as we look from left to right. In other
words, the function must be increasing.

We'll prove this fact in the next chapter (see Section 11.3.1 and also Sec-
tion 11.2), but it at least seems clear that it should be true. In any case, if
our function f is always increasing, then it must satisfy the horizontal line
test. No horizontal line could possibly hit the graph of y = f(z) twice. Since
the horizontal line test is satisfied by f, we know that f has an inverse. This
has given us a nice strategy for showing that a function has an inverse: show
that its derivative is always positive on its domain.
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For example, suppose that

1
f(z) = gxg — 2% 4+ 52— 11
on the domain R (the whole real line). Does f has an inverse? It would be a
real mess to switch  and y in the equation y = %x3 — 22 + 52 — 11 and then
try to solve for y. (Try it and see!) A much better way to show that f has an
inverse is to find the derivative. We get

fl(x) = 2? — 2z + 5.

So what? Well, f’ is just a quadratic. Its discriminant is —16, which is
negative, so the equation f’(z) = 0 has no solutions. (See Section 1.6 in
Chapter 1 for a review of the discriminant.) That means that f/(z) must
be always positive or negative: its graph can’t cross the z-axis. Well, which
is it—positive or negative? Since f/(0) = 5, it must be positive;* that is,
f'(x) > 0 for all . This means that f is increasing. In particular, f satisfies
the horizontal line test, so it has an inverse.

We've seen that if f'(z) > 0 for all = in the domain, then f has an in-
verse. There are some variations. For example, if f/(z) < 0 for all z, then the
graph y = f(z) is decreasing. The horizontal line test still works, though—
the graph is just going down and down, so it can’t come back up and hit
the same horizontal line twice. Another variation is that the derivative might
be 0 for an instant but positive everywhere else. This is OK as long as the
derivative doesn’t stay at 0 for a long time. Here’s a summary of the situation:

Derivatives and inverse functions: if f is differentiable on its domain
(a,b) and any of the following are true:

1. f'(z) > 0 for all z in (a,b);

2. f'(z) <0 for all z in (a,b);

3. f'(x) >0 for all z in (a,b) and f'(x) = 0 for only a finite number of x;
or

4. f'(z) <0 for all z in (a,b) and f'(x) = 0 for only a finite number of z,

then f has an inverse. If instead the domain is of the form [a, b], or [a,b), or
(a,b], and f is continuous on the whole domain, then f still has an inverse if
any of the above four conditions are true.

Here’s another example. Suppose g(x) = cos(z) on the domain (0, 7).
Does g have an inverse? Well, ¢'(z) = —sin(z). We know that sin(z) > 0
on the interval (0, 7)—just look at its graph if you don’t believe this. Since
¢'(z) = —sin(z), we see that ¢'(z) < 0 for all z in (0,7). This means that g
has an inverse. In fact, we know that g has an inverse on all of [0, 7], since g is
continuous there. The idea is that g(0) = 1, so g starts out at height 1; then,
since ¢'(x) < 0 when 0 < & < 7, we know that g immediately gets lower than
1. Since g(m) = —1, the values of g(x) go down to —1 without ever hitting

* Another way to show this is to complete the square: 2 — 2z +5 = (z — 1)2 +4 > 0,
since all squares (such as (z — 1)2) are nonnegative.
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the same value twice. So g has an inverse on all of [0, 7]. We’ll come back to
this particular function in Section 10.2.2 below.

Finally, let h(x) = 23 on all of R. We know that h’(x) = 322, which can’t
be negative. So h'(x) > 0 for all z. Luckily, h'(x) = 0 only when z = 0, so
there’s just one little point where h’/(z) = 0. That’s OK, so h still has an
inverse; in fact, h=1(z) = ¥/x.

10.1.2  Derivatives and inverse functions: what can go wrong

We noticed that the derivative of our function is allowed to be 0 occasionally
and the function can still have an inverse. Why can’t f/(z) = 0 a little more
often? For example, suppose that f is defined by

—22 41 if x <0,
fley=1<1 ifo<z<1,
2 —2x+2 if x > 1.

When z < 0, we have f’(z) = —2x, which is positive (since z is negative!).
When 0 < z < 1, we have f'(z) = 0; and when = > 1, we can see that
f'(x) = 22 — 2 = 2(z — 1), which is certainly positive. Also, the function
values and derivatives both match at the join points x = 0 and x = 1, so
we’ve shown that f is differentiable and f'(x) > 0 for all x. (See Section 6.6
in Chapter 6 to review why this works.) Unfortunately the horizontal line
test fails, and there is no inverse! Check out the graph:

The horizontal line y = 1 hits this graph infinitely often—everywhere between
x = 0 and z = 1 inclusive. The function f is constant on [0,1], which is
consistent with the fact that f’(x) = 0 for these x.

Here’s another potential problem. The four conditions on the previous
page all require that the domain be an interval like (a,b). What if the domain
isn’t in one piece? Unfortunately, then the conclusion can totally fail to hold.
For example, if f(z) = tan(x), then f’(x) = sec?(x), which can’t be negative;
however, you can see from the graph that y = tan(z) fails the horizontal line
test pretty miserably. (See Section 10.2.3 below to remind yourself about the
graph of y = tan(x).) So the methods of the previous section won’t work, in
general, when your function has discontinuities or vertical asymptotes.
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10.1.3 Finding the derivative of an inverse function

If you know that a function f has an inverse, which we’ll call f~! as usual,
then what’s the derivative of that inverse? Here’s how you find it. Start
off with the equation y = f~!(x). You can rewrite this as f(y) = x. Now
differentiate implicitly with respect to x to get

d d
E(f(y)) = E(iﬂ)-

The right-hand side is easy: it’s just 1. To find the left-hand side, we use
implicit differentiation (see Chapter 8). If we set u = f(y), then by the chain
rule (noting that du/dy = f'(y)), we have

d d _dudy

dy
@(f(y)) = %(U) = d_ydx =f (y)@.

Now divide both sides by f/(y) to get the following principle:

if y=f"(x), thenj—z:ﬁ.

If you want to express everything in terms of x, then you have to replace y
by f~1(z) to get

In words, this means that the derivative of the inverse is basically the recipro-
cal of the derivative of the original function, except that you have to evaluate
this latter derivative at f~1(x) instead of .

For example, set f(z) = $2® — 2 + 5z — 11. We saw in Section 10.1.1
above that f has an inverse on all of R. If we set y = f~!(z), then what is
dy/dx in general? What is its value when x = —11? To do the first part, all
you have to do is to see that f'(x) = 2% — 2z + 5, so

dy 1 1

dr — f'(y) -2y +5

Note that it’s important to replace x by y here. Anyway, now we can solve
the second part. We know that z = —11, but what is y? Since y = f~1(x),
we know that f(y) = z. By the definition of f, we have

1
—y3 —y? + 5y — 11 = —11.

3
Now clearly y = 0 is a solution to this equation, and it must be the only
solution because the inverse exists. So, when x = —11, we have y = 0, and
then
dy 1 1 1

dr 2 —-2y+5 (002—2(0)+5 5
More formally, one can write (f~1)'(—11) = 1/5.
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Now suppose that h(z) = x as in Section 10.1.1 above. We saw there

that h has an inverse, and we even have a way to write it: h~1(z) = 2'/3. Of
course, we could just use the rule for differentiating x® with respect to x, but
let’s try the above method. We know that h/(z) = 32?; if y = h~!(z), then

dy 1 1
dr W)

Now we can solve the equation = y* for y to get y = z'/2, and substitute
into the above equation to get

dr 3(z1/3)2 T 3g2/3°

dy 1 1

This is all pretty silly, because we could just have differentiated y = 2!/ and
gotten the same answer without nearly so much work. Nevertheless it’s nice
to know that it all works out.

Before we move on to another example, let’s just note that the derivative
of the inverse function doesn’t exist when 2 = 0, since the denominator 3z2/3
vanishes. So even though the original function is differentiable everywhere, the
inverse isn’t differentiable everywhere: its derivative doesn’t exist at z = 0.
This is true in general, not just for the function A from above. If you have
any function which has an inverse, and it has slope 0 at the point (z,y), the
inverse function will have infinite slope at the point (y,z), as the following
picture illustrates:

slope is infinite at (y, x)

inverse function

R
-’ leope:Oat(

.0k

z,y)

[ original function

Sometimes you don’t know much about a function, but you can still find
out something about the derivative of the inverse function. For example,
suppose you know that g(z) = sin(f~*(z)) for some invertible function f, but
all you know about f is that f(7) = 2 and f/(w) = 5. That’s actually enough
information to find the values of g(2) and ¢’(2). In particular, since f(r) = 2
and f is invertible, we have f~1(2) = 7, so g(2) = sin(f~1(2)) = sin(7) = 0.
Also, by the chain rule and the above boxed formula for (f~1)’(x), we have
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Putting = 2 and using the facts that f~!(2) = 7 and f/(7) = 5, we get

1 1 1 1

PO O mm =T s =

Make sure you know both the above versions of the formula for the derivative
of an inverse function!

9'(2) = cos(f7(2)) x

10.1.4  Abigexample

Let’s finish off with an example that involves most of the theory we’ve looked
at so far in this chapter. Suppose that

f(z) = 2*(x —5)3 on the domain [2, c0).

Here’s what we want to do:

1. show that f is invertible;

2. find the domain and range of the inverse f~!;
. check that f(4) = —16; and finally,

. compute (f~1)(—16).

[

For #1, use the product rule and the chain rule to see that
f'(x) = 2z(x — 5)% + 32°%(x — 5)2.

Noticing that x and (x — 5)? are factors of both terms on the right, we can
rewrite this as

f'(x) = z(z — 5)*(2(x — 5) + 32) = x(z — 5)*(5z — 10) = 5z (z — 5)*(x — 2).

When z > 2 (remember, the domain of f is [2,00)), all three of the factors
5z, (x — 5)%, and (x — 2) are nonnegative, so their product is as well. We
have now shown that f/(z) > 0 on (2, 00). Also, the only place in this domain
where f/(z) = 0 is « = 5. Since f is continuous on [2,0), the methods of
Section 10.1.1 above show that f has an inverse.

Let’s move on to #2. The range of the inverse f~! is just the domain
of f, which of course is [2,00). Alas, the domain of f~! is harder to find.
Indeed, the domain of f~! is precisely the range of f, so we need to do some
work and find this range. It’s not such a big deal, though. We know that f
is always increasing, so this means that f(2) is the lowest point. That is, the
function starts at height f(2), which works out to be 22(—3)% = —108, and
increases. How high does it get? Well, as = gets larger and larger, f does
as well—there’s no limit to how much it increases. This means that f covers
all the numbers from —108 upward, so the domain of f~! is the same as the
range of f, which is [—108, o).

We still have to do the last two parts of the problem. For #3, it’s an
easy calculation to show that f(4) = —16, which means that f~(—16) = 4.
Moving on to #4, if y = f~1(x), then we know that

dy 1 1

de — f'(y)  Syly—>5)2@y—2)
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When x = —16, we know from part #3 that y = 4. Plugging this in, we get

dy 1 1

dr — 5(4)(4—5)2(4—2) 40

We've finished all the parts of the question, but it’s really useful to sketch
the graph of y = z2(x — 5)3 to get an idea what on earth we’ve accomplished
here. In Section 12.3.3 of Chapter 12, we’ll return to this example and do a
thorough job of sketching the graph, but meanwhile we can still get a great
idea of what the graph looks like. Let’s work on the domain R, then restrict
ourselves to [2,00) at the end. Here’s what we know:

e To find the y-intercept, put = = 0; we get y = 02(0 — 5) = 0. So the
y-intercept is at 0.

e To find the z-intercepts, set 22(x —5)3 = 0; we find that z = 0 or z = 5.
These are the z-intercepts.

e When z is near 0, the quantity (x—5)3 is very close to (—5)3 = —125, so
22(x — 5) should be pretty close to —125x2. The graph should convey
this fact.

e When 2 is near 5, we see that 22 is also near 25, so the curve behaves
like 25(x — 5)3. The graph of y = 25(z — 5) is just like the graph of
23, except shifted to the right by 5 units and stretched vertically by a
factor of 25. So we’ll build that into our graph as well.

All in all, it’s not surprising that the graph looks something like this (I have
ghosted out the part of the graph where z < 2; also note that the axes have
different scales):

—1,08—

The graph is consistent with the fact that the function f is invertible on
the restricted domain [2,00), and also that the range of f on this restricted
domain is indeed [—108, c0).
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10.2.1

Inverse Functions and Inverse Trig Functions

Inverse Trig Functions

Now it’s time to investigate the inverse trig functions. We’ll see how to define
them, what their graphs look like, and how to differentiate them. Let’s look
at them one at a time, beginning with inverse sine.

INnverse sine

Let’s start by looking at the graph of y = sin(z) once again:

o
B
3
I
O
3
(o1
3
4

Does the sine function have an inverse? You can see from the above graph
that the horizontal line test fails pretty miserably. In fact, every horizontal
line of height between —1 and 1 intersects the graph infinitely many times,
which is a lot more than the zero or one time we can tolerate. So, using
the tactic described in Section 1.2.3 in Chapter 1, we throw away as little of
the domain as possible in order to pass the horizontal line test. There are
many options, but the sensible one is to restrict the domain to the interval
[—7/2,7/2]. Here’s the effect of this:

- ”/ ..‘ I ‘A‘ «"/ .“»
S _3n _g.. I 0 z S 1 5m
T 2T 5 T 2/1L 3 s S 21 s 3T

The solid portion of the curve is all we have left after we restrict the domain.
Clearly we can’t go to the right of 77/2 or else we’ll start repeating the values
immediately to the left of 7/2 as the curve dips back down. A similar thing
happens at —m/2. So, we're stuck with our interval.

OK, if f(z) = sin(z) with domain [—7/2,7/2], then it satisfies the hor-
izontal line test, so it has an inverse f~'. We'll write f~!(x) as sin™'(x)
or arcsin(x). (Beware: the first of these notations is a little confusing at
first, since sin~* () does not mean the same thing as (sin(x)) !, even though
sin?(x) = (sin(z))? and sin®(z) = (sin(z))3.)

So, what is the domain of the inverse sine function? Well, since the range of
f(z) = sin(z) is [-1, 1], the domain of the inverse function is [—1,1]. And since
the domain of our function f is [—7/2,7/2] (since that’s how we restricted
the domain), the range of the inverse is [—7/2, 7/2].

How about the graph of y = sin™*(2)? We just have to take the restricted
graph of y = sin(z) and reflect it in the mirror line y = z; it looks like this:
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[SIE]
T

y = sin!(x)

Here’s a neat way to remember how to draw this graph. Start by reflecting
all of y = sin(z) in the line y = x, then throw away all but the correct part
of it. This graph shows how the above graph of y = sin™!(z) is just part of
the tipped-over graph of y = sin(x):

Note that since sin(z) is an odd function of 2, so is sin~* (). This is consistent
with the above graphs.

Now let’s differentiate the inverse sine function. Set 3 = sin~!(x); we want
to find dy/dz. The snazziest way to do this is to write x = sin(y) and then
differentiate both sides implicitly with respect to x:

d d .
d—x(iﬁ) = d_z(sm(y))'

The left-hand side is just 1, but the right-hand side needs the chain rule. You
should check that you get cos(y)(dy/dx). So we have

d
1 = cos(y) d_i
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which simplifies to
dy 1

dr  cos(y)’

Actually, we could have written this down immediately using the formula from
Section 10.1.3 above. Now, we really want the derivative in terms of x, not
y. No problem—we know that sin(y) = «, so it shouldn’t be too hard to find
cos(y). In fact, cos?(y) + sin?(y) = 1, which means that cos?(y) + 22 = 1.
This leads to the equation cos(y) = £v'1 — 22, so we have

dy " 1
dr ~V1—a2
But which is it? Plus or minus? If you look at the graph of y = sin™!(z)

above, you can see that the slope is always positive. This means that we have
to take the positive square root:

1
—sin™ for —1<z<l1.

gz S (@) = N

Note that sin~!(z) is not differentiable, even in the one-sided sense, at the
endpoints z = 1 and = —1, since the denominator v/1 — z2 is 0 in both
these cases.

In addition to the derivative formula and the above graph, here’s a sum-
mary of the important facts about the inverse sine function:

sin™! is odd; it has domain [—1,1] and range -5, 5]

Now that you have a new derivative formula, you should become comfort-
able using the product, quotient, and chain rules in association with it. For
example, what are

d d

%(sin_l(h:)) and %(I sin~!(23))?

For the first one, you could use the chain rule, setting ¢t = 7x, or you could use
the principle from the end of Section 7.2.1 in Chapter 7: when you replace x
by ax, you have to multiply the derivative by a. So we have

1 7

d so—1 _ —
—(sin”*(7x)) =7 X \/1 —0)? = e

dx

For the second question, start by setting y = x sinfl(x3); also put v = x and
v =sin"!(2%), so that y = uv. We'll need to use the product rule:
dy  du dv dv

. —1/.3
Ir vdm+udx sin” " (z°) x +xdx

To finish it off, we must find dv/dz. Since v = sin™'(2?), if we set t = 23

then v = sin~*(t). By the chain rule,
322 322

dv  dvdt 1 B B
B V1= (2%)? VIS

o (32
o dide - o)
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Plug this into the previous equation to see that

d d 323
& sin™t(2%) x 1+ vl = sin~!(2%) + ’

dz dz V1= 26’
and we’re all done.

INverse cosine

We're going to repeat the procedure from the previous section in order to
understand the inverse cosine function. Start with the graph of y = cos(x):

o

Once again, no inverse. This time, restricting the domain to [—7/2, 7/2] won’t
work, since the horizontal line test would fail and also we’d be throwing away
part of the range that would be useful. Already on the above graph, you can
see that the section between [0, ] is highlighted and obeys the horizontal line
test, so that’s what we’ll use. We get an inverse function which we write as
cos~! or arccos. Like inverse sine, the domain of inverse cosine is [—1, 1], since
that’s the range of cosine. On the other hand, the range of inverse cosine is
[0, ], since that’s the restricted domain of cosine that we’re using. The graph
of y = cos™!(z) is formed by reflecting the graph of y = cos(z) in the mirror
y=ux:

y = cos~ (x)

Notice that the graph shows that cos™! is neither even nor odd. This is despite
the fact that cos(x) is an even function of z! In any case, if you have trouble
drawing the above graph from memory, just draw the graph of cos(z) on its
side and pick out the bit with range [0, 7], like this:
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Now it’s time to differentiate y = cos™!(x) with respect to . We do exactly
the same thing we did in the previous section. Start by writing = cos(y)
and differentiating implicitly with respect to x:

d d

() = —(cos(y)).

The left-hand side is 1 and the right-hand side is —sin(y)(dy/dz). This can
be rearranged into

dy 1

dr  sin(y)
Since cos?(y) + sin*(y) = 1, and also 2 = cos(y), we have sin(y) = +£v/1 — 22,
This means that

dy 1 1

- =— =4 .

dx +v1 — 22 V1— 22
Unlike the case of inverse sine, the graph of inverse cosine is all downhill,
which means that the slope is always negative, so we get

1
— oS for —1<z<l1.

gz ¢S @) =~y

Here are the other facts about inverse cosine that we collected above:

1

cos™  is neither even nor odd; it has domain [—1, 1] and range [0, 7]. ‘

Before we move on to the inverse tangent function, let’s just look at the
derivatives of inverse sine and inverse cosine side by side:

—sin"(z) = L and — cos H(z) = __

dx V1—22 dx V1—z2
The derivatives are negatives of each other! Let’s try to see why this makes
sense. If you plot y = sin~'(z) and y = cos~'(z) on the same set of axes,
here’s what you get:



Section 10.2.3: Inverse tangent o 213

y = cos™*(x)

INIE

The two mountain-climbers in the above picture experience exactly opposite
conditions at the same horizontal point, so it makes sense that the derivatives
should be negatives of each other. Indeed, we now know that

1
Vi—z2 VJ1-—22

So y = sin™!(z) + cos!(x) has constant slope 0, which means that it’s flat
as a pancake. In fact, if you add up the heights of the function values in the
two graphs above, you can see that you get 7/2 for any value of x. We’ve just
used calculus to prove the following identity:

i(sirfl(:zc) + cos ™! (x)) =0.

dx

sin™!(z) + cos ™! (x) = g

for any x in the interval [—1,1]. When you think about it, this makes sense,
though! Look at the following diagram:

Since sin(a) = 2, we have o = sin™!(x). Similarly, cos(8) = = which means
that 3 = cos™!(z). But a + 8 = 7/2, which means that

sin™!(x) + cos ! (z) = g

once again. Kind of nice how the calculus agrees with the geometry, huh?

Inverse fangent

Here we go again. Let’s remember the graph of y = tan(x):
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y: tan(z)
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We'll restrict the domain to (—m/2,7/2) so that we can get an inverse function
tan~!, also written as arctan. The domain of this function is the range of
the tangent function, which is all of R. The range of the inverse function is
(w/2,7/2), which of course is the restricted domain of tan(x) that we’re using.
The graph of y = tan~!(z) looks like this:

Now tan~!(x) is an odd function of x, as you can see from the graph—
it inherits its oddness from that of tan(z), in fact. Once again, you can
remember the graph by drawing y = tan(z) on its side and throwing most of
it away:
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Now let’s differentiate y = tan~!(x) with respect to x. Write z = tan(y) and
differentiate implicitly with respect to z. Check to make sure that you believe
that

dy 1

dr ~ sec?(y)’

Since sec?(y) = 1 + tan?(y), and tan(y) = x, we see that sec?(y) = 1 + 22,
This means that

1

T2 for all real .
x

d
. tan"!(z) =

We also have the following facts from above:

tan~!

is odd; it has domain R and range (-5, 5).

Unlike inverse sine and inverse cosine, the inverse tangent function has hori-
zontal asymptotes. (The first two functions don’t have a chance, since their
domains are both [—1,1].) As you can see from the graph above, tan~!(z)
tends to 7/2 as  — oo, and it tends to —w/2 as © — —oo. In fact, the verti-
cal asymptotes x = 7/2 and x = —7/2 of the tangent function have become
horizontal asymptotes of the inverse tan function. This means that we have
the following useful limits:

lim tan_l(:c) _T and lim tan_l(:c) S
T—00 2 T——00 2

By the way, we've seen these limits before, in Section 3.5 of Chapter 3. In
any case, these limits can come up in conjunction with other limits at +oo;
for example, to find

lim 22 — 6z +4
z—=c0 (222 + Tz — 8) tan~1(3z)’

first separate the fraction to get

lim 22 — 6z +4 o 1
a——00 202 + Tz — 8~ tan"1(3z)’

The first fraction has limit 1/2 (check it!), but what happens to the second
fraction? Well, as z becomes very negatively large, 3z also does, so tan~1(3z)
tends to —7/2. So the whole limit is

1
X — = ——.
T

N =

B

However, suppose that we replace the 3z term by 3z2, like this:

i x2 —6zx+4
im .
z—=oc0 (222 + Tx — 8) tan™1(322)

Now tan~!(3z?) has limit /2 even when x — —oo, because then 3z? tends
to 0o, not —oo. So the overall limit in this case is 1/7.
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10.2.4  Inverse secant
The saga continues. Here’s the graph of y = sec(x):
= sec(d)
1 l 1 l 1 ] l 1 l 1 l 1
g Bl A ST S S S

The situation is (unsurprisingly) very similar to the one we faced when we

inverted the cosine function. The domain has to be restricted to [0, 7], except
for the point 7/2, which isn’t even in the original domain of sec(x).
range of secant is the union of the two intervals (—oo, —1] and [1, o), so this
becomes the domain of the inverse function sec™! (alternatively arcsec). As
for the range of sec™!, it’s the same as the restricted domain: [0, 7] minus the

point 7/2. The graph looks like this:

~Hm
//’/ y = sec” ()
................................... A2
| ////
-1 0 1

Note that there’s a two-sided horizontal asymptote at y = 7/2, so

lim sec™!(z) = T

T —00 2

and

lim sec™'(z) = z

Tr— —00 2 '

Let’s find the derivative. If y = sec™!(z) then z = sec(y), so

The
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Make sure you see why this leads to

dy 1

dr ~ sec(y)tan(y)’

Now = = sec(y), so since sec?(y) = 1 + tan®(y), we can rearrange and take
square roots to show that tan(y) = £v/x2 — 1. This means that

y_ 1
dr  +xvz2?2 - 1.

Is it plus or minus? Looking at the graph of y = sec™!(z) above, you can
see that the slope is always positive. So in fact we need to be a little more
clever—instead of the plus or minus, we can simply put |z| instead of = and
we always get something positive. That is,

1
o jzlVaZ =1

We can summarize the other facts about inverse secant like this:

— sec” *(z) forz >1orax < —1.

sec™! is neither odd nor even; it has domain

(=00, =1]U[1,00) and range [0, 7|\{F }.

(Here T used the standard abbreviations of U to mean the union of two inter-
vals, and \ to mean “not including.”)

Inverse cosecant and inverse cofangent

Let’s just wrap the last two inverse trig functions up quickly. You can repeat
the above analyses to find the domain, range, and graphs of y = csc™!(x) and
y = cot~(z):

csc” ' is odd; it has domain (—oo, —1] U [1,00) and range [—Z%, Z]\{0}.

cot ™! is neither odd nor even; it has domain R and range(0, 7).

This is what the graphs look like:

ﬁlo

rol
[ - (
Ka

y = csc™ () y = cot™!(z)

Both functions have horizontal asymptotes: y = csc™!(x) has a two-sided
horizontal asymptote at y = 0, and y = cot!(z) has a left-hand horizontal
asymptote at y = 7 and a right-hand one at y = 0. We can summarize the
limits as follows:
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lim csc™!(x) =0 and lim escH(z) =0
lim cot™'(z) =0 and lim cot ! (z) = 7.

Of course, if you know the above graphs, you can reconstruct the limits with-
out having to remember them. Notice that the graphs of y = csc™!(x) and
y = sec”!(z) from above are very similar; in fact, you can get one from the
other by flipping about the line y = w/4. This is exactly the same relation as
the one that y = sin~*(z) and y = cos™'(z) have with each other. So it’s not
surprising that the derivative of csc™!(x) is just the negative of the derivative
of sec™!(z):

forx>1orz<—1.

T |z|va? —1

The same thing happens with cot~!(x) and tan~'(z), so that

1

T2 for all real .
z

d
. cot™!(z) =

10.2.6 Computing inverse frig functions

We’ve completed a pretty thorough survey of the inverse trig functions. Since
you have a few more derivative rules, it’s a great idea to practice differentiating
functions involving inverse trig functions. Meanwhile, let’s not neglect some
basic computations involving inverse trig functions which don’t involve any
calculus. For one thing, you should try to make sure that you can compute
quantities like sin~'(1/2), cos™'(1), and tan—'(1) without stretching your
brain. For example, to find sin~*(1/2), remember that you're looking for an
angle in [—7/2, /2] whose sine is 1/2. Of course—it’s /6. Similarly, it should
be almost second nature to write down cos™*(1) = 0 and tan=1(1) = w/4. All
the common values are in the table near the beginning of Chapter 2.

Now, here’s a more interesting question: how would you simplify

137
-1 . ?
(s (2)),

The knee-jerk reaction is to cancel out the inverse sine and the sine, leaving
only 137/10. This can’t be correct, though—the range of inverse sine is
[—7/2,7/2], as we saw in Section 10.2.1 above. What we really need to do
is find an angle in that range which has the same sine as 137/10. Well, note
that 137/10 is in the third quadrant, since it’s greater than 7 but less than
3m/2, so its sine is negative. Furthermore, the reference angle is 37/10. The
possible angles in the range [r/2, /2] with the same reference angle are 37/10
and —37/10. The first one has a positive sine, while the second has a negative
sine. We need a negative sine, so we’ve proved that

sin™! ( sin 13—7T ——3—7T
10)) 10
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137
—1 2
cos (cos ( 10 >) /

The previous answer —37/10 can’t be correct here, since the range of inverse
cosine is [0,7]. Man, why does this stuff have to be so messy? Nothing I
can do about it, unfortunately ... so let’s deal with it like this: once again,
137/10 is in the third quadrant, so its cosine is negative. The reference angle
is 37/10; the only angles in [0, 7] with the same reference angle are 37/10 and
77 /10. The cosines of these two angles are positive and negative, respectively;
since we want a negative cosine, we must have

cos™ ! [ cos 13_7r *7—7T
10 107

I now leave it to you to show that

tan™! ( tan 13—7T :3—7T
10 10°

Just remember that tan is positive in the third quadrant! In any case, those
are all difficult examples, so I wouldn’t blame you if you also thought that

finding
sin (sin_1 (— l) >
5

would be hard as well. Luckily, it’s not: the answer is just —1/5. In general,
sin(sin"*(z)) = z, provided that z is in the domain [—1,1] of inverse sine.
(Otherwise, sin(sin~*(x)) doesn’t even make sense!) The trouble comes when
you try to write sin~*(sin(z)) = 2. This just isn’t true, as the above example
where x = 137/10 shows. Of course, the same observations apply to all the
other inverse trig functions. (See also the discussion at the end of Section 1.2
in Chapter 1.)
Two more examples: consider how you would find

s —1 \/ﬁ d . 1 \/E
sin | cos T an sm | cos —T .

The trick in both cases is to use the trig identity cos?(z) + sin?(z) = 1. For

the first problem, let
. <\/15>
T = coS 4

Now, how about finding

and note that we want to find sin(x). We actually know cos(x):

(V15 V15
cos(x) = cos (cos (T)) ="

Remember, there’s no problem taking the cosine of an inverse cosine: it’s only
the other way around that poses a problem. Anyway, we know cos(z), so by
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10.3

rearranging the identity cos?(x) + sin?(z) = 1, we must have

sin(x) = £4/1 — cos?(z) =

So the answer we want is either 1/4 or —1/4. Which one is it? Well, since
V/15/4 is positive, inverse cosine of it must lie in [0,7/2]. That is, = is in the
first quadrant, so its sine is positive. We’ve finally shown that

: L (VIBY) 1
sSin | CoS T _Z

As for

You might guess that the answer this time is —1/4, but that’s no good. You
see, —/15/4 is negative, so its inverse cosine must lie in the interval [r/2, 7].
That is, x is in the second quadrant. The thing is, sine is positive in the
second quadrant as well! So sin(z) must be positive, and we’ve shown that

. —1 \/ﬁ . 1
S | Cos —T = Z

as well. In fact, we’ve noticed that sin(cos™!(A)) must always be nonnegative,
even if A is negative (note that A has to lie in [—1, 1], since that’s the domain
of inverse cosine). This is because cos~!(A) is in the interval [0, 7], and sine
is nonnegative on that interval.

We'll actually look at another method of finding things like sin(cos~!(A4))
when we see how to do trig substitutions in Section 19.3 of Chapter 19. For
now, let’s take a well-deserved rest from inverse trig functions and take a quick
look at inverse hyperbolic functions.

Inverse Hypertolic Functions

The situation is a little different for hyperbolic functions, which we looked at
in Section 9.7 of the previous chapter. Look back now and remind yourself
what the graphs of these functions look like. In particular, you can see that
the graph of y = cosh(x) is sort of like the graph of y = 22, except shifted up
by 1 and shaped a little differently. If you want an inverse for this function,
you have to throw away the left half of the graph, just as you do when you
take the positive square root (and throw away the negative one). On the other
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hand, y = sinh(z) already satisfies the horizontal line test, so there’s nothing
that needs to be done. So we get two inverse functions with the following
properties:

cosh™ is neither odd nor even; it has domain [1, 00) and range [0, c0).

sinh™' is odd; its domain and range are all of R. ‘

The graphs are obtained by reflecting the original graphs in the line y = = as

usual:

1

y = cosh™!(x) y = sinh ™! (x)

The derivatives are obtained in the same way that we got the derivatives of
the inverse trig functions. In particular, if y = cosh™*(z), then z = cosh(y);
differentiating implicitly with respect to x, we get

d
1 = sinh(y) d—y
x

(Remember that the derivative of cosh(x) with respect to x is sinh(z), not
—sinh(z).) Now cosh?(y) —sinh?(y) = 1, so we can rearrange and take square

roots to see that sinh(y) = #4/cosh?(y) — 1 = +v/22 — 1. Since cosh™'(x) is

clearly increasing in x, we end up with

d 1
% COSh71($) = ﬁ for x > 1.

In exactly the same way, you should be able to check that

d —1 1
—sinh™ (z) = —— for all real x.
dx (z) vaz+1

Now, let’s forget about the calculus for a few seconds and recall the definitions
of cosh(z) and sinh(x):

et +e® et —e ®

cosh(z) = — and sinh(z) = 5

Since we can write cosh(z) and sinh(z) in terms of exponentials, we should be
able to write the inverse functions in terms of logarithms. After all, exponen-
tials and logarithms are inverses of each other. Let’s see how it works. For
example, if y = cosh™*(z), then = = cosh(y) = (¢¥ + ¢7¥)/2. Now you can
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solve for y by using a little trick. Let u = e¥; then e”¥ = 1/u. The equation
then looks like this:
u+1/u
2

Multiply both sides by 2u and rearrange; we get a quadratic equation in wu,
which is u2 — 2zu + 1 = 0. By the quadratic formula,

e =u=zvEx+22-1,

so taking logs of both sides,

y=In(z+ \/ﬁ)

Well, is it plus or minus? After a bit of gymnastics, you can actually see that
x —+vVax?2—1< 1if z > 1. This means that the logarithm of it is negative
(remember, the log of a number between 0 and 1 is negative!). That’s not
what we want. So it’s the positive square root, and we just showed that

cosh™(z) = In(z + Va2 — 1)
when z > 1. In a similar way, you can show that
sinh™!(z) = In(z + Va2 + 1)

j% for all x. As an exercise, you should try differentiating the right-hand sides of
~ these last two equations and check that your answers agree with the derivatives
of cosh™! () and sinh ™' (z) we found above.

10.3.1  The rest of the inverse hyperbolic functions

So far, we’'ve only looked at hyperbolic sine and cosine. If you repeat the
analysis for the other four hyperbolic functions, you should be able to conclude
that:

tanh™! is odd; its domain is (—1,1); its range is all of R.

sech™ is neither even nor odd; its domain is (0, 1]; its range is [0, o).

esch™! is odd; its domain and range are both R\{0}.

coth™ is odd; its domain is (—oo, —1) U (1, 00); its range is R\{0}.

Note that we’ve restricted the domain of sech to [0,00) in order to get an
inverse, just as we did for cosh.

Now, here are the graphs, which you should compare with the graphs of
the original (non-inverse) functions in Section 9.7 of the previous chapter:
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y = taﬁhfl(x) y = sech™ (z)

y = csch™(z) y= co'thfl(x)

Finally, you can find the derivatives using the standard trick of solving for x
and differentiating implicitly with respect to x. Here’s what the derivatives
turn out to be:

%tanhfl(:v)z 1—1x2 (-l<zx<1)
%coth_l(x) = ﬁ (x>1lorz<—1)
%sechfl(I)Z—ﬁ 0<z<1)

% esch ™ (z) = —m (z #0).

Remember, all these derivatives only hold when z is in the domain of the
relevant function itself. This explains why the derivatives of tanh ' (z) and
coth™ (z) are the same even though the graphs look very different. In partic-
ular, tanh ™! (z) is only defined on (—1,1), whereas coth™*(z) is defined only
outside the interval [—1,1]. There’s no overlap, therefore it’s no problem
that both functions have the same derivative. And that’s quite enough about
inverse functions for now!






CHAPTER 11

The Derivative and Graphs

1711

11101

We have seen how to differentiate functions from several different families:
polynomials and poly-type functions, trig and inverse trig functions, expo-
nentials and logs, and even hyperbolic functions and their inverses. Now we
can use this knowledge to help us sketch graphs of functions in general. We’ll
see how the derivative helps us understand the maxima and minima of func-
tions, and how the second derivative helps us to understand the so-called
concavity of functions. All in all, we have the following agenda:

e global and local maxima and minima (that is, extrema) of functions,
and how to find them using the derivative;

e Rolle’s Theorem and the Mean Value Theorem, and their implications
for sketching graphs;

e the graphical interpretation of the second derivative; and

e classifying points where the derivative vanishes.

Then in the next chapter, we’ll look a comprehensive method of sketching
graphs of functions using the above methods.

Extrerna of Functions

If we say that £ = a is an extremum of a function f, this means that f has
a maximum or minimum at z = a. (The plural of “extremum” is “extrema,”
of course.) We've already looked a little bit at maxima and minima in Sec-
tion 5.1.6 of Chapter 5; I strongly suggest taking a peek back at that before
you read on. In any event, we need to go a little deeper and distinguish
between two types of extrema: global and local.

Global and local extrema

The basic idea of a maximum is that it occurs when the function value is
highest. Think about where the maximum of the following function on its
domain [0, 7] should be:
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(5,2)

Certainly the maximum value that this function gets to is 3, which occurs
when z = 0, so it’s true that the function has a maximum at x = 0. On the
other hand, imagine the graph is a hill (in cross-section) and you're climbing
up it. Suppose you start at the point (2, —1) and walk up the hill to the right.
Eventually you reach the peak at (5,2), and then you start going back down
again. It sure feels as if the peak is some sort of maximum—it’s the top of
the mountain, at height 2, even though there’s a neighboring peak to the left
that’s taller. If the high ground near x = 0 were covered in fog, you couldn’t
even see it when you climbed the peak at (5,2), so you'd really feel as if you
were at a maximum. In fact, if we restrict the domain to [2, 7], then the point
x = 5 is actually a maximum.

We need a way of clarifying the situation. Let’s say that a global maximum
(or absolute mazimum) occurs at © = a if f(a) is the highest value of f on
the entire domain of f. In symbols, we want f(a) > f(z) for any value x
in the domain of f. This is exactly the same definition we used before when
we looked at maxima in general; we're simply being more precise and saying
“global maxima” instead of just “maxima.”

As we noted before, there could be multiple global maxima; for example,
cos(x) has a maximum value of 1, but this occurs for infinitely many values
of z. (These values are all the integer multiples of 27, as you can see from
the graph of y = cos(z).)

How about that other type of maximum? Let’s say that a local maximum
(or relative mazimum) occurs at © = a if f(a) is the highest value of f on
some small interval containing a. You can think of this as throwing away
most of the domain, just concentrating on values of x close to a, then insisting
that the function is at its maximum out of only those values.

Let’s see how this works in the case of our above graph. We see that
x =5 is a local maximum, since (5, 2) is the highest point around if you only
concentrate on the function near x = 5. For example, if you cover up the part
of the graph to the left of x = 3, then the point (5,2) is the highest point
remaining. On the other hand, z = 5 isn’t a global maximum, since the point
(0, 3) is higher up. This means that z = 0 is a global maximum. It’s also a
local maximum; in fact, it’s pretty obvious that every global maximum is
also a local maximum.

In the same way, we can define global and local minima. In the above
graph, you can see that = 2 is a global minimum (with value —1), since the
height is at its lowest. On the other hand, x = 7 is actually a local minimum
(with value 0). Indeed, if you just look at the function to the right of x = 5,
you can see that the lowest height occurs at the endpoint x = 7.
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11.1.2 The Extreme Value Theorem

In Chapter 5, we looked at the Max-Min Theorem. This says that a con-
tinuous function on a closed interval [a,b] must have a global maximum
somewhere in the interval and also a global minimum somewhere in the inter-
val. We also saw that if the function isn’t continuous, or even if it is continuous
but the domain isn’t a closed interval, then there might not be a global max-
imum or minimum. For example, the function f given by f(z) = 1/x on
the domain [—1,1]\{0} doesn’t have a global maximum or minimum on that
domain. (Draw it and see why!)

The problem with the Max-Min Theorem is that it doesn’t tell you any-
thing about where these global maxima and minima are. That’s where the
derivative comes in. Let’s say that x = c is a critical point for the function f
if either f’(¢) = 0 or if f’(c) does not exist. Then we have this nice result:*

Extreme Value Theorem: suppose that f is defined on (a,b)
and c is in (a,b). If ¢ is a local maximum or minimum of f, then
¢ must be a critical point for f. That is, either f’(¢) = 0 or f'(c)
does not exist.

So local maxima and minima in an open interval occur only at critical points.
But it’s not true that a critical point must be a local maximum or minimum!
For example, if f(x) = 23, then f’(z) = 322, and you can see that f’(0) = 0.
This means that x = 0 is a critical point for f. On the other hand, x = 0 is
neither a local maximum nor a local minimum, as you can see by drawing the
graph of y = z3.

The above theorem applies to open intervals. How about when the domain
of your function is a closed interval [a, b]? Then the endpoints a and b might
be local maxima and minima; they aren’t covered by the theorem. So in the
case of a closed interval, local maxima and minima can occur only at critical
points or at the endpoints of the interval. For example, let’s take a closer
look at our graph from the previous section:

$(0,3)

As we saw, the local maxima are at x = 0 and = 5, while the local minima
are at = 2 and x = 7. The points x = 5 and x = 2 are critical points,
because the slope is 0 there, while the points = 0 and x = 7 are endpoints.

You might like to think about why the theorem makes sense. Suppose
you have a local minimum at some value £ = a. Then when you are to the

*The Max-Min Theorem is often called the Extreme Value Theorem, sometimes in
conjunction with the above version of the Extreme Value Theorem.
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immediate left of x = a, you must be going downhill, so the slope (if it exists)
is negative. When you are to the immediate right of x = a, you are going
uphill, so the slope is positive. If you are to get from a negative to a positive
slope, you would think that you have to go through 0. On the other hand,
if f(x) = |z|, then f goes from a slope of —1 to a slope of 1 without passing
through 0. This is because f’(0) doesn’t exist (as we saw in Section 5.2.10
in Chapter 5). That’s OK, though—the point x = 0 is still a critical point,
because the derivative doesn’t exist there. It’s also a local minimum. (Can
you see why?) By the way, the above logic doesn’t constitute a proof of the
theorem; a real proof is in Section A.6.6 of Appendix A.

11.1.3 How to find global maxima and minima

The Extreme Value Theorem really makes finding global extrema pretty easy,
since it narrows down where they can be. Here’s the idea: every global ex-
tremum is also a local extremum. Local extrema can only occur at critical
points. So just find all the critical points and look at the corresponding func-
tion values. The biggest one gives the global maximum, while the smallest
gives the global minimum! In gory detail, here’s how to find the global maxi-
mum and minimum of the function f with domain [a, b]:

1. Find f’(z). Make a list of all the points in (a,b) where f'(z) does not
exist or f/(x) = 0. That is, make a list of all the critical points in the
interval (a,b).

2. Add the endpoints £ = a and = = b to the list.

3. For each of the points in the list, find the y-coordinates by substituting
into the equation y = f(z).

4. Pick the highest y-coordinate and note all the values of z from the list
corresponding to that y-coordinate. These are the global maxima.

5. Do the same for the lowest y-coordinate to find the global minima.

We’ll worry about local extrema in Section 11.5 below. For now, let’s look at
an example of how to apply this method. Suppose that

f(z) = 122° + 152* — 402° + 1

on the domain [—1,2]. What are the global maxima and minima of f on this
domain?

Let’s follow the above program. For step 1, we need to find f'(z). No
problem: you should check that f/(x) = 60x* + 60z® — 12022. Clearly f'(z)
exists for all x in (—1,2), so we just need to find all the values of z satisfying
f'(z) = 0. That’s not so bad if you factor f'(x) as f'(z) = 6022(x —1)(x +2).
So we can see that if f/(x) = 0, we must have x =0, x = 1 or & = —2. The
last of these is irrelevant since —2 is not in the interval (—1,2). So our list
just contains z = 0 and x = 1. Step 2 tells us to add the endpoints x = —1
and x = 2 to the list.

So, we arrive at step 3 armed with the following list of candidates for global
maxima and minima: —1, 0, 1, and 2. We need to find the corresponding
function values. This is just a matter of plugging them in and calculating
that f(—1) =44, f(0) =1, f(1) = —12, and f(2) = 305. As for the last two
steps, all we have to do is select the highest and lowest values from this list.
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The highest is 305, which occurs when = = 2, so = 2 is a global maximum
for f. The lowest function value is —12, which occurs when x =1, s0o z =1
is a global minimum for f, and we're all done!

Before we start lounging around after our efforts, let’s take a closer look
at the function f. First, note that if we made the domain larger, the situation
could change for two reasons: the new endpoints would be different, and also
the critical point at © = —2 could come into play. Second, we should look at
what happens at the critical point = 0 a little more closely. Is this a local
maximum, a local minimum, or neither? Omne way to tell is to inspect the
graph, which must look something like this:

(2,305)

(—1,44)

(0,1)

e

(1,-12)

The point (—1,44) is higher than (0, 1), which is in turn higher than (1, —12).
So we can’t possibly have a local maximum or a local minimum at 0. But
wait, you say—perhaps the graph looks something like this:

(2,305)

(—1,44)

Ve

Vil

In this picture, x = 0 is a local maximum. The problem is that we’ve had
to introduce another local minimum somewhere between —1 and 0. After all,
if the curve is supposed to get from (—1,44) to (0,1) while still being on a
plateau at (0,1), it’s got to go down below a height of 1. This means there
has to be a valley as well, which means a local minimum somewhere between
x = —1 and z = 0! That can’t happen, though, since there are no critical
points between x = —1 and x = 0. So the graph must look more like the first
picture above, and the conclusion is that x = 0 is neither a local maximum
nor a local minimum.
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If the domain isn’t bounded, then the situation is a little more complicated.
For example, consider the two functions f and g, both with domain [0, c0),
whose graphs look like this:

(2,3)

11.2

In both cases, x = 2 is obviously a critical point, while the endpoints are 0
and oco. Wait a second, oo isn’t really an endpoint, since it doesn’t really
exist! Let’s add it to the list anyway, so that the list is 0, 2, and oo; note that
the same list works for both f and g.

Let’s take a look at f first. We see that f(0) = 0, f(2) = 3, while f(oc0)
only makes sense if you think of it as

lim f(x).
xr—00

This limit is 1, since y = 1 is a horizontal asymptote for f. The highest
of these function values is 3, which occurs at x = 2, so £ = 2 is a global
maximum for f. The lowest function value is at x = 0, so z = 0 is a global
minimum for f. The right-hand “endpoint” at co doesn’t even come into it.

How about g7 Well, this time g(0) = 2, g(2) = 3, and the right-hand
endpoint is covered by the observation that

lim g(x) = 1.
xr—00

The highest value is still 3, which occurs at z = 2, so z = 2 is also a global
maximum for g. How about the lowest value? Well, that value, which is
1, occurs as * — oo. Does this mean that oo is a global minimum for g7
Of course not, because co isn’t even a number; the function g has no global
minimum.*

[Rolle’s Theorem

Imagine you’re driving down a long straight highway. I watch you stop at a
gas station. Then you proceed, always facing the same direction, although you
can put the car in reverse if you want. Later on, I see you at the gas station
again, without watching what you did in the meantime. I make the following
conclusion: at some point when I wasn’t looking, your car had velocity equal
to zero.

*On the other hand, g does have a global infimum. This concept is a little beyond our
scope, though. Check out a book on real analysis if you want to learn more.
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How can I be so confident about this? Well, it’s possible that you never
even left the gas station, in which case your velocity was zero the whole
time. If you did leave the gas station and went forward, well, you must have
eventually have gone backward or else you wouldn’t be back at the gas station
again. So what happened when you ceased going forward and started going
backward? You must have stopped, even for an instant! You can’t just change
from going forward to backward without coming to rest. It’s similar to the
situation we saw in Section 6.4.1 of Chapter 6 when we studied the motion of
a ball being thrown up in the air. At the instant the ball reaches the top of
its path, its velocity is 0.

On the other hand, you might actually have started backing up from the
gas station. In that case, you would have switched some time from backward
to forward motion, and the effect would be the same: you still stopped some-
where. Regardless of which way you set out, you might have stopped many
times; but I know you stopped at least once. This is the content of Rolle’s
Theorem,* which says:

Rolle’s Theorem: suppose that f is continuous on [a, b]
and differentiable on (a, b). If f(a) = f(b), then there must
be at least one number ¢ in (a,b) such that f’(¢) = 0.

In terms of your journey, we are supposing that f(¢) is the position of your car
at time ¢t. This means that f’(¢) is your velocity at time ¢. The times a and b
are when I observed you at the gas station; the equation f(a) = f(b) means
that you were in the same place at time a as at time b, which of course was the
gas station. Finally, the number ¢ is a time that you stopped, since f’(¢) = 0.
Rolle’s Theorem is telling me that you must have stopped at least once. I
don’t know when, because I wasn’t watching, but I know it happened. (I am
assuming that your car’s motion is differentiable, which is pretty reasonable
in most circumstances. On the other hand, if you consider the point of view
of a crash test dummy, perhaps the car’s motion isn’t differentiable at the
moment the car hits the wall....)

Now, let’s look at some pictures of a few possibilities of functions where
Rolle’s Theorem applies:

In the first two diagrams, there is only one possible value of ¢ such that
f'(¢) = 0. In the third diagram, there are three potential candidates for ¢,
but that’s OK—Rolle’s Theorem says that there must be at least one. The
fourth diagram shows a constant function, so its derivative is always 0. This
means that ¢ could be any number between a and b. Now, let’s look at some
pictures where Rolle’s Theorem does not apply:

*See Section A.6.7 of Appendix A for a proof of Rolle’s Theorem.
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In all three cases, the derivative is never 0. That’s OK, because Rolle’s Theo-
rem doesn’t apply in any of these cases. In the first picture, the function isn’t
differentiable on all of (a,b) because of that spike at s. Yes, even one point
where the function isn’t differentiable is enough to screw everything up. In
the middle picture, the function is differentiable, but f(a) # f(b), so Rolle’s
Theorem cannot be used. In the right-hand picture, f(a) = f(b) and the
function is differentiable on (a,b), but it isn’t continuous on all of [a, b]: the
point z = a spoils everything. Once again, no Rolle’s Theorem allowed.

Here’s an example of an application of Rolle’s Theorem. Suppose that
you have a function f satisfying f’(x) > 0 for all . In Section 10.1.1 in
the previous chapter, we claimed that f must satisfy the horizontal line test.
Let’s prove this using Rolle’s Theorem, arguing by contradiction. Start off
by supposing that f does not satisfy the horizontal line test. Then there’s
some horizontal line, say y = L, which intersects the graph of y = f(z) twice
(or more). Suppose that two of these intersection points have x-coordinates
a and b. So we know that f(a) = L and f(b) = L. In particular, f(a) = f(b),
and we can use Rolle’s Theorem (we already know that f is differentiable
everywhere, so it must be continuous everywhere as well). The theorem says
that there is some ¢ between a and b such that f’(¢) = 0. This is impossible
because f’(x) is always supposed to be positive! So the horizontal line test
does not fail.

Now, let’s look at an even harder example. Suppose now that the second
derivative of f exists everywhere and that f”(z) > 0 for all real 2. The
problem is to show that f has at most two z-intercepts. Before we tackle the
problem itself, let’s just think about what it means for a second or two. Can
you think of a function f with f”(xz) > 0 for all z that has no z-intercepts?
How about one z-intercept? Two x-intercepts? If you can do all these, then
try to find one with three z-intercepts. Don’t spend too long on this one,
though, because it’s impossible! Indeed, our problem is to show that you can’t
have more than two x-intercepts.

In fact, here’s the key idea: if there are more than two z-intercepts, then
there must be at least three! Let’s suppose that there are more than two; call
any three of them you like a, b, and ¢, where we choose the variables so that
a < b < c. Since they are all z-intercepts, we have f(a) = f(b) = f(c) = 0.
So, start off by applying Rolle’s Theorem to the interval [a,b]. Since f is
continuous and differentiable everywhere, and f(a) = f(b), we know that
f'(p) = 0 for some p in the interval (a,b). Why do I use p? Because c is
already taken!

Now let’s move on to the interval [b,c]. Again, since f(b) = f(c), we
can use Rolle’s Theorem to show that there must be some number ¢ in (b, ¢)
such that f’(¢) = 0. Don’t forget that we also have f’(p) = 0. Hey, now
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we can use Rolle’s Theorem on the interval [p, q], but instead of taking the
function as f, we’ll use f’. After all, we know that f'(p) = f'(q), since both
of these quantities are 0. So by Rolle’s Theorem, we have some point r where
(") (r) = 0. Wait a second, (f’)’ is just the second derivative f”. So we know
that f”(r) = 0 for some r between p and ¢. This is a big problem because
we had supposed that f”(x) > 0 for all z. The only way out is that our idea
that there are more than two z-intercepts is all out of whack. There can’t be
more than two, and we’ve solved the problem.

Tricky stuff. By the way, did you find some functions satisfying f”(x) > 0
for all x which have 0, 1 and 2 2-intercepts? If not, check out f(z) = 2%+ C,
where C' is positive, zero, or negative, respectively.

The Mean Value Theorem

Suppose you go on another journey, and I find out that you have traveled 100
miles in 2 hours. Your average velocity was 50 miles per hour. This doesn’t
mean that you were going at exactly 50 miles per hour the whole time. Now,
here’s my question: were you ever going at 50 miles per hour, even for an
instant?

The answer is yes. Even if you go at 45 mph for the first hour and 55
mph for the second hour, you still have to accelerate from the slow velocity
to the fast velocity. Along the way, your velocity will pass through 50 mph
for an instant. You can’t avoid it! No matter how you do your journey, if
your average velocity is 50 mph, then your instantaneous velocity must be 50
mph at least once.* Of course, you might be going at 50 mph more than just
once—there might be several times, or you can even go at 50 mph the whole
time. This leads to the Mean Value Theorem, which says:

The Mean Value Theorem: suppose that f is continuous
on [a,b] and differentiable on (a,b). Then there’s at least one
number c¢ in (a,b) such that
v 10 (@

f (C) - b—a .

It seems a little weird, but it actually makes sense. You see, if f(t) is your
position at time ¢, and you start and finish at times a and b, respectively, then
what is your average velocity? The displacement is f(b) — f(a), while the time
taken is b — a, so the quantity on the right-hand side of the above equation
is just your average velocity. On the other hand, f'(c) is your instantaneous
velocity at time c. The Mean Value Theorem says that there is at least one
time ¢ where your instantaneous velocity equals your average velocity over
the whole journey.

Let’s look at a picture of the situation. Suppose your function f looks like
this:

* Again, all this assumes—very reasonably—that your car’s motion is differentiable!
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The dashed line joining (a, f(a)) and (b, f(b)) has slope

f(b) — f(a)
b—a

According to the Mean Value Theorem, there is some tangent whose slope
equals this quantity; that is, some tangent is parallel to the dashed line. In the
above picture, there are actually two tangents that work—the x-coordinates
are at ¢g and ¢;. Either one would be an acceptable candidate for the number
c in the theorem.

The Mean Value Theorem looks a lot like Rolle’s Theorem. In fact, the
conditions for applying the two theorems are almost the same. In both cases,
your function f has to be continuous on a closed interval [a, ] and differen-
tiable on (a,b). Rolle’s Theorem also requires that f(a) = f(b), but the Mean
Value Theorem doesn’t require that. In fact, if you apply the Mean Value The-
orem to a function f satisfying f(a) = f(b), you'll see that f(b)— f(a) =0, so
you get a number ¢ in (a, b) satisfying f’(¢) = 0. So the Mean Value Theorem
reduces to Rolle’s Theorem!

Now let’s look at a couple of examples of how to use the theorem. First,
how would you show that the equation

2:66””2—6—&—1:0

has a solution? One way is to use the Intermediate Value Theorem (see
Section 5.1.4 in Chapter 5)—try it now and see. Suppose instead that I
give you a nudge by suggesting that you apply the Mean Value Theorem to
f(z) = e on the domain [0,1]. That’s acceptable because f is continuous
and differentiable everywhere. The theorem says that there’s a number ¢ in

[0, 1] such that
iy S1) = f(0)
f (C) - 1 _ 0 .
Clearly, we’ll need to find f’(x). Using the chain rule, you should be able to

show that f(z) = 2ze® . So the above equation becomes

12 0?2
206‘22:u:e—1.
1-0

So we have 2ce®” —e + 1 = 0, and we have shown that our original equation
above does have a solution. In fact, we’ve shown that there’s a solution
between 0 and 1.
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Here’s a harder example. Suppose that a function f is differentiable ev-
erywhere and that f’(x) > 4 for all values of 2. The problem is to show that
the graph y = f(x) intersects the line y = 3z — 2 at most once. Try it and
see if you can solve it before reading on.

So, how on earth do we do this problem? Actually it’s pretty similar to
the Rolle’s Theorem examples from the previous section. First, note that
if (x,y) is a point lying on both y = f(z) and y = 3z — 2, then we must
have f(x) = 3z — 2. That equation is not true for most x! It’s only true at
the intersection points. So, suppose that there’s more than one intersection
point. Pick any two and call them a and b, where they are arranged so that
a < b. Since they are intersection points, we know that f(a) = 3a — 2 and
f(b) = 3b— 2. Now since f is continuous and differentiable everywhere, we
can use the Mean Value Theorem to show that there’s a number ¢ between a
and b such that

f(b) = f(a)

pe =101
Plug in f(b) = 3b—2 and f(a) = 3a — 2 to get

o) = (3b—2[))—(3a—2) _30b-a) _,

—a b—a

This can’t be right, since f/(x) > 4 for all x. So there can’t be more than one
intersection point.

That completes the solution, but you might like to consider another in-
terpretation of it. Indeed, imagine a car going at a constant speed of 3 mph,
starting at position —2. Its position at time ¢ is therefore 3t — 2. If your
position at time ¢ is f(t), then the condition that f’(t) > 4 means that you're
always going faster than 4 mph (in the same direction as the other car). So
all the problem says is that you can’t pass the other car more than once. If
you were alongside the other car more than once, then since it’s going at a
constant speed of 3 mph, you’d have to be going at 3 mph for at least one
instant. This is impossible because you’re always going faster than 4 mph. It
makes a lot of sense if you think about it like that!

11.3.1 Conseguences of the Mean Value Theorem

We've been taking a few things about the derivative for granted. For example,
if a function has derivative equal to 0 everywhere, it must be constant. Facts
like this seem obvious but they actually deserve to be proved. Let’s use the
Mean Value Theorem to show three useful facts about derivatives:

1. Suppose that a function f has derivative f’(z) = 0 for every x in some
interval (a,b). This means that the function is pretty darn flat. In fact,
it’s intuitively obvious that the function should be constant on the whole
interval. How do we prove it? First, fix some special number S in the
interval, and then pick any other number z in the interval. We know
from the Mean Value Theorem that there’s some number ¢ between S
and x such that
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Now we have assumed that f’ is always equal to 0, the quantity f'(c)
must be 0. So the above equation says that

fz) = f(5)

=0
x-S ’

which means that f(z) = f(S). If we now let C = f(S), we have
shown that f(z) = C for all z in the interval (a,b), so f is constant! In
summary,

‘if f(z) =0 for all z in (a,b), then f is constant on (a, b). ‘

Actually, we’ve already used this fact in Section 10.2.2 of the previous
chapter. There we saw that if f(x) = sin™*(z)+cos~*(z), then f'(2) = 0
for all  in the interval (—1,1). We concluded that f is constant on that
interval, and in fact since f(0) = 7/2, we have sin ! (z)+cos~!(z) = 7/2
for all x in (—1,1).

2. Suppose that two differentiable functions have exactly the same deriva-
tive. Are they the same function? Not necessarily. They could differ
by a constant; for example, f(z) = 22 and g(z) = 2% + 1 have the
same derivative, 2z, but f and g are clearly not the same function. Is
there any other way that two functions could have the same derivative
everywhere? The answer is no. Differing by a constant is the only way:

‘if f(x) = ¢'(z) for all z, then f(z) = g(x) + C for some constant C. ‘

It turns out to be quite easy to show this using #1 above. Suppose
that f'(z) = ¢'(z) for all z. Now set h(z) = f(x) — g(z). Then we
can differentiate to get h'(z) = f/(x) — ¢’(z) = 0 for all z, so h is
constant. That is, h(z) = C for some constant C. This means that
f(x) —g(x) =C, or f(x) = g(x) + C. The functions f and g do indeed
differ by a constant. This fact will be very useful when we look at
integration in a few chapters’ time.

3. If a function f has a derivative that’s always positive, then it must be
increasing. This means that if a < b, then f(a) < f(b). In other words,
take two points on the curve; the one on the left is lower than the one
on the right. The curve is getting higher as you look from left to right.
Why is it so? Well, suppose f/(z) > 0 for all z, and also suppose that
a < b. By the Mean Value Theorem, there’s a ¢ in the interval (a,b)

such that
P = 10 =@

This means that f(b)— f(a) = f'(c)(b—a). Now f'(c) > 0,and b—a > 0
since b > a, so the right-hand side of this equation is positive. So we
have f(b) — f(a) > 0, hence f(b) > f(a), and the function is indeed
increasing. On the other hand, if f'(z) < 0 for all z, the function is
always decreasing; this means that if a < b then f(b) < f(a). The proof
is basically the same.
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11.4 The Second Derivative and Graphs

So far, we haven’t paid much attention to the second derivative. We’ve only
used it to define acceleration, and that’s about all. Actually, the second
derivative can tell you a lot about what the graph of your function looks
like. For example, suppose that you know that f”(z) > 0 for all z in some
interval (a,b). If you think of the second derivative f” as the derivative of the
derivative, then you can write (f’)’(z) > 0. This means that the derivative
f'(z) is always increasing.

So what? Well, if you know that the derivative is increasing, this means
that it’s getting more and more difficult to “climb up” the function. The
situation could look like this:

Just to the right of x = a, the mountain-climber has it nice and easy: the
slope is negative. It’s getting harder all the time, though; first it gets flatter,
until the climber reaches the flat part at x = ¢; then the going keeps on getting
tougher as the slope increases up to x = b. The important thing is that the
slope is increasing all the way from x = a up to x = b. This is exactly what
is implied by the equation f”(x) > 0.

We need a way to describe this sort of behavior. We’ll say a function is
concave up on an interval (a,b) if its slope is always increasing on that inter-
val, or equivalently if its second derivative is always positive on the interval
(assuming that the second derivative exists). Here are some other examples
of graphs of functions which are concave up on their whole domains:

They all look like part of a bowl. Notice that you can’t tell anything about
the sign of the first derivative f/(z) just by knowing that f”(z) > 0. Indeed,
the middle two graphs have negative first derivative; the rightmost graph has
positive first derivative; while the leftmost graph has a first derivative that is
negative and then positive.

If instead the second derivative f”(z) is negative, then everything is re-
versed. You end up with something more like an upside-down bowl, saying
that f is concave down on any interval where its second derivative is always
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negative.* Here are some examples of functions which are concave down on
their entire domain:

11.4.1

In this case, the derivative is always decreasing: it’s getting easier and easier
to climb as you go along in each case. If you're going uphill, this means it’s
getting less and less steep, but if you're going downhill, it’s getting steeper
and steeper downhill (as you go from left to right).

Of course, the concavity doesn’t have to be the same everywhere: it can
change:

To the left of z = ¢, the curve is concave down, while to the right of x = ¢,
the curve is concave up. We'll say that the point z = c is a point of inflection
for f because the concavity changes as you go from left to right through c.

More about points of inflection

In the above picture, we see that f”(z) < 0 to the left of ¢ and f”(z) > 0
to the right of ¢. What about f”(c) itself? It must be 0, since everything
is nice and smooth. In general, if ¢ is a point of inflection, then the sign of
1" (x) must be different on either side of = ¢, assuming of course that f”(z)
actually exists when x is near c. In that case, it must be true that

‘ if z = c is a point of inflection for f, then f”(c) = 0. ‘

On the other hand, if f”(¢) = 0, then ¢ may or may not be an inflection point!
That is,

if f”(c) =0, then it’s not always true that z = cis a
point of inflection for f.

*If you have trouble remembering which one is concave up and which is concave down,
the following rhyme might help: “like a cup, concave up; like a frown, concave down.”
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For example, suppose that f(z) = z*. Then f'(z) = 422 and f”(z) = 1222
At z = 0, the second derivative vanishes, because f”(0) = 12(0)? = 0. So is

x = 0 a point of inflection? The answer is no. Here’s a miniature graph of

y =2t

You can see that f is always concave up; so the concavity doesn’t change
around z = 0. That is, x = 0 is not a point of inflection, despite the fact that
f"(0)=0.

On the other hand, if you want to find points of inflection, you do need
to find where the second derivative vanishes. That at least narrows down the
list of potential candidates, which you can check one by one. For example,
suppose that f(z) = sin(z). We have f/(z) = cos(x) and f"(z) = —sin(x).
The second derivative — sin(x) vanishes whenever z is a multiple of 7. Let’s
focus on what happens at z = 0. We have f”(0) = —sin(0) =0. Is z =0 an
inflection point? Let’s take a look at the graph:

Yes, = 0 is a point of inflection: sin(x) is concave up immediately to the left
of 0 but concave down to the right of 0. Notice that the tangent line at z = 0
passes through the curve y = sin(x). This is typical of points of inflection:
the curve must be above the tangent line on one side and below the tangent
line on the other side.
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Classifying Poinfs Where the Derivative Vanishes

It’s time to apply some of the above theory to a practical problem. Suppose
that you have a function f and a number ¢ such that f’'(¢) = 0. You can
say for sure that c is a critical point for f, but what else can you say? It
turns out that there are only three common possibilities: x = ¢ could be a
local maximum; it could be a local minimum; or it could be a horizontal point
of inflection, which means that it is a point of inflection with a horizontal
tangent line.* (It’s also possible that f(x) is constant for all x near ¢, but in
that case c is both a local maximum and a local minimum.) In any case, here
are some pictures of the common possibilities:

* Another possibility is that the concavity isn’t even well-defined near the critical point.
For example, if f(z) = 2*sin(1/x), then the sign of f/(x) oscillates wildly as = approaches
the critical point 0 from either above or below, so the concavity keeps switching between
up and down!
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1 1 1 1

Local maximum

c c c c
Local minimum Horizontal point of inflection

In each case, the tangent line is horizontal; that’s all you can tell if you only
know that f’(c) = 0. How do you tell which case applies? There are two
methods, one involving only the first derivative, and the other involving the
second derivative. When you use the first derivative, you have to look at the
sign (positive or negative) of the first derivative near = ¢. On the other
hand, if you use the second derivative, then you need to consider its sign at
x = c. Let’s look at these methods one at a time.

Using the first derivative

Let’s take another look at the above cases, but this time we’ll draw in some
tangent lines near = c:

1

1

1

1

c
Local maximum

c
Local minimum

c
Horizontal point of inflection

C

In the first case, we have a local maximum at x = ¢. To the left of ¢, the
slope is positive. This means that the function is increasing in that portion
of the domain (as we saw in Section 11.3.1 above). On the other hand, to the
right of ¢, the slope is negative: the function is decreasing there. It’s clear
that whenever the slope changes from positive to negative as you move from
left to right, the point where the slope is 0 must be a local maximum.

In the second case, the situation is reversed. If the slope changes from
negative to positive as you go from left to right, the point where the slope is
0 must be a local minimum. In the third case, the slope is always positive
(except at & = ¢), while in the fourth case, the slope is always negative (except
at © = ¢). Both cases give a point of inflection: the derivative doesn’t change
sign.
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Here’s a summary of what we have just observed. Suppose that f’(c) = 0.
Then:

e if f’(z) changes sign from positive to negative as you pass from left to
right through = ¢, then = ¢ is a local maximum;

e if f’(z) changes sign from negative to positive as you pass from left to
right through = ¢, then = ¢ is a local minimum;

e if f/(x) doesn’t change sign as you pass through x = ¢ from left to right,
then & = ¢ is a horizontal point of inflection.

For example, if f(x) = 3, then we have f’(z) = 3x2. This is 0 when z = 0,
so £ = 0 must be a local maximum, local minimum, or horizontal point of
inflection. Which is it? Well, f’(x) is always positive when 2 # 0, so the
derivative doesn’t change sign as you pass through x = 0 from left to right.
So x = 0 must be a point of inflection. Draw the graph and check that this
makes sense! (You can also find the graph in Section 11.5.2 below.)

Here’s another example. If we now set f(x) = zln(x), then where are the
local maxima, minima, and horizontal points of inflection of f?7 Well, you
should use the product rule to find that f’(x) = In(x) + 1. (Check that you
believe this!) We are looking for solutions to the equation f’(x) = 0, which
means that In(z) + 1 = 0. Rearranging, we get In(z) = —1; now exponentiate
both sides to get z = e~!, otherwise known as 1/e. This is the only potential
candidate. But what sort of critical point is it?

Well, let’s look at the sign of f/(z) = In(z) + 1 when z is near 1/e. The
easiest way to do this is to draw a quick graph of y = f/(z). All we have to
do is take our graph for In(z) and shift it up by 1. Here’s what we get:

y=f'(z)

You can see from the graph that f/(z) goes from negative to positive as we
pass through 1/e. So z = 1/e must be a local minimum for f. Now, what is
the value of f(1/e)? We can plug it in and get f(1/e) = (1/e)In(1/e) = —1/e,
noting that In(1/e) = In(e™!) = —In(e) = —1. So the graph of y = f(z) has
a local minimum at the point (1/e, —1/e). It must look something like this:

y = f(z) = zn(z)

(
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As you can see, we don’t know much about the graph yet! We’ll finish it off
in Section 12.3.2 of the next chapter.

11.5.2 Using the second derivative

Take another look at the common possibilities which arise when f/(¢) = 0:

1 1 1 1

c c c c
Local maximum Local minimum Horizontal point of inflection

Imagine that f”(c) > 0. We saw in Section 11.4 above that this means that
the curve y = f(x) is concave up near © = ¢. The only one of the above
four graphs which is concave up is the second one, that is, the case of a local
minimum at z = ¢. Similarly, if f”(¢) < 0, then the curve is concave down,
and we must be in the first case above: ¢ is a local maximum in that case.

This is pretty useful, but there’s a catch: if f”(¢) = 0, then you could
be in any one of the four cases! For example, suppose that f(x) = 23 and
g(z) = 2*. We have f/(z) = 322, so f/(0) = 0. Let’s find f”(0) to try to
classify the critical point. Since f”(z) = 6z, we have f”(0) = 0.

On the other hand, what about g7 As we saw in Section 11.4.1 above, we
have ¢/(x) = 423, so ¢’(0) = 0. What sort of critical point is z = 0?7 Let’s
check the second derivative: ¢g”(x) = 1222, so g”(0) = 0.

In both cases, at the critical point z = 0, the second derivative is 0. As
you can see from the miniature graphs below, f has a point of infection at
x = 0 while g has a local minimum there:

y=f(z)=2a° y=gx) ==z

So much for using the second derivative to distinguish between these two
cases. When the second derivative is 0, you are so in the dark, you might as
well be in an underground room with your eyes closed and one of those really
thick blindfolds on. You just can’t tell whether you're dealing with a local
maximum, a local minimum, or a horizontal point of inflection. So, here’s the
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summary of the situation. Suppose that f’(¢) = 0. Then:

o if f”(c) <0, then x = ¢ is a local maximum;

o if f”(c) > 0, then x = ¢ is a local minimum;

e if f”(c) =0, then you can’t tell what happens! Use the first deriva-
tive test from the previous section.

Yes, the first derivative test is better, although it’s a little more cumbersome
to use. It always works, while the second derivative test sometimes lets you
down. Here’s an example where things do work out, though: suppose that
f(z) = z1n(x). Hey, this is the same example as one from the previous section!
There we saw using the first derivative test that 1/e is a local minimum for
f. Let’s try using the second derivative test instead.

First, recall that f/(z) = In(z) + 1, so f'(1/e) = 0. We can easily see
that f”(x) = 1/x. When = = 1/e, we have f”(1/e) = e, which is positive.
So the concavity is upward at 1/e, which means that we're dealing with the
bowl shape; indeed, according to the above summary, 1/e is indeed a local
minimum.
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Now it’s time to look at a general method for sketching the graph of y = f(x)
for some given function f. When we sketch a graph, we're not looking for
perfection; we just want to illustrate the main features of the graph. Indeed,
we’re going to use the calculus tools we’ve developed: limits to understand
the asymptotes, the first derivative to understand maxima and minima, and
the second derivative to investigate the concavity. Here’s what we’ll look at:

e the useful technique of making a table of signs;
e a general method for sketching graphs; and
e five examples of how to use the method.

How to Construct a Table of Signs

Suppose you want to sketch the graph of y = f(z). For any number z, the
quantity f(z) could be positive, negative, zero, or undefined. Luckily, if f is
continuous except for maybe a few points, and you can find all of the zeroes
and discontinuities of f, then it’s easy to see where f(z) is positive and where
it’s negative by using a table of signs.

Here’s how it works: start off by making a list of all the zeroes and dis-
continuities of f in ascending order. For example, if

(v —3)(z —1)?

flo) = x3(x + 2)

3

then the zeroes of f are 3 and 1, and f is discontinuous at 0 and —2. So our
list, in order, is —2, 0, 1, 3. Now, draw a table with three rows and plenty of
columns. We’ll label the first two rows x and f(x); the third row will actually
be blank. Now, write the values in your list of zeroes and discontinuities
across the top row so that there’s one space on either side of each number. In
our example, the table would look like this:



246 e Sketching Graphs

f(x)

Now you can fill in some of the second row—just put a 0 where f(z) is 0 and
a star where f is discontinuous:

T —2 0 1 3
f(z) * * 0 0

Next, pick your favorite number between each of the special numbers on the
top, as well as one at the beginning and one at the end. In our example, you
might pick —3 as being to the left of —2; and —1 as being between —2 and 0;
and so on, until the table looks something like this:

e |-3l—2|-1|o|35|1]2]3]|4
f(z) * * 0 0

We could have chosen —4 instead of —3, or % instead of %—it wouldn’t have

made any difference. We can pick any number between the special numbers.
Now, the next thing is to find whether f(x) is positive or negative for each of

the values we just chose. In our example, consider x = —3; then
—3-3)(-3-1)2 32
(—=3)3(-3+2) 9

So we can put a minus sign in the box under —3. Now we didn’t actually
need to work that hard, since we could care less about the value of f(—3):
we only care whether it’s positive or negative. We should just have looked
at each factor to see whether it’s positive or negative. In particular, when
x = —3, you can see that (z — 3) is negative, (z — 1)? is positive (it can’t be
negative since it’s a square!), 2% is negative, and (x + 2) is negative as well.
The overall effect is

I
so f(—3) is negative. Now try it for each of our other numbers, and verify
that you can fill in the whole table like this:

¢ |-3|=2|=1lo|35]1]2]3]4
f@)—| x|+ |*|=|0]|-]0]|+
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The main point is not that f(—3) is negative, but that f(z) is negative for
all z < —2. The number —3 is just a representative sample point for the
region (—oo, —2). Whatever sign f(—3) is, f(x) has the same sign on the
whole region. Similarly, since f(—1) is positive, f(z) is positive on the entire
interval (—2,0). Already this gives us lots of information about the graph of
y = f(x), which we’ll look at in Section 12.3.1 below.

Here’s another example. Suppose that

f(z) = 2%(x — 5)>.

We've actually already looked at this function f a little bit in Section 10.1.4 of
Chapter 10. Let’s take a closer look, starting with a table of signs. The zeroes
of f clearly occur at x = 0 and x = 5 only, and there are no discontinuities.
So our special points are at 0 and 5. We need to fill in the gaps. To the left
of 0, I'll choose —1; in between I’ll choose 2; and to the right, I’ll choose 6.
So our table of signs looks like this:

z |-1|10 (2 ]|5]|6
f@l-10]-10] +

Here’s how I came up with the signs at —1, 2, and 6:

e When z = —1, both = and (z — 5) are negative. The sign of f(—1) is
therefore (—)*(—)° = (+)(=) = (-).

e When = = 2, now z is positive and (z — 5) is negative. The sign of f(2)
is (4+)2(—)? which is still (—).

e When # = 6, now both = and (xr — 5) are positive, so f(6) has sign
(H)(+)° = (+).

We'll use this table to help us sketch the graph of y = f(z) in Section 12.3.3
below. For now, let’s see how to make a table of signs for the derivative and
the second derivative.

12.1.1  Making a table of signs for the derivative

As we saw in Section 11.3.1 of the previous chapter, the sign of the derivative
of a function tells you a lot about the function. Whenever the derivative
is positive, the function is increasing; when the derivative is negative, the
function is decreasing; and when the derivative is 0, the function has a local
maximum, a local minimum, or a horizontal point of inflection. A table of
signs for the derivative can summarize all this information in a compact,
simple way.

The method is the same as for the table of signs for f(z) that we looked at
above, except that now you apply it to f’(z) instead. The only other difference
is that when f'(z) is zero, we’ll put a little flat line in the third row; when
f'(x) is positive, the line will slope upward; and when f’(z) is negative, the
line will slope downward.

Let’s see how it works for our previous example where f ( ) = z?(x —5)3.
In Section 10.1.4 of Chapter 10, we calculated that f'(x) = 5z(x —5)?(x — 2).
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(Try it yourself if you don’t want to look back!) This means that f'(xz) =0
when =0, x = 2 or x = 5. Let’s pick some points in between: we’ll choose
—1 to the left of 0; between 0 and 2, we’ll pick 1; between 2 and 5, we’ll choose
3; finally, we’ll select 6 to the right of 5. Our table of signs looks like this, so
far:

F(x) 0 0 0

Now we need to find the sign of f/(z) at the new points we chose. For example,
when z = —1, we see that 5z is negative, (z—5) is negative, and (z—2) is also
negative, so f’(—1) has sign (—)(—=)?(—) = (+). I leave it to you to repeat
this exercise with the other values and verify that the filled in table looks like
this:

z [-1/0|1|2|3|5]|6
ff@l+10|={0]4+|0|+
1IN A =7

Notice how I drew the little lines in the third row: upward-sloping when
f/(z) has sign (+), downward when its sign is (—), and flat when its sign is
0. We immediately know that f is increasing when z < 0 and when x > 2,
while it’s decreasing for 0 < x < 2. The table also reveals that x = 0 is a
local maximum, x = 2 is a local minimum, and x = 5 is a horizontal point
of inflection. We’ll use the above table again when we sketch the graph of
y = f(x) in Section 12.3.3 below.

A word of warning: the lines in the third row of the table are meant only
to guide you as you sketch the graph of y = f(x). The graph probably doesn’t
look like a collection of lines tacked together! Instead, just use the information
in that third row to understand where the graph is increasing, decreasing or
temporarily flat.

12.1.2  Making a table of signs for the second derivative

We’ve also seen that the sign of the second derivative is important (check out
Section 11.4 of the previous chapter). When the sign is positive, the curve is
concave up; when the sign is negative, the curve is concave down; and when
it’s 0, you may or may not get a point of inflection. The table of signs for the
second derivative tells all.

The method is the same as for the function or the derivative, except that
the third row is now used to show whether the function is concave up or
concave down. Put a little upward parabola-like curve whenever the sign is
(+), a downward version when the sign is (—), and a dot when the sign is 0.

If we return to our example f(z) = 2?(z—>5)? from above, we have already
seen that f/(x) = bz(z — 5)?(x — 2). To differentiate this, let’s combine the x
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and (z — 2) factors to write f’(z) = 5(z — 5)%(2? — 2z). Now we can use the
product rule:

() =5 ((z* — 22) x (2(z — 5)) + (z — 5)*(2z — 2))..

Taking a common factor of (z — 5) and rearranging, we find that we have
f"(z) = 10(z — 5)(22% — 8z +5). Actually, you can use the quadratic formula
to see that the solutions of 222 —8z+5 = 0 are 2+ %\/6 So we can completely
factor f”(x) as

F(x) = 20 (:c —(2- 5\/6)) (:c 2+ 5\/6)) (« —5).

This means that f”(z) has sign 0 at © =2 — %\/6, r =2+ %\/6 and x = 5.
Let’s start on our table of signs for f”(x):

x - 1V6 2+ 16 5
f"(x) 0 0 0

Now we have to fill in the gaps. It would be nice to know something more

about 2:|:%\/6, so let’s try to estimate it without resorting to a calculator! You
see, V/6 is between 2 and 3 (since 6 is between 4 and 9), so $1/6 is between
1 and % This means that 2 — %\/6 is somewhere between 2 — % = % and
2—1=1, and also that 2+ 11/6 is between 2+1 =3 and 2+ 2 = 3%. So we
can choose 0 to the left of 2 — %\/6, between 2 — %\/6 and 2+ %\/6, we’ll pick

2; between 2 + % 6 and 5, we’ll choose 4; finally, we’ll pick 6 to the right of
5. Here’s what we get:

z |0|{2-3V6 |2 [2+2V6 |4 |56
f(@)] - 0 + 0 -0 |+

N\ . N . N e

Make sure you agree with all the signs I've filled in. For example, when = = 0,
all three factors of f”(x) are negative, so the product is negative. Also, notice
how I drew in the little curves in the third row. You can clearly see that f
is concave up when 2 — %\/6 <zTz <2+ % 6 or x > 5; and that f is concave
down when =z < 2 — %\/6 or 2 + %\/6 < x < 5. All three points 2 — %\/6,
24 % 6 and 5 are points of inflection, since the concavity is opposite to the
left and the right of these points. Once again, we’ll return to the table in
Section 12.3.3 below.
Let’s look at one more example. Suppose that

g(x) = 2% — 928,
You can easily calculate that ¢’(z) = 928 — 7227 and that
g"(x) = 722" — 72 x 725 = 7225(x — 7).
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12.2

So ¢"(x) =0 when x =0 or z = 7. Let’s pick 2 = —1, x = 3 and z = 8 as
our fill-in points. I leave it to you to show that ¢”’(—1) < 0, ¢”(3) < 0 and
9" (8) > 0. So the table of signs for ¢”’(z) looks like this:

z |-110 |3 |7 |8
g'@|-10 -0 |+

N[ e [N e

So we see that = 0 is not a point of inflection for g: the function is concave
down on both sides of x = 0. On the other hand, the point x = 7 is a point
of inflection, since g is concave down to the left of 7 and concave up to the
right of 7.

As we noted in the case of the first derivative in the previous section, the
pictures in the third row are meant only as a guide to sketching the graph.
They show where the original function is concave up and concave down, but
they won’t necessarily give anything more than a rough idea of what the curve
y = f(x) actually looks like. That’s why we’re going to look at a big method
for sketching curves. The three types of tables of signs we’ve looked at above
will be used in the process, but that’s not the whole story. Now, fasten your
seatbelts. . ..

The Big Method

Here is an eleven-step method for sketching the graph of y = f(z). Before you
start, draw up a set of axes so you can start putting some of the information
you gather on the graph.

1. Symmetry: check whether the function is even, odd, or neither by
replacing x by —z and seeing whether you get back the original function
or its negative. If the function is even or odd, you only need to sketch
it for z > 0, then use the symmetry to sketch the left half of the graph.
This could save you a lot of time.

2. y-intercept: find the y-intercept (if it exists) by setting x = 0. Mark
it on the graph.

3. z-intercepts: find the z-intercepts by setting y = 0 and solving for
2. This is sometimes difficult or impossible! For example, if you have
to factor a polynomial of degree 3 or higher, you may have to scrab-
ble around to find a root, then do a polynomial division to continue
factoring. Mark the z-intercepts on your graph.

4. Domain: find the domain of f. If it’s specified in the definition of f,
there’s nothing to do; otherwise, the domain is assumed to be as much
of the real line as possible. Remember, you have to avoid numbers which
lead to 0 in the denominator, or the square root of a negative number, or
the log of a negative number or 0. If inverse trig functions are involved,
the situation is more complicated—so I suggest you learn the domains
of all the inverse trig functions. (For example, you can’t take the inverse
sine of a number outside the interval [—1,1].)
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5. Vertical asymptotes: these generally occur where the denominator is
zero (if there is a denominator!). Beware: if the numerator is zero too,
then you might have a removable discontinuity™ instead of a vertical
asymptote. Also, you may have a vertical asymptote due to a log factor.
Mark all the vertical asymptotes as dotted vertical lines on your graph.

6. Sign of the function: at this point, draw up a table of signs for f(x),
as described in Section 12.1. We already know where f is zero from
#3 above, and we know where it’s discontinuous from #4 and #5. The
table tells you exactly where the curve is above or below the z-axis.

7. Horizontal asymptotes: find the horizontal asymptotes by calculating

lim f(z) and lim f(z).

Tr—00 r——00
Even if the limits are £o0, it may be that you can still work out what
f(x) behaves like for large (or negatively large) x and thereby get a sort
of “diagonal” asymptote. In any case, draw dashed horizontal lines on
your graph to remind you about the horizontal asymptotes, if there are
any. At this point, you can fill in little bits of the function near both
the horizontal and vertical asymptotes, using the table of signs for f(z)
to tell which side of each of the asymptotes the function lies on.

8. Sign of the derivative: now, time for calculus. Find the derivative,
then find all the critical points—remember, these are points where the
derivative is 0 or does not exist. Now draw up a table of signs for f'(z),
as described in Section 12.1.1 above. Use the third row of the table to
tell where the function is increasing, decreasing, or flat.

9. Maxima and minima: from the table of signs, you can find all the
local maxima or minima—remember, these only occur at critical points.
For each maximum or minimum z, you need to find the value of y by
substituting the value of x into the equation y = f(x). Make sure you
label all these points on your graph.

10. Sign of the second derivative: find the second derivative, then find
all the points where the second derivative is zero or does not exist.
Now you should draw up a table of signs for f”(x), as described in
Section 12.1.2 above. The pictures in the third row of the table indicate
where the curve is concave up and where it’s concave down.

11. Points of inflection: use the table of signs for the second derivative
to identify the inflection points. Remember, the second derivative at
an inflection point has to be zero, and the sign of the second derivative
has to be different on either side of the inflection point. For each inflec-
tion point x, you need to find the y-coordinate by substituting into the
equation y = f(z). Make sure these points are labeled on your graph.

Now, using all the information you’ve gathered, complete the sketch of the
graph. If anything looks inconsistent, then you might have made a mistake!
All the information you gather should work nicely together.

*For example, if f(z) = (22 — 3z + 2)/(x — 2), then by factoring the numerator as
(z — 1)(x — 2), you can easily see that f(z) = x — 1 except at x = 2, where f is undefined.
The graph is on page 42.
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By the way, remember that you can also find the local maxima and min-
ima in step 9 above by looking at the sign of the second derivative (see
Section 11.5.2 in the previous chapter). This method doesn’t always work,
though—that’s why I recommend using the table of signs for f’(x).

Examples

We'll start with an example of sketching a curve without using the first or
second derivatives, then look at four more examples of the complete method.

An example without using derivatives

At the beginning of Section 12.1 above, we looked at

(x = 3)(z — 1)2'

Let’s sketch y = f(x) using only the first seven steps of our program:

1.

Symmetry: you can plug in —z instead of x, and play around with it,
but it’s a lost cause: the function is neither odd nor even.
y-intercept: set x = 0; then the denominator vanishes and the nu-
merator doesn’t. So the function blows up at * = 0 and there’s no
y-intercept.

. x-intercepts: set y = 0; then we must havex —3=0o0rz —1 =0, so

the z-intercepts are at 1 and 3.

4. Domain: clearly we're fine for all z except z =0 and = = 2.

Vertical asymptotes: the denominator vanishes when x = 0 or when
x = —2; the numerator doesn’t also vanish there, so these are the vertical
asymptotes.

. Sign of the function: we already investigated this thoroughly, and

found that the function is positive on (—2,0) and (3,00) and negative
everywhere else (except at the z-intercepts and vertical asymptotes).
For reference, here’s the table we saw in Section 12.1:

o=
—
[N
w
=

z |[-3|-2|-1|0
f@l—=|*|+|*x|=-]0]|=]0]|+

. Horizontal asymptotes: we need to look at

. (z=3)(x—1)? . (x —3)(z—1)2
R T ) B L M o)

I leave it to you to show that both these limits are 0 (using the methods
of Section 4.3 in Chapter 4), so there’s a two-sided horizontal asymptote
at y = 0.
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Now we can sketch the graph. Let’s first mark in what we know:

o

The horizontal asymptotes are both at y = 0. On the left-hand side of the
graph, the curve is below the z-axis since the function values are negative
when z < —2. On the right-hand side of the graph, the curve is above the
axis since the function values are positive when = > 3 (we know this from the
table of signs). As for the vertical asymptotes, the one at z = —2 must be
negative on the left and positive on the right, using the table of signs once
again. The asymptote at = 0 is analyzed in the same way. Now consider the
z-intercepts. The intercept at £ = 1 must touch the curve, since the sign of
f(zx) is negative on either side of 1. On the other hand, the function changes
sign on either side of x = 3, so the intercept there passes through the axis.
Now we can join the curve pieces and get something like this:

(z —3)(z —1)°
z3(z +2)

[N

y:

This is a pretty good approximation to the shape of the graph. The problem
is, we don’t know where the local maxima and minima are except for the local
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maximum at x = 1. Certainly there’s at least one local minimum between
x = —2 and x = 0, at least one local minimum between z = 1 and z = 3,
and at least one local maximum greater than x = 3. There could be more,
though—the graph might have a lot more wobbles than shown. We can’t tell
without using the derivative.

So why not use the derivative? For this function, it’s too difficult to deal
with! If you go to the trouble of calculating it, you will find that

—z* 4+ 102% — 1122 — 162 + 18
wt(z +2)2 '

f'(x) =

Actually, we know z = 1 is a local maximum, so f’(1) should be 0. You can
check and see that the numerator does indeed vanish at z = 1. This means
that (z — 1) is a factor of the numerator, and you can do a long division to
see that the numerator is (z — 1)(—z3 4+ 922 — 2z — 18). That still leaves a
nasty cubic to deal with. At least we do know one thing: the cubic has at
most three solutions. This means that, in addition to = 1, there are at
most three other critical points. In particular, our graph doesn’t have extra
wobbles—just the four critical points you can see in the picture above.

As for using the second derivative to find the concavity and points of
inflection, well, suffice it to say that it’s even worse than the first derivative!
On the other hand, not every function has such difficult derivatives—let’s look
at four more examples where we can use the full method.

12.3.2 The full method: example 1

‘\ At the end of Section 11.5.1 in the previous chapter, we saw that if
' f(z) = zn(z),

then f has a local minimum at 2z = 1/e. We even started to sketch its graph.
Let’s use the full method to complete the graph of y = f(x):

1. Symmetry: the function isn’t even defined for x < 0, so it certainly
can’t be odd or even.

2. y-intercept: set x = 0; then f(z) is undefined, so there can’t be any
y-intercept.

3. z-intercepts: set y = 0; then we must have z = 0 or In(z) = 0. We
can’t have x = 0, since f isn’t defined there, and In(x) = 0 only when
x = 1. So the only z-intercept is at x = 1.

4. Domain: because of the In(x) factor, the domain must be (0, c0).

5. Vertical asymptotes: the In(z) factor might actually introduce a ver-
tical asymptote at = 0. Let’s check it out. Since f(z) is only defined
when x > 0, the best we can do is to consider the right-hand limit

lim zlIn(x).

Jlim zln(z)

Actually, we know from Section 9.4.6 that this limit is 0, as logs grow
slowly (to —o0) as & — 07. So there are no vertical asymptotes; there’s
just a (right-hand) removable discontinuity at the origin.
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. Sign of the function: we know that the function is undefined for

x < 0, and the only z-intercept is at x = 1. So we need to fill in the
gaps with something like x = 1/2 and = 2. When 2 = 1/2, we have
In(1/2) = —1In(2), which is negative, so f has sign (—). When z = 2,
you can easily see that f has sign (+). So the table of signs looks like
this:

f@) x| =10 [+

Horizontal asymptotes: we only need to look at

lim zIn(x)

xTr— 00
since the limit as x — —oo doesn’t even make sense. The above limit is
clearly oo, since both z and In(x) go to co as © — oo. So there are no
horizontal asymptotes.

. Sign of the derivative: by the product rule, we have f'(z) = In(z)+1

(as we saw in Section 11.5.1 of the previous chapter). So f’(x) = 0 when
In(z) = —1, that is, when z = e~ ! = 1/e. We just need to pick a point
between = 0 and x = 1/e, and some other point greater than z = 1/e.
Let’s choose 2z = 1/10 for the first and = 1 for the second. Note that
f'(1/10) = In(1/10) + 1 = —In(10) + 1, which is clearly negative; and
f'(1) = In(1) + 1 = 1, which is positive. Our table of signs for f’(x)
looks like this:

z |<ol 5] L)1
F@) x| =0 |+
N ||

. Maxima and minima: looking at the table of signs, we see that we

only have a local minimum at z = 1/e. We just need to calculate the
y-value there: we have y = e 'In(e™!) = —e~! = —1/e. So there is a
local minimum at (1/e,—1/e), as we already observed in Section 11.5.1
of the previous chapter.

Sign of the second derivative: since f'(x) = In(z) + 1, we have
f"(x) =1/z. Since f is only defined when x > 0, we see that f”(z) > 0
for all relevant x. This means that f is always concave up.

Points of inflection: since f”(x) is never 0, there aren’t any!

Now, let’s put the information we’ve gathered on a graph. We have a remov-
able discontinuity at the origin, a local minimum at (1/e, —1/e), an a-intercept
at 1, and no horizontal or vertical asymptotes. The graph is below the x-axis
when z < 1 and above it when « > 1. Also, the function is decreasing for
0 < z < 1/e and increasing when = > 1/e, and is always concave up. Its
graph must look something like this:
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y = xIn(z)

It’s not perfect, but it’s a heck of a lot better than our first attempt on
page 241, since we have a lot more information.

12.3.3  The full method: example 2

Let’s look at another function we’ve already investigated somewhat:

f(x) = 2*(x — 5)3.

In Section 10.1.4 of Chapter 10, we already made a rough sketch of the graph
of y = f(z); we've also made tables of signs for f(z), f'(z), and f”(z) in
Section 12.1 above. This means that we can step on the gas and rip right
through our method:

1.

Symmetry: if you replace z by (—z), you get (—z)?(—x — 5)3, which
simplifies to —x?(x+5)2. This is neither f(x) nor —f(z), so f is neither
odd nor even. Oh well, you can’t win them all.

y-intercept: when x = 0, we see that y = f(0) = 0. So the y-intercept
isat y=0.

z-intercepts: if y = 0, then we must have 22 = 0 or (x —5)® = 0. So
the z-intercepts are at x = 0 and x = 5.

Domain: there are no problems taking f(x) for any x, so the domain
is the set of all real numbers R.

. Vertical asymptotes: since the domain is all of R, there aren’t any

vertical asymptotes.

. Sign of the function: as we saw in Section 12.1, the table of signs

looks like this:

f@)l—=10 =101+

So the graph is only above the x-axis when x > 5.

. Horizontal asymptotes: it’s pretty easy to see that

lim z%(z —5)% = 00 and lim z%(z —5)% = —oo.

r—00 r——00

After all, when # — oo, both x? and (x — 5)3 also go to oo, so their
product does as well. When x — —oo, the 22 term goes to oo and the



10.

11.
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(r — 5)3 term goes to —oo, so the product goes to —co. We might note
that when x is large (positive or negative), the quantity (x —5) behaves
like its highest-degree term x; so x?(x — 5)% behaves like 2% near the
edges of the graph, but not near the origin!

. Sign of the derivative: as we saw in Section 12.1.1, the table of signs

for f'(x) is as follows:

z |-1]10 |12 |3|5]|6
f@|+0 |- |0+
1IN 2|~

+
— |

This tells us where the function is increasing, decreasing or flat.

. Maxima and minima: we see from the above table that x = 0 is a local

maximum, x = 2 is a local minimum, and x = 5 is a horizontal point of
inflection. Now we need to calculate the corresponding y-coordinates by
using the formula y = f(z) = 2%(z — 5)3. This isn’t too bad: f(0) = 0,
f(2) = (2)%(—3)3 = —108, and f(5) = 0. So there’s a local maximum
at the origin, a local minimum at (2,—108) and a horizontal point of
inflection at (5,0).

Sign of the second derivative: we already found this in Section 12.1.2:

z |0|{2-3vV6 |2 [2+21V6 4|56
J' (@) - 0 + 0 — |0 |+

VR .

~ * ~—
We can use this to see where the function is concave up and where it’s
concave down. Notice that f”(0) < 0, which confirms that the critical
point & = 0 is a local maximum; and also that f”(2) > 0, confirming
that the critical point x = 2 is a local minimum.

Points of inflection: from the above table, we have points of inflection
atr = 2—%\/67 T = 2—&—%\/6 and x = 5. Actually, we already knew about
this last one, since we saw in step 9 above that (5,0) is a horizontal point
of inflection. The other two are a lot messier. We need to substitute
r=2— %\/6 and x =2+ %\/6, one at a time, into the original equation
y = 2%(z — 5)%. Unfortunately, you get a bit of a mess. Let’s cheat a
little and define a = f(2— 21/6) and 8 = f(2+ 3V/6). This means that

a=(2-iV6)2(-3-1V6)>  and  B=(2+:V6)2(-3+ LV6)>.

Actually, if you go to the trouble of multiplying everything out, you can
simplify these expressions, but it’s no fun at all. We might also make a
rare use of a calculator to see that « is approximately —45.3 and [ is
approximately —58.2. These are approximations only! The calculator
can never give you the true value of an irrational number such as «
or 8. Anyway, we have found points of inflection at (2 — %\/6, «) and

(24 V6, 3) as well as (5,0).
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Now let’s put everything together. Starting with a set of axes, mark in the
y-intercept at the origin, the z-intercepts at 0 and 5, the local maximum at
the origin, the local minimum at (—2,108), the horizontal inflection point at
(5,0), and the nonhorizontal inflection points at (2—2v/6, ) and (2+2+/6, B).
We also know that y — co as * — oo, and y — —oo0 as * — —0o0, SO we can
put a small piece of curve to indicate this. Altogether, here’s what we get:

Note that we know from the table of signs for f’(x) that the slope at the
inflection point (2 — %\/6) is negative and that the slope at (2 + %\/6) is
positive. Now all we have to do is join the pieces:

+
(SIS
S

Again, this is better than our previous attempt at sketching this graph on
page 207, because it shows the inflection points as well.
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12.3.4  The full method: example 3

‘\ Let’s sketch the graph of y = f(z), where
Y, )
f(x) = ze3/2,

1. Symmetry: replace z by (—x) and we get —ge—3(-2)/2 = —CE€_3I2/2,
which is just —f(x). This means that the function is odd, which is a
major bonus: we only have to graph it for x > 0, then it’ll be easy to
get the other half.

2. y-intercept: if x =0, then y = Oe
y = 0.

=3(0*/2 = (0. So the y-intercept is at

3. z-intercepts: if y = 0, then we have 0 = ze=37"/2. So either z = 0 or
e=37"/2 = (. The latter equation has no solution, since exponentials are
always positive! So the only z-intercept is at x = 0. So far, all we know
is that the function is odd and the only place it crosses the axes is at
the origin.

4. Domain: clearly you can make z equal to anything and never have a
problem—there are no square roots or logs, and even if you write the

function as .

y = 63I2/27

the denominator can’t be zero since exponentials are always positive. So
the domain is the real line R.
5. Vertical asymptotes: there aren’t any, since the domain is R.

6. Sign of the function: we know that the only place f(x) = 0 is when
x = 0, so the table of signs is ridiculously simple:

x |—-1]0 1
f@)|- 10|+

The function is positive when x > 0 and negative when x < 0.
7. Horizontal asymptotes: we need to find

. X . x
e ad o I e

Note that 3x2/2 is a large positive number in either case, so the de-
nominator is a large exponential. Since exponentials grow quickly (see
Section 9.4.4 in Chapter 9), both the above limits are 0. So there is a
two-sided horizontal asymptote at y = 0.

8. Sign of the derivative: now we have to differentiate. By the product
rule and the chain rule, you can check that

f'@) = x(_393)e—3x2/2 +e32%/2 = (1- 31:2)673””2/2.

This is defined everywhere, but where is it 07 Since exponentials are
positive, it is only 0 when 1 — 322 = 0, that is, when z = 1/v/3 or
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10.

11.

r = —1/+/3. Let’s choose the points —1, 0, and 1 to fill in the gaps; our
table of signs for the derivative looks like this:

v |-1|Z o |5 1
Fafl-]o]+]0|-
Nl =77\

We see that the function is increasing between —1/4/3 and 1//3, and
decreasing elsewhere. Notice that the oddness of f (as in step 1 above)
is clearly apparent from the third row of the above table.

. Maxima and minima: looking at the table of signs, it’s pretty evident

that x = 1/\/5 is a local maximum and z = —1/\/?_) is a local minimum.
The only thing left is to substitute these values of x into the equation
for y. When z = 1/\/§7 we have

g Lesavare 2
V3 V3
So there’s a local maximum at (1/v/3,e~/2/4/3). Since the function is

odd, we don’t even need to substitute x = —1/ V/3 to see that there must
be a local minimum at (—1/v/3, —e~/2/1/3).

Sign of the second derivative: now we have to differentiate again,
using the product rule and chain rule once more. We find that

(@) = (1= 32)(=32)e /2 4 (—6w)e "/ = 9u(a? — 1)e /2,

Once again, since exponentials are positive, the only way that f”(z) can
equal Oisifx =0or 22 —1=0, thatis,if x =0,z =1 or x = —1. The
table of signs looks like this:

z|-2|-1-5]0 ]3| 1|2
ffe)f= o |+]0|—|0]|+
a ~ a ~
For x = 1/2, the factor 9z is positive whereas (z? — 1) is negative,

and the exponential is positive, so the whole thing is negative. When
r = 2, it’s just as easy to see that the second derivative is positive. The
situation for = —1/2 and = —2 is just as easy and in fact follows by
symmetry. (Since the original function is odd, its derivative is even and
its second derivative is odd. You may have to think about this point a
little!) The third row indicates that the graph is concave down when
x < —1lor0<zx<1,and concave up when z > 1 or —1 < x < 0. By the
way, notice that at the critical point =1/ V/3, the second derivative is
negative—this confirms that we have a local maximum there. Similarly,
when x = —1/4/3, the second derivative is positive, so we do indeed
have a local minimum there.

Points of inflection: from the above table, we can see that the concav-
ity clearly changes at x = 1, x = —1, and x = 0; so these are all points
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of inflection and we just n2eed to find the y-coordinates. By substituting
in the equation y = ze~3%"/2_ it’s easy to see that the points of inflection
should be displayed on the graph as (1,e=%/2), (=1, —e~3/2) and (0,0).

If you’ve been really good, you would have been plotting what we already
know on a set of axes, and you should have something like this:

e~ 1/2 S
3 N
e 3/2 e
S~
— [ [ [ [
_ 1 1
-1 7 7 1
° L o-3/2
e ] e/
1T V3

On this graph, you can see the z- and y-intercepts (at the origin), the horizon-
tal asymptote (the z-axis), the maximum at (1/v/3,e~/2/4/3), the minimum
at (—1/v/3, —e~1/2/1/3), and the inflection points at (1,e=3/2), (=1, —e=3/2),
and (0,0) (shown as dotted lines for now). Because we know the sign of f(z)
from step 6, we've even diagnosed the behavior near the horizontal asymp-
totes and displayed this information on the graph. Anyway, all that’s left is
to connect the dots:

e—1/2 N
V3 2
_ —3z%/2
=ze
e—3/2 | Yy
[ [ [ [
_ _ 1 1
1 S 7 1
| _e3/2
77777 1 6—1/2
V]

This sketch really illustrates all the important features of the graph.
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12.3.5 The full method: example 4

Now let’s do it all over again: we’ll sketch the graph of y = f(z), where f is
the fearsome-looking function defined by

23 — 62?2+ 13z —8
- .

fx) =

1. Symmetry: replacing z by —x, we get (—z° — 622 — 13z — 8)/(—=2),
which is neither f(x) nor —f(z), so there’s no symmetry. Bummer.

2. y-intercept: put x = 0, and you get —8/0 which is undefined. So
there’s no y-intercept.

3. z-intercepts: now things get nasty. We need to set y = 0, which means
that 22 — 6224 132 —8 = 0. This is a cubic equation, so factoring might
be a pain in the butt. The best bet is to try to guess a solution. Try
x = 1. Well, you get 1 —6+4+13—8 = 0, and it works! (Basically, the only
nice solutions would be factors of the constant term —8, so if +1, +2,
+4 and £8 don’t work, you're screwed.) Luckily our first try worked
and we know that (x — 1) is a factor. Now we have to divide:

;v—l) 23 — 622 + 132 — 8

I leave it to you to do this division and show that the other factor
is 2 — 5x + 8. Can you factor this quadratic? The discriminant is
(—5)% — 4(8) = —7, which is negative, so you can’t factor the quadratic.
That is, we have 23 — 622 + 13z — 8 = (2 — 1)(2? — 5z + 8), and the
second factor is always positive, so the only z-intercept is z = 1.

4. Domain: the only problem is at z = 0, so the domain is R\{0}.

5. Vertical asymptotes: there’s one at x = 0, since the denominator
vanishes there but the numerator doesn’t. There can’t be any other
vertical asymptotes because the function is defined everywhere else.

6. Sign of the function: write f(x) as

flz) = (x—l)(x2—5z—|—8).

T

The only x-intercept is at = 1, and the only discontinuity is at z = 0,
so our table of signs looks like this:

N[=
—
[\)

z |-110

f@l+ 1«10 |+

(Make sure you believe the signs at z = —1, £ = 1/2, and z = 2.)
7. Horizontal asymptotes: consider

o 2 —6x24+13x—38 . 3 — 622+ 13z —8
lim and lim .
T —00 x r——00 €T
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These can be written as

lim <:1:2 — 6z + 13 — §) and lim <a:2 — 6z +13 — §) .
T—00 x T——00 x
It’s quite clear that both these limits are infinity, so there are no horizon-
tal asymptotes. On the other hand, when « is large (or negatively large),
f(x) acts like its dominant term, which is 2. So the curve should look
pretty similar to the parabola y = 22 but only when z is large. Anyway,
we’ve taken no derivatives but we still know a lot about the function:

—_

Notice that we used the table of signs for f(x) to see how the graph
looks near the vertical asymptote at x = 0. In particular, when x is a
little less than zero, f(x) is positive, so the curve goes up to co on the
left side of the asymptote. Similarly, when x is a little larger than zero,
f(x) is negative, which means that the curve goes down to —oo on the
right side of the asymptote.

. Sign of the derivative: we have three forms for f(x) that we’ve already
used:

23— 622+ 132 -8 (v —1)(a® — 5z + 8) 8

f(x) = = =22 6r+13- 2.
X X s

We need f/(x), and you can take your pick which form of f(z) you want
to use. I vote for the last one since it doesn’t require any use of the
product rule or the quotient rule. We have

8
f(z) :2m—6+ﬁ,

which we can now write as
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10.

So where is the derivative equal to 0, and where does it not exist? It’s
pretty obvious that the only place it doesn’t exist is when z = 0. On
the other hand, if f/(z) = 0, then we must have 2% — 622 +8 = 0. Once
again we need a solution to a cubic equation; this time, x = 1 doesn’t
work, so try x = —1. Hey, it does work! After you do the long division,
you find that you can factor the cubic as 2(x + 1)(x — 2)2. That is,

2(x 4+ 1)(z — 2)2-

f'x) =

T

So the derivative is undefined at x = 0 and it equals zero when x = —1
or £ = 2. Now we can draw up a table of signs for f/(x):

z |-2|-1 —% 01123
ff@—=1o|+|*|+|0]+
N |/ =

Make sure you check the details of this table! In any case, we can see
that the function is increasing when = > —1 (except at the critical points
x =0 and z = 2) and the function is decreasing when z < —1.

. Maxima and minima: looking at the table of signs, we see that x = —1

is a local minimum and = = 2 is a horizontal point of inflection. We
need the y-coordinates; it’s not too hard to see that f(—1) = 28 and
f(2) =1. So (—1,28) is a local minimum and (2, 1) is a horizontal point
of inflection.

Sign of the second derivative: we know that x = 2 is a point of
inflection, but are there any others? Let’s find out. Use the form

8
f'(a:):2x—6+ﬁ

to find that 3
1 2 —
f’/(x)zg__(i:u

3 3

So the second derivative is undefined at z = 0 and it’s zero only when
23 —8 =0, so x = 2. There aren’t any other points of inflection! Let’s
draw up the table of signs:

z |]-110 1|23

|+« = o |+

N2 N

You can see that the graph is concave up when z < 0 and = > 2, and
concave down when 0 < x < 2. By the way, at the critical point z = —1,
we have f”(z) > 0, so we indeed have a local minimum there; on the
other hand, at the critical point = 2, we see that f”(2) = 0, which by
itself wouldn’t have been enough information to confirm the inflection
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point. The best way to nail that down is to show that the sign of the
derivative is the same on either side of x = 2. This information is nicely
conveyed by the table of signs.

11. Points of inflection: we know that x = 2 is the only one, and we’ve
already seen that this leads to the inflection point (2,1).

Let’s complete our sketch of the graph, based on our newfound knowledge
in the last few steps. We need to put in the minimum at (—1,28) and the
horizontal point of inflection at (2,1). Unfortunately 28 is a big number, so
we’ll need to squish the y-axis (compared to our rough draft above) to get the
scale right. We end up with this:

2% — 622 + 13z — 8
x

y:

The dotted curve is supposed to be y = x2, although the scale isn’t right.
Also, on the right-hand side of the graph, the solid curve is supposed to get
close to y = z2, but I didn’t do a great job of it. Unfortunately, if you get
this sort of behavior right, you end up missing the detailed behavior at the
inflection point. Indeed, here’s what the output from a graphing calculator
might look like:

600 T T T T T T
500
400
300
200
100

0
—100
—200 1
—300 1

—400 1 1 1 1 1 1
—20 —15 -10 -5 0 5 10 15 20
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So you can see that the curve looks roughly like y = 2 with some strange
stuff going on near x = 0, but you can’t really make out the details. This
really illustrates the difference between “plotting” and “sketching” a graph.
After all, the graphing calculator has just plotted enough points to make the
curve look smooth, but it doesn’t emphasize the interesting features of the
graph. You might get a better idea if you zoom in, but then you wouldn’t see
the behavior for large x. Even though it’s inaccurate, our rough sketch above
is much more useful for understanding what’s really going on, especially as
far as turning points and points of inflection are concerned: it shows exactly
where all these features are.



CHAPTER 13

Optimization and Linearization

13.1

We're now going to look at two practical applications of calculus: optimiza-
tion and linearization. Believe it or not, these techniques are used every day
by engineers, economists, and doctors, for example. Basically, optimization
involves finding the best situation possible, whether that be the cheapest way
to build a bridge without it falling down or something as mundane as find-
ing the fastest driving route to a specific destination. On the other hand,
linearization is a useful technique for finding approximate values of hard-to-
calculate quantities. It can also be used to find approximate values of zeroes
of functions; this is called Newton’s method. In summary, we’ll look at

e how to solve optimization problems, and three examples of such prob-
lems;

e using linearization and the differential to estimate certain quantities;
e how good our estimates are; and
e Newton’s method for estimating zeroes of functions.

Optimization

To “optimize” something means to make it as good as possible. This being
math, we're going for quantity over quality here. Suppose there is a certain
quantity we care about. It could be a number, a length, an angle, an area,
a cost, an amount of money earned, or one of oodles of other possibilities. If
it’'s a good thing, like amount of money earned, then we’d like to make the
quantity as large as possible; if it’s a bad thing, like cost, then we’d like to
make it as small as possible. In a nutshell, we want to maximize or minimize
the quantity. So in our context, the term “optimize” just means “maximize
or minimize, as appropriate.”

An easy optimization example

In the last few chapters, we’ve spent quite a lot of time learning how to
find maxima and minima of functions. So far as optimization is concerned,
normally we would be interested in finding global maxima and minima. In
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Section 11.1.3 of Chapter 11, we looked at a nice method for doing this. I
urge you to go back and read this section now to refresh your memory.

In any case, to use our method, we need to express the quantity as a
function of one other quantity that we can control. For example, suppose
that two real numbers add up to 10, but neither number is greater than 8.
How large could the product of the two numbers possibly be, and how small
could it be?

Before we bust out our method, let’s just explore the situation first. If
one of the numbers is 8, which is as large as either number can be, then the
other number is 2 and the product is 16. At the other extreme, the numbers
are both equal to 5 and the product is 25, which is certainly larger than 16.
Can we make the product larger than 25 or smaller than 16?7 How about if
the numbers are 4% and 5%? Try it and see.

Now let’s get serious and choose some variables. Suppose that the numbers
are x and y, and that their product is P. Well, we know that P = xy. The
quantity we want to optimize is P, but it’s a function of two variables: =z
and y. This doesn’t suit us at all. We really need P to be a function of one
variable—it doesn’t matter which one. Luckily we have one other piece of
information: we know that x 4+ y = 10. This means that we can eliminate y
by writing y = 10 — z. If we do that, then P = (10 — x). This expresses P
as a function of x alone.

One important point, though: what is the domain of P? Sure, you could
plug any z into the formula (10 — z) and get a meaningful answer, but we
know something about z that we haven’t expressed in math terms yet: it
can’t be more than 8. Actually, it can’t be less than 2 either, or else y would
be bigger than 8. So 2 must lie in the interval [2,8]. We should consider this
to be the domain of P.

So we have rewritten our word problem as follows: maximize P = z(10—x)
on the domain [2,8]. Not so bad! We just write P = 10z — 22, so we have
dP/dx = 10 — 2z. This is 0 when 2 = 5, so that’s the only critical point.
We also could have a maximum or minimum at the endpoints x = 2 and
x = 8. Our list of potential maxima and minima is therefore 2, 5, and 8.
When z = 2 or ¢ = 8, we see that P = 16, and when z = 5, we have
P = 25. The conclusion is that the maximum value of the product is indeed
25, and this occurs when both numbers are 5. The minimum value is 16,
which occurs when one number is 8 and the other is 2. Notice that when I
stated this conclusion, I didn’t mention P, z, or y, since those were variables
that I introduced. If the variables aren’t actually given in the problem, then
you not, only have to identify them and pick names for them; you also have
to write your final conclusion without mentioning them!

It doesn’t hurt to verify that x = 5 is indeed a maximum by looking at a
table of signs* for P’(x), using the formula P’(x) = 10 — 2a:

P |+]of-

*See Section 12.1.1 in the previous chapter.
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Yup, it’s a maximum. We could also verify that x = 5 is a maximum by
looking at the sign of the second derivative, as described in Section 11.5.2
of Chapter 11. Indeed, P"(z) = —2, so P”(5) = —2 as well. Since that’s
negative, we again see that x = 5 is a local maximum (which is also a global
maximum). Neither of these methods works on the endpoints, though—they
only work for critical points.

13.1.2  Opfimization problems: the general method

1.

Here’s a way to tackle optimization problems in general:

Identify all the variables you might possibly need. One of them should
be the quantity you want to maximize or minimize—make sure you know
which one! Let’s call it @ for now, although of course it might be another
letter like P, m, or .

. Get a feel for the extremes of the situation, seeing how far you can push

your variables. (For example, in the problem from the previous section,
we saw that z had to be between 2 and 8.)

. Write down equations relating the variables. One of them should be an

equation for Q.

. Try to make @ a function of only one variable, using all your equations

to eliminate the other variables.

. Differentiate @ with respect to that variable, then find the critical points;

remember, these occur where the derivative is 0 or the derivative doesn’t
exist.

. Find the values of @ at all the critical points and at the endpoints. Pick

out the maximum and minimum values. As a verification, use a table of
signs or the sign of the second derivative to classify the critical points.
Write out a summary of what you’ve found, identifying the variables in
words rather than symbols (wherever possible).

Actually, sometimes step 4 can be quite difficult, but you might be able to
avoid it altogether by using implicit differentiation. We’ll see how to do this
in Section 13.1.5 below.

Let’s see how to apply the method. Suppose that the border of a farm is a
long, straight fence, and that the farmer wants to fence off a little enclosure
for some horses to graze in. The farmer is a little eccentric and would like to

make the enclosure in the shape of a right-angled triangle with the existing
fence as one of the sides which is not the hypotenuse, like this:

new fence

enclosure

T 7T 7 )7
existing fence
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Assuming that only 300 feet of fencing are available, and that the farmer wants
the enclosure to have the largest possible area, what are the dimensions and
area of the enclosure?

Let’s pick some variables. We'll let the base of the triangle be b, the height
be h, the hypotenuse be H (all in feet), and the area be A (in square feet),
like this:

H
hi A

b
VAV AV AV AV A A A A A e e

Note that the fence is of length h + H, and we want to maximize A. That
completes step 1. Moving on to the second step, consider some extreme shapes
that you can make out of 300 feet of fencing:

In the first case, h is nearly 0, while b and H are both almost 300, but the area
is tiny! In the second case, b is nearly 0, while h and H are both almost 150.
The area is still very small. So we can do better by some middle-of-the-road
solution. We have at least determined that b and H are between 0 and 300,
and that h is between 0 and 150.

Moving on to step 3, we see that A = %bh and also that h+ H = 300. We
still need one more equation, since we have to condense the three variables b,
h, and H down to one. In fact, we can use Pythagoras’ Theorem to say that
b% + h? = H2.

Now we should try to eliminate some variables. We can take square roots
and write H = v/b% + h?, since we know H > 0; substituting into h+H = 300,
we get the equation h + /b2 + h2 = 300. Let’s try to eliminate b from this.
Subtract h from both sides and square to get

b% + h? = (300 — h)? = 90000 — 600h + hZ.

This means that b = /90000 — 600h = 104/900 — 6h, again since b is positive
(that is, it can’t be the negative square root!). Finally, the equation A = %bh
can be rewritten as

1
A= 3 x 10v/900 — 6h X h = 5hv/900 — 64,

where h lies in the interval [0, 150]. That’s step 4. As for step 5, you can use
the product rule and the chain rule to see that

dA -6 45(100 — h)
= =5 (/900 — 6k + h = .
dh ( 2,/900 — 6h> /900 — 6k
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This equals 0 when 100 — A = 0, that is, when A = 100. Moving on to step 6,
we substitute h = 100 into the equation for A above, and we get

A = 5(100)1/900 — 6(100) = 500/300 = 5000v/3.

On the other hand, at the endpoint h = 0, we see that A = 0; similarly, when
h = 150, the quantity 900 — 6A vanishes, so A = 0 once again. The conclusion
is that A is maximized when h = 100. We can check this with a table of signs.
This isn’t so bad, since the numerator of dA/dh is just 45(100 — k), while the
denominator is always positive. The table of signs for dA/dh looks like this:

h |99 |100 |101
dAJdh |+ | 0 | =

1IN

So h =100 is indeed a local maximum, as we suspected.

Now we just have to finish it off. The question asks for the dimensions,
and we only have one: h = 100. We’d better find b and H. Just look back at
the equations: we know that h + H = 300, so we immediately get H = 200.
Also, we know that > + h?> = H?; plugging in h = 100 and H = 200,
we can see that b = 100v/3. Finally, we already found that the maximum
value of A is 5000v/3. So our concluding sentence could go something like
this: the enclosure of maximal area has base 100+/3 feet, height 100 feet, and
hypotenuse 200 feet, and the area is then 5000v/3 square feet.

13.1.4  Another opfimization example

7\ Here’s a nice problem. Suppose that you are manufacturing closed, hollow
cylindrical metal cans. You can choose their dimensions, but the volume of
a can must be 167 cubic inches. You’d like to use as little metal as possible,
since the metal costs 2 cents per square inch. What dimensions should the
cans be to make your costs as low as possible, and how much does each can
cost in that case?

As a follow-up problem, how does the situation change if we now take
into account that the top and bottom of each can have to be welded onto the
curved bit, and it costs 14 cents an inch to weld?

Let’s start with the first part. Here’s a diagram of the situation:

To describe the cylinder, we only need to say what its radius and height are,
so let’s call them r and h (in inches). We'll also need the volume V' (in cubic
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inches), since the question mentions it. Also, the cost depends on how much
metal we use, which is basically the surface area of the cylinder. Let’s call a
can’s surface area A (in square inches) and its cost C' (in cents). The quantity
C is the one we want to minimize, although it’s pretty obvious that it will be
minimized if we can also minimize A. (This won’t be true for the follow-up
question!)

Now, moving on to step 2 of our method, what happens when the radius
r is really really small? The height h then has to be large so we can have our
volume of 167 cubic inches. We'd get a really tall, skinny cylinder like the
first picture below. On the other hand, if r is really large, then h has to be
small, and you get a wide, squat cylinder like the second picture:

>

Even though they look pretty extreme, actually they can get weirder. In
fact, r can be any positive number at alll So there aren’t really endpoints;
both 7 and h have to lie in the open interval (0,00) and we’ll have to be
careful. In either of the above pictures, it looks like there’s a whole lot of
metal involved, so the low-cost solution probably looks more like the nicely
proportioned cylinder above than either of the two extreme ones.

Now it’s time for step 3: we have to find some equations. We know
V = 16m; also, since V = mr2h for a cylinder, we have our first useful equation:

16w = mr2h.
We can rewrite this as 16 = 72h or
16

On the other hand, the surface area of a closed cylinder is
A = 27rh + 2712,

where the first term in the sum comes from the curved part and the second
term is from the top and bottom. (If there were no top, the second term
would just be 72 without the factor 2.) Finally, the cost is 2 cents times the
total area, so we have

C = 2A = 4dxrh + 47’

For step 4, notice that both terms on the right-hand side above involve r, so
it’s easier to get rid of h. Since we saw that h = 16/r2, we can just substitute

and get
16 16
C =4nr (—2> +4nr? = 47 (— +T2) .
r r

Great—we’ve expressed C' in terms of r, and now the question is to minimize
C when r lies in the interval (0, 00). We have

dC 16
5—47'(' (-T—2+2T> N
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which exists for all r in (0, 00) and is zero precisely when

16
——2+2T:O,
T

or 2r3 = 16. This means that 73 = 8, so r = 2 is the only critical point. How
about the endpoints? We can’t substitute » = 0 into the formula for C, but
we can take a limit:

lim C = lim 4~ (E +r2) = 0.
r—07+ r—0t r

The limit is infinite because the 16/r term blows up as 7 — 0%. This means

that as the radius goes down to 0, our costs get larger and larger. This isn’t

what we want at alll So we’ll stay away from that endpoint. How about the

other endpoint of our interval (0,00)? Once again, we can’t just set r = oo,

so we’ll take a limit:

lim C = lim 47 <E +7’2> = 00.
r—00 r—00 r

This time it’s the 72 term that blows up. No matter, we still need to avoid this
endpoint. So our conclusion is that » = 2 gives a local and global minimum.
We can check this by using a table of signs for dC/dr or by looking at the
sign of the second derivative. Let’s use the second derivative:

d*C 32

This is always positive when r is in the domain (0, 00); in particular, when
r = 2, it’s positive, so we must have a local minimum there.

All that’s left is to find the other variables when » = 2 and write up
our conclusion. Indeed, when r = 2, we can see that h = 16/r? = 4, and
C = 4nrh + 47r? = 487, This means that the cheapest shape occurs when
the radius is 2 inches and the height is 4 inches; each can costs 487 cents,
which is about $1.50 (pretty expensive for a lousy can!). Notice that the
diameter and the height of the can are the same in this case.

Now let’s do the follow-up problem. Everything is the same as it was in
the original problem, except that we now have to add on the welding cost of
14 cents per inch, so our formula for C will change. How much welding is
there per can? Well, we need to weld on the top and the bottom, so we're
dealing with twice the circumference of each of these circles. That means we
need to weld twice 271, or 477, inches per can. This adds a cost of 14 x 47r
cents per can, so our new formula for C' is

16 16
C—47T<—+7’2>—|—14X47T7’—47T<——|—T2+147’>.
r r

(Factoring out that pesky 47 is a good idea.) Anyway, now we differentiate

to find that i 16
% :47T (-T—2+2T+14>,
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which equals 0 when

16
——2+27‘+14=0.
T

To solve this equation, multiply through by r2, divide by 2, and switch the
sign of everything to get
4+ 7r? =8 =0.

(Make sure you check that this is right!) Great. Now we have to solve a cubic
equation. Luckily, something simple works: » = 1. So you can do a long
division and see that the other factor is (72 +8r +8) (check this!). So we have

(r—1)(r*+8 +8) =0,

and either » = 1 or 2 4+ 8r + 8 = 0. The solutions of the quadratic equation

are
—8£+v32
2 Y

both of which are negative since v/32 is only about 6. So the only critical
point when r is positive is r = 1. Once again, this is a minimum because the
costs are infinite at the endpoints (for the same reason as before—the welding
certainly doesn’t make it cheaper). Alternatively, we have

d*C 32
@z AT (r—s+2>=

which is actually the same as it was before. So it’s positive, the curve is
concave up and we do have a minimum when r = 1.

Now we just need to substitute. We find that h = 16/r?> = 16, and
C = 47m(16/1 + 12 + 14 x 1) = 1247 cents, which is nearly $4! Looks like we
have to cut costs somehow. In any case, the ideal can now has radius 1 inch
and height 16 inches, and it costs 124m cents to make. Notice that the optimal
radius is now less than it was in the first part of the question, which makes
sense since a smaller radius really cuts down on those expensive welding costs.

13.1.5 Using implicit differentiation in opfimization

Before we move on to our final example, let’s just take another look at the
first part of the previous example. There we knew that

C = 4r(rh +1?) and r?h = 16,
and we minimized C by eliminating the variable h. Another way of doing
the minimization is to differentiate both sides implicitly with respect to the
variable r, which is the one we wanted to keep anyway. (See Section 8.1 in
Chapter 8 for a review of implicit differentiation.) Here’s what we get:

£:47T h—l—rﬁ—i—% and 2rh+r2%20.
dr dr dr

Check to make sure you agree with this! Anyway, if we solve the second
equation for dh/dr, then since r # 0, we get
dh  2rh _ 2h

dr r2 r
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Put this into the first equation:

ac 2h
. =dr <h+7’ X —— —|—2r) =4n(h — 2h 4 2r) = 47(2r — h).

r r
So dC/dr = 0 precisely when 2r = h, which is what we found before! To
see that the critical point here is a minimum, differentiate the above equation
with respect to r once more to get

d*C dh 2h

dr? i < dr> T < + r )
(Here we used the fact from above that dh/dr = —2h/r.) The main thing
to notice is that the right-hand side of the above equation is always positive,
so the graph of C against r is concave up and we do have a minimum. Of

course, knowing that 2r = h at the minimum doesn’t tell you what either
variable actually is! To find that, substitute into the equation 16 = r2h to get

16 = r%(2r) = 2r3, so r = 2 and h = 4 as before.
; Now, see if you can redo the follow-up part of the question using implicit
/ differentiation and make sure you get the same answer as the one we found
above.

13.1.6 A difficult optimization example

Suppose that an oil-drilling platform in the sea is 8 miles due east of a light-
house on the shore. The backup power generator for the platform is 2 miles
due north of the lighthouse. You need to run a cable from the generator to the
platform. The water is quite shallow for the first mile east of the lighthouse,
but gets much deeper after that. It takes your crew only 1 day per mile to run
the cable in the shallow water, but it takes 5 days per mile to run it in the
deep water. Show that the quickest way to run the cable is as in the following
diagram (in which all measurements are in miles), and find out how long it
takes to run the cable in that case:

shallow deep T

LAND | SEA
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Urk. This seems hard. First, let’s note that the diagram is at least somewhat
realistic. It would be crazy to position the cable with lots of curves, since that
would just add to the length. On the other hand, we need to think carefully
about where the cable should hit the interface between the shallow and the
deep water. Once we know where that is, it makes a lot of sense to run the
cable in straight lines from the generator to the point on the interface, and
from the point on the interface to the platform. Once again, it would be
crazy to have the point on the interface to the north of the generator or south
of the platform—that would have to take longer. Here are some reasonable
possibilities:

In the first picture, there’s quite a lot of cable in the deep water, so it probably
won’t be great. The second picture shows the least possible amount of total
cable, but that doesn’t mean it takes the shortest time: there’s still a quite
a lot of cable in the deep water. The third picture shows a scenario with
the least possible amount of cable in the deep water, but this comes at the
expense of having a lot of cable in the shallow water. These explorations
have confirmed that the quickest solution is probably somewhere between the
situations from the second and third pictures, as the problem suggests.

It’s time to introduce some variables. Let y, 2z, s, and t be as shown in the
following diagram:

shallow deep T

LAND | SEA
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So s is the length of cable in the shallow water and ¢ is the length in the
deep water.* Also, y is how far north the interface point is, in miles, from
the line joining the lighthouse and the platform, and z makes up the rest of
the distance to the east-west line through the generator, so y + 2z = 2. We
want to show that the quickest way to lay the cable is when both y and z are
equal to 1. We've already seen that y and z should lie in the interval [0, 2],
but actually we don’t even need to assume this.

We also want to work out the total time taken. Since it takes 1 day per
mile for the shallow water, and we have s miles of cable, it takes 1 x s = s
days to run the part of the cable in the shallow water. Similarly, it takes 5
days per mile for the deep water, for a total of 5¢ days. Letting T be the total
time taken, we see that

T = s+ 5t.

This is the quantity we want to minimize. Now, we need to find equations for
s and t. To do this, we use Pythagoras’ Theorem twice to get two equations:

s?2 =22 +1,
t? = y? +49.

Now take the square root of both equations and substitute the results into
the equation for T above; you should get

T =22 +1+5y2+49.

Since y + z = 2, we can replace z by 2 — y and get

T=+2-y)2+1+5yy>+49.

I leave it to you to differentiate this and check that
dT 2—y oy

- = + .
dy VE2-y)?2+1 y2+49

We want to show that the shortest time occurs when y = 1. Let’s substitute
that into the above equation and see what we get:

dr 1 ) 1 5 1 5

dy VIZ+1  V1+49 V2 /50 V2 5V2

Hey, y = 1 is a critical point after alll So at least there’s a hope that it’s the
global minimum. Unfortunately, we still need to prove this. One way to do
this is to take the second derivative. After a lot of grunt-work, you can show
that

T 1 n 245

W@y P (P19
So the second derivative is always positive, so the curve is concave up and
y = 1 is indeed a local minimum. In fact, it must be the only local minimum!

*1 guess the length of cable in the deep water should be called d, but how weird does
dd/dx look? Don’t use d as a variable in calculus problems!
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Indeed, if there were other critical points, then they would all be local minima
as the second derivative is positive. You just can’t have lots of local minima
without local maxima in between, so there aren’t any. This means that y =1
is also the global minimum, which is what we want.

We have nearly finished: just substitute y = 1 into the equation for 7" to
see that

T=/2=1)%+1+5V12+49 = V2 + 5V50 = V2 + 25v/2 = 26V/2,

so it takes 264/2 days in total (or approximately 36.75 days).
Before we move on to our next topic, let’s just look at one other way to
see that y = 1 is a minimum. The trick is to take the expression

ar 2—y 5y

— = +
dy VE2=y)?2+1  y2+49

and rewrite it in a clever way. In the second term on the right, we divide top
and bottom by y, while in the first term, we divide by (2 — y). Making the
reasonable assumption that y and (2 — y) are both positive, we can write

dr 1 )

@ _ + .
dy \/1+71 \/1+@
(2-y)? y?

What happens when y gets bigger? Well, (2—v) gets smaller, as does (2—y)2,
so 1/(2 —y)? gets bigger. This means that the denominator in the first term
gets bigger, so its reciprocal gets smaller, but its negative gets bigger. If you
have chased this around properly, you’ll have to conclude that when y gets
bigger, so does the first term above. In the same way, 49/y? gets smaller,
so the denominator of the second term gets smaller, but the term itself gets
bigger.

What we’ve just shown, without too much work, is that dT'/dy is an in-
creasing function of y, at least on the interval (0,2). Since dT'/dy is increas-
ing, its derivative d2T/dy? is positive! So we have managed to show that the
second derivative is positive without actually having to calculate it, and we
conclude that y = 1 is a minimum, once again.

Linearization

Now we're going to use the derivative to estimate certain quantities. For
example, suppose you want to get a decent estimate of v/11 without using a
calculator. We know that /11 is a little bigger than v/9 = 3, so you could
certainly say that /11 is approximately 3-and-a-bit. That’s OK, but you can
actually do a better job without too much work. Here’s how it’s done.

Start off by setting f(z) = /x for any x > 0. We want to estimate
the value of f(11) = /11, since we don’t know the actual value. On the
other hand, we know exactly what f(9) is—it’s just v/9 = 3. Inspired by our
knowledge of f(x) when x = 9, let’s sketch the graph of y = f(z), and draw
in the tangent line through the point (9, 3), like this:
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The tangent line, which I've written as y = L(z), is very close to the curve
y = f(z) when x is near 9. It’s not so close when « is near 0. That’s not
important, since we want to approximate f(11), and 11 is pretty close to 9.
In the above picture, the line and the curve are close to each other at x = 11.
This means that the value of L(11) is a good approximation to f(11) = v/11.
Indeed, look how close the two values are on the y-axis in the picture above!

All this is irrelevant unless we can actually calculate L(11). So let’s do
it. The linear function L(x) passes through the point (9, 3), and since it’s the
tangent to the curve y = f(x) at = 9, the slope of L(x) is exactly f’(9).
Now f'(z) = 1/2y/z, so f'(9) = 1/2v/9 = 1/6. So, L(z) has slope 1/6 and
passes through (9, 3). Its equation is therefore

y-3=5-9)

which simplifies to y = x/6 + 3/2. That is,

Now all we need to do is calculate L(11) by substituting « = 11 into the above
equation. We get

1 3 10
L(11)=—+-="— =33
(11) 6 + 2 3 3
We conclude that
V11 >31

That’s a lot better than 3-and-a-bit! In fact, you can use a calculator to see
that +/11 is 3.317 (to three decimal places), so the approximation 3% is pretty
good.

13.2.1 Linearization in general

Let’s generalize the above example. If you want to estimate some quantity, try
to write it as f(z) for some nice function f. In the above example, we wanted
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to estimate v/11, so we set f(x) = \/ and realized that we were interested in
the value of f(11).

Next, we pick some number a, close to x, such that f(a) is really nice. In
our example, we couldn’t deal with f(11), but f(9) was nice because we can
take the square root of 9 without any problems. We could have chosen a = 25
instead, since we understand /25, but this isn’t as good because 25 is quite
far away from 11.

So, given our function f and our special number a, we find the tangent to
the curve y = f(z) at the point (a, f(a)). This tangent has slope f’(a), so its
equation is

y - fla) = f'(a)(x - a).
If the tangent line is y = L(x), then by adding f(a) to both sides in the above
equation, we get

L(z) = f(a) + f'(a)(x — a).

The linear function L is called the linearization of f at x = a. Remember,
we're going to use L(z) as an approximation to f(z). So we have

fz) = L(z) = f(a) + f'(a)(z — a),

with the understanding that the approximation is very good when z is close
to a. In fact, if x actually equals a, the approximation is perfect! Both sides of
the above equation become f(a). This isn’t helpful, though, since we already
understand f(a). The benefit is that we now have an approximation for f(x)
for  near a.

Let’s check that our formula works for the example in the previous sec-
tion. We have f(z) = v/z and a = 9. Clearly f(a) = f(9) = 3; and since
f'(z) = 1/2y/z, we have f'(9) = 1/2v/9 = 1/6. According to the formula, the
linearization is given by

L(w) = f(a) + f'(a) (& —a) =3+ 5w~ 9).
This agrees with our formula L(z) = x/6 + 3/2 from above, which we used to
find the estimate /11 & 3%. Now, how would you estimate \/8? We see that
8 is also close to 9, so we can just use the same linearization:

\/§:f(8)%L(8):3+%(8—9):%7.

So the formula L(z) = 3 + (x — 9)/6 gives a good approximation to /x for
any x near 9, not just 11.

On the other hand, suppose you also want to estimate v/62. It wouldn’t
be ideal to use L(62) as an approximation. Let’s see what happens if we do:

62—9
L(62) =3+ —— =11

[e[e]

Wait a second, /62 should be a little less than \/@7 which is 8. The value of
L(62), which is 11%, is way too high. The problem is that our linearization is
at x = 9, while 62 is a long way from 9; so the approximation isn’t very good.
To estimate /62, you’re much better off using the linearization at = = 64
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instead. So, set a = 64; we now have f(a) = 8 and f/(a) = 1/2v/64 = 1/16.
This means that our new linearization is given by

L(w) = f(a) + f'(a) (& — @) =8 + 7= (z — 64).

When x = 62, we have
1
V62 = £(62) = L(62) = 8 + 1—6(62 —64) =72
This approximation makes a lot more sense than 11% does!

13.2.2 The differential

Let’s take a look at the general situation once more. We saw that

f(@) = f(a) + f'(a)(z — a).

Let’s define Az to be  — a, so that x = a + Az. The above formula becomes

[/(atA2) = f(a) + f'(a)Ax.]

Here’s a graph of the situation:

fla+ Ax)

L(a+ Ax)

f(a)

The graph shows the curve y = f(z) and the linearization y = L(x), which
is the tangent line to the curve at z = a. We want to estimate the value of
f(a+ Az). That’s the height of the point F' in the above picture. As an
approximate value, we're actually using L(a + Ax), which is the height of P
in the picture. The difference between the two quantities is labeled “error”;
we’ll come back to this in Section 13.2.4 below.
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In the above graph, there’s one more quantity marked: this is df, which is
the difference between the height of P and f(a). It is the amount we needed
to add to f(a) in order to get our estimate. Since L(a+Azx) = f(a)+ f'(a)Az,
we see that

df = f'(a)Ax.

The quantity df is called the differential of f at x = a. It is an approximation
to the amount that f changes when x moves from a to a + Azx.

We’ve actually touched on these ideas before. In Section 5.2.7 of Chapter 5,
we saw that if y = f(x), then

’ : Ay
fz) = fmy R
This means that a small change in & produces approximately f’(z) times the
change in y. This is exactly what the equation df = f’(a)Az says, taking into
account that this time we are starting at x = a.
For example, suppose we want to estimate (6.01)2. Set f(x) = 22 and
a = 6; then you can easily see that f’(x) = 2z, so that f(6) = 12. We want
to know what happens when we shift  from 6 over by the amount 0.01; so
we should set Az = 0.01. We have

df = f'(a)Az = f/(6)(0.01) = 12(0.01) = 0.12.

So if we add 0.12 to the value of f(a), we should get a good approximation.
Since f(a) = f(6) = 62 = 36, this means that (6.01)> = 36.12. Now look
at back at Section 5.2.7 in Chapter 5 again: we solved the same example
there, using basically the same method—we just have some nicer formulas
now, that’s all!

Here’s another example of how to use the differential. Suppose that you
use a ruler to measure the diameter of a round ball and get 6 inches, but this
measurement is only accurate to 0.5%. If we use our measurement to calculate
the volume of the ball, how accurate is our result? Let’s use the differential
to work this out, at least approximately. If the ball has radius r, diameter D,
and volume V', then r = D /2, so

4 4 (D\® D3
V——?TTB——ﬂ'(?) =

When D = 6, we have V = 7(6)3/6 = 367. So we've calculated the volume
to be 367 cubic inches, but the true answer might be a little more or a little
less. To find out how much more or less, let’s use the above boxed formula,
df = f'(a)Axz. We need to change f to V, a to 6, and = to D to get the
appropriate formula for this case:

dvV =V'(6)AD.
Differentiating the previous formula for V' with respect to D, we find that

, ~ w(3D?)  wD?
V(D) = e =5
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This means that V/(6) = 18, so
dV = 187AD.

This equation means that if you change the diameter D from 6 to 6 + AD,
the volume V' changes by about 187w AD. In our case, the true diameter might
be 0.5% more or less than 6 inches, which is 0.005 x 6 = 0.03 inches. So AD
might be as high as 0.03 or as low as —0.03; in this worst case scenario, we
have

dV =187 x (+0.03) = £0.547.

This is a good approximation to the true error in the measurement, so we
can say that the volume of the ball is 367 cubic inches, accurate to about
0.547 cubic inches. Since the original error in the diameter was expressed as
a percentage of the diameter, we should probably do the same for the volume.
In percentage terms, an approximate error of dV = £0.547 on a quantity

V = 36m is . o
T X 100% = = T

x 100% = £1.5%.

In other words, the relative (percentage) error in the volume measurement
is about three times the relative error in the original diameter measurement.
That’s what happens when you compound the error in a one-dimensional
measurement in the calculation of a three-dimensional quantity.

13.2.3 Linearization summary and examples

Here’s the basic strategy for estimating, or approximating, a nasty number:

1. Write down the main formula

[f(@) 2 L(@) = f(a) + f(a)(x — a).|

2. Choose a function f, and a number x such that the nasty number is
equal to f(x). Also, choose a close to = such that f(a) can easily be
computed.

3. Differentiate f to find f.

4. In the above formula, replace f and f’ by the actual functions, and a
by the actual number you’ve chosen.

5. Finally, plug in the value of = from step 2 above. Also note that the
differential df is the quantity f’(a)(z — a).

Let’s look at a few examples. First, how would you estimate sin(117/30)?
Start off with the standard formula

f(x) = L(z) = f(a) + f'(a)(x - a).

We need to take the sine of something, so let’s set f(x) = sin(z). We are
interested in what happens when x = 117/30. Now, we need some number
a which is close to 117/30, such that f(a) is nice. Of course, f(a) is just
sin(a). What number close to 117/30 has a manageable sine? How about
107/307 After all, that’s just /3, and we certainly understand sin(7/3). So,
set a = /3.
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We’ve completed the first two steps. Moving on to the third step, we find
that f’(z) = cos(z), so the linearization formula becomes

f(z) & L(x) = sin (g) + cos (g) (:1: - g) .

Since f(z) = sin(z), this simplifies to

Finally, put = 117/30 to get

(M) (M) ) (e r) S s

30 30 2 2\ 30 3 2 60

This may still seem bad, but at least the estimate doesn’t involve any trig

functions—only the numbers 7 and \/§7 which are not too hard to deal with.
Now, consider this example: find an approximation for In(0.99) using a

linearization. Well, this time we set f(z) = In(z) and note that we are

interested in what happens when z = 0.99. A number near 0.99 that is nice,

so far as taking the log of it is concerned, is 1; so we set a = 1. Since

f(z) =In(z) and f'(x) = 1/z, the formula f(x) = L(z) = f(a)+ f'(a)(x —a)

becomes

Since In(1) = 0, we have shown that
In(z) 22— 1.
Replacing x by 0.99, we get
1n(0.99) = L(0.99) = 0.99 — 1 = —0.01,

and we're done.

More generally, how would you find an approximation for In(1+ h), where
h is any small number? In fact, you can use the linearization that we just
found, f(x) = L(z) = x — 1, to approximate In(1+h). Just replace x by 1+h
and we see that In(1 +h) 2 L(1+h) = (1 + h) — 1. That is,

In(1+h)=h

when h is small. Actually, this shouldn’t be a surprise! In Section 9.4.3 of
Chapter 9, we saw that
. In(1+4h)
lim ———=

=1
h—0 h ’

so we already knew that In(1+h) is approximately equal to h when h is small.
Finally, how about an approximation for In(e + k) when h is small? We
now need a different linearization, as the quantity (e + h) is close to e, not
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1. So let’s set a = e and start again, once again using f(xz) = In(z) and
f'(x) =1/x. We get

F(@) = L@) = f(a) + f/(a)(z ~ a) = In(e) + (&~ c).
Since In(e) = 1, we get
In(a) = La) =1+ = —1==.
When = = e + h, we have
In(e + h) = L(e + h) = eth =1+g.

That is, In(e + h) = 1 + h/e when h is small. This answer is quite different
from the answer in previous example, where we saw that In(1 4+ h) = h for
small h. Everything depends on the value of a.

13.2.4  The error in our approximation

We’ve been using L(z) as an approximation for f(z). They are not the same
thing, though. The question is, how wrong could we be to use L(z) instead
of f(z)? The way to find out is to consider the difference between the two
quantities. The smaller that distance, the better the approximation. So, set

where r(z) is the error* in using the linearization at z = a in order to estimate
f(z). Tt turns out that if the second derivative of f exists, at least between z
and a, then there’s a nice formula' for r(z):

1
r(x) = §f”(c) (x —a)? for some number ¢ between z and a.

The problem is, we don’t know what c is, only that it’s between x and a. The
above formula is related to the Mean Value Theorem, which we looked at in
Section 11.3 of Chapter 11. Since that theorem tells you about a number ¢
without telling you much about it, we shouldn’t be surprised to see it popping
up here.

We can use the above formula to tell us two things. First, note that the
quantity (z — a)? is always positive. This means that the sign of r(x) is the
same as the sign of f”(c). So if we know that the curve is concave up, at
least between a and z, then r(z) is positive. Since r(z) = f(z) — L(z), we
see that f(z) > L(x). This means that our estimate L(z) is lower than f(x),
so we have made an underestimate. This situation is shown in the graph in
Section 13.2.2 above. On the other hand, if the curve is concave down, then

*The letter r in r(z) stands for “remainder,”

linearization.
TSee Section A.6.9 of Appendix A for a proof.

since it’s what’s left when you remove the
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/" (c) must be negative; so you can chase it around and see that L(z) > f(z).
This means that our approximation is an overestimate.

For example, when we estimated /11 at the beginning of Section 13.2
above, we used f(z) = y/z. If you calculate that f'(z) = 1/2y/z and that
f"(z) = —1/4x/z, you can see that the curve is always concave down. Or
you can just see it from the graph. In any case, we see that the estimate that
we found (3%) must be an overestimate.

In summary,

e if f” is positive between a and x, then using the linearization leads to
an underestimate;

e if f” is negative between a and z, then using the linearization leads to
an overestimate.

Now look back at the equation for the error r(z) above. If we take absolute
values of both sides of the equation, then we get

1
ferror| = 5| £"(¢)| | — af*.

Suppose we know that the biggest | f”(¢)| could be, as ¢ ranges between a and
x, is some number M. Then even though we don’t know what c¢ is, we do
know that |f”(c)] < M, so we get the following formula:

1
lerror| < §M|:v —al’.

Again, M is the largest value of | f”(t)]| for all ¢ between z and a. Actually, the
important factor in the above equation isn’t the M; it’s the |z — a|? factor.
You see, when z is close to a, the quantity |x — a| is small, but when you
square it, it becomes tiny. (For example, when you square 0.01, you get the
tiny number 0.0001.) This means that the error is small, so our approximation
is good!

Let’s see how this applies to our above example of estimating v/11. We set
f(z) = vz, f'(x) = 1/2\/z and f"(z) = —1/4x/x. We also took a = 9 and
x = 11. The question is, how big could the value of |f”(¢)| be for t between
9 and 11?7 Clearly

1
4t
The right-hand side is a decreasing function of ¢, so it’s biggest when ¢ is

smallest, that is, when t = 9. So M = |f”(9)|, which turns out to be 1/108.
The conclusion is that

) =

11 11— o = 1
2108 B

1
< Mz —al* = :
|er1r01r|_2 |z — al £l

So when we said earlier that /11 & 3%, now we have confidence that we're
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pretty close. In fact, we are within +1/54 of the correct answer. More pre-
cisely, we actually know that

1 1 1 1
3L - L <Vi1<3i4+ 2.

In fact, since we discovered earlier that 3% is an overestimate for /11, we can
say more:

Now, let’s repeat this for the example of estimating In(0.99), which we
looked at in Section 13.2.3 above. There we saw that In(0.99) = —0.01. How
good is this approximation? With f(x) = In(z), we have f/(z) = 1/x and
f"(z) = —1/22. Since the second derivative is negative, we again have an
overestimate. Now, when ¢ ranges between a = 1 and z = 0.99, how big could
|f”(t)] = 1/t* be? Again, this is decreasing in ¢, so the biggest value occurs
when ¢t = 0.99. So we have M = 1/(0.99)2, and our error estimate looks like
this:

1

1 1 !
< Mlr—al2=Z 099 -1 = —— 8 ——.
lerror| < 5 |z — al B 0_992| | 20000(0.99)2

This simplifies to about 0.000051, which is really tiny. This means that —0.01
is a very good approximation to In(0.99). More precisely, we’ve proved the
inequalities

~0.01 < 1n(0.99) < —0.01 +

1 1
B 20000(0.99)% — 20000(0.99)2°
In fact, since —0.01 is an overestimate, we can once again tighten up the
right-hand side and write that

—0.01 5 < In(0.99) < —0.01.

1
~20000(0.99)

We've narrowed down the value of In(0.99) to lie in a really tiny interval.

We’re going to return to the topic of finding approximations and estimating
errors when we look at Taylor series in Chapter 24. There we’ll use not only
the first derivative, but the second and higher derivatives to get even better
approximations.

Newton's Method

Here’s another useful application of linearization. Suppose that you have an
equation of the form f(z) = 0 that you’d like to solve, but you just can’t
solve the darned thing. So you do the next best thing: you take a guess at a
solution, which you call a. The situation might look something like this:



288 o Optimization and Linearization

y = f()

true zero

|
a

~— starting approximation

As you can see, f(a) isn’t actually equal to 0, so a isn’t really a solution; it’s
just an approximation, or an estimate, of the solution. Think of it as a first
stab at an approximation, which is why it’s labeled “starting approximation”
in the picture above. Now, the idea of Newton’s method is that you can
(hopefully) improve upon your estimate by using the linearization of f about
x = a. (This means that f needs to be differentiable at = a, of course!)
Anyway, let’s see what this looks like:

true zero

a
/ ~ starting approximation
’ better approximation

The z-intercept of the linearization is labeled b, and it’s clearly a better ap-
proximation to the true zero than a is. Starting with one guess, we’ve gotten
a better one. So what is the value of b7 Well, it’s just the z-intercept of the
linearization L, which is given by

L(z) = f(a) + f'(a)(z — a),
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as in Section 13.2.1 above. To find the z-intercept, set L(z) = 0; then we
have f(a) + f'(a)(z — a) = 0. Solving for =, we get

Since we called the z-intercept b, we have found the following formula:

Newton’s method: suppose that a is an approximation
to a solution of f(x) = 0. If you set

f(a)
f'(a)’

then a lot of the time b is a better approximation than a.

b=a-

It doesn’t work all the time, so I put in the phrase “a lot of the time” to cover
my ass. We'll come back to this detail on the next page. First, let’s look at
some examples. Suppose that

flx)=2+22—-1

and we’d like to find a solution to the equation f(z) = 0. Does it even have
one? Since f is continuous, f(0) = —1 (negative), and f(1) = 2 (positive),
the Intermediate Value Theorem (see Section 5.1.4 in Chapter 5) shows that
f has at least one solution. On the other hand, f’(x) = 5x* + 2, which is
always positive; so f is always increasing, which means that the equation
f(z) = 0 has at most one solution. (See Section 10 in Chapter 10.1.1 to
remind yourself about this.) We have shown that f has exactly one solution.
Let’s approximate the solution as 0. We know that f(0) = —1, which isn’t
very close to 0. No problem, just use Newton’s method with a = 0:

f0) 07420 -1 1

f'(a) f1(0) 5(000+2 2

So b = 1/2 should be a better approximation than 0. Indeed, you can calculate
that f(1/2) = 1/32, which is quite close to 0. What’s to stop us repeating
the method and getting an even better solution? Nothing! Let’s now take
a = 1/2 instead, and repeat:

_ f4/2)

1 1/32 18
fila) 2 f(1/2)

37/16 ~ 37

1
)

(Here we used the calculation f/(1/2) = 5(1/2)* + 2 = 37/16.) Anyway, this
means that 18/37 should be an even better approximation to the true zero
of f. If you calculate f(18/37), you'll get something close to 0.0002, which is
pretty darned small. The number 18/37 is really a pretty good approximation
to the true zero of f.
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It might seem confusing to reuse a and b like this. A way around it is
to use xg as the initial guess and x; as the first improvement; then x5 is the
second improvement, starting with z1; and so on. The formula can now be
written like this:

_ f(=@o) oy — 2y — fla) R f(z2)
O fiwo) fla) 7 f(z2)’

Here’s another example. To find an approximate solution of the equation
x = cos(x), first set f(z) = x — cos(z). If we can estimate the zero of f, then
the same number will be an approximate solution of z = cos(z). (We already
used this trick in Section 5.1.4 of Chapter 5.) Let’s make the guess z¢ = 7/2;
then f(w/2) = w/2 — cos(n/2) = w/2. That’s a pretty lousy guess. Never
mind; since f'(z) = 1+ sin(x), we have f/'(w/2) = 1 + sin(7/2) = 2. This
means that
f(zo)

7r
fr(wo) 2
So x1 = /4 is a better approximation; indeed, f(mw/4) works out to be the
quantity 7/4 — 1/\/57 which is about 0.08. Now repeat:

f@) _n f@/) _w w/a-1/V3
Py 1 F@m) 1 1112

T = and so on.

T2 _x
2 4

r1 =g —

To = T1 —

since f/(m/4) = 1 +sin(r/4) = 1+ 1/+/2. The above equation simplifies to

14+ 7/4
:1:‘2: =
1++v2

which is actually a little less than w/4. Also, f(z2) turns out to be about
0.0008. This means that  — cos(zz) is about 0.0008, so the number x5 above
is a pretty good approximation to the solution of the equation x = cos(z).
Of course, we could repeat the method to find an even better approximation
x3, but the calculations become horrible. Computers and calculators are
very good at it, though, and in fact often use Newton’s method to give good
approximations. (Remember, a calculator only gives approximations! Even
10 or 12 decimal places is still not exact, although it’s close enough in most
situations.)

As we noted before (but never explained), sometimes Newton’s method
doesn’t work. Here are four different things that could go wrong:

1. The value of f'(a) could be near 0. Clearly, if

@
b= Py

then f’(a) can’t be 0 or else b isn’t even defined. In that case, the tangent
line at x = a doesn’t even intersect the z-axis, since it’s horizontal! Even
if f'(a) is close, but not equal to 0, Newton’s method can still give a
whacked-out result; for example, check out this picture:

(1+7/4)(V2-1),
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S - better approximation?

a T\ b

true zero

starting approximation

Even though we started with a pretty good approximation a of the actual
zero r, the result of Newton’s method (b) is really far away from r. So
we didn’t get a better approximation after all. To get around this, make
sure that your initial approximation is not near a critical point of your
function f.

. If f(x) =0 has more than one solution, you might not get the
right one. For example, in the following picture, if you are trying to
estimate the left-hand root 7, and you guess to start at a, you’ll end up
estimating s instead:

desired zero wrong zero

starting approximation \ y = f(x)

better approximation?

So you should make some effort to start with an estimate a which is
close to the zero you want, unless you're sure there’s only one zero!

. The approximations might get worse and worse. For example,
if f(z) = 23, the only solution to the equation f(z) = 0is z = 0. If
you try to use Newton’s method (for reasons best known to yourself, I
guess!), then something weird happens. You see, unless you start with
a = 0, this is what you find:

. J '/

—2a.

=aqQ— —— =
f'(a) a=2/3/3

So the next approximation is always —2 times the one you started with.
For example, if you start with a = 1, then the next approximation will
be —2. If you keep on repeating the process, you'll get 4, then —8, then
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16, and so on. These are just getting farther and farther away from the
correct value 0. There’s not much you can do with Newton’s method if
this sort of thing happens.

4. You might get stuck in a loop. It’s possible that your estimate a
leads to another estimate b, which then leads back to a again. This
means that there’s no point in repeating the process, as you just keep
going around in circles! Here’s how the situation might look:

linearization at * = a

£

~— linearization at z = b

The linearization at * = a has z-intercept b, and the linearization at
x = b has z-intercept a, so Newton’s method just doesn’t work. A
concrete (but messy) example is

@) = (w2 - 44t3:) tan—1(z).

If you start with a = 1, I leave it to you to show that b = —1. Since f is
/ an odd function, it’s now clear that restarting with —1 leads to 1 again.
It’s pretty unlucky to encounter a loop! Just try some other starting
guess. (By the way, the study of these sorts of loops leads to a nice
type of fractal that you might have seen as a screensaver on someone’s
computer. . . .)



CHAPTER 14

L'Hopital’s Rule and Overview of Limits

14.1

We've used limits to find derivatives. Now we’ll turn things upside-down and
use derivatives to find limits, by way of a nice technique called I’'Hopital’s Rule.
After looking at various varieties of the rule, we’ll give a summary, followed
by an overview of all the methods we’ve used so far to evaluate limits. So,
we’ll look at:

e I'Hopital’s Rule, and four types of limits which naturally lead to using
the rule; and

e a summary of limit techniques from earlier chapters.
L'HOpital's Rule
Most of the limits we’ve looked at are naturally in one of the following forms:

mnf%%, lim (f(z)—g(x)), lim f(z)g(z),  and lim f(2)9).
Tr—a g x r—a Tr—a r—a
Sometimes you can just substitute z = a and evaluate the limit directly,
effectively using the continuity of f and g. This method doesn’t always work,
though—for example, consider the limits

2
lim x——97 lim (L - l), lim zln(z), and lim (1 + 3tan(z))'/®.
e—3 £ —3  a—0\sin(z) = z—0+ z—0
In the first case, replacing « by 3 gives the indeterminate form 0/0. The
second limit involves the difference between two terms which become infinite
as  — 0. Actually, they both go to co as x — 07 and —co as z — 07, so
you can think of the form in this case as £(oco — 00). As for the third limit
above (involving x In(z)), this leads to the form 0 x (—o0), remembering that
In(z) — —oo as z — 0. Finally, the fourth limit looks like 1°°, which is also
problematic. Luckily, all four types can often be solved using I’'Hopital’s Rule.
It turns out that the first type, involving the ratio f(x)/g(z), is the most
suitable for applying the rule, so we’ll call it “Type A.” The next two types,
involving f(z) — g(z) and f(z)g(x), both reduce directly to Type A, so we’ll
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call them Type B1 and Type B2, respectively. Finally, we’ll say that limits
involving exponentials like f (x)g(m) are Type C, since you can solve them
by reducing them to Type B2 and then back to Type A. Let’s look at all
these types individually, then summarize the whole situation in Section 14.1.6
below.

Type A: 0/0 case

Consider limits of the form
. f(x)
im —=
a—a g(z)
where f and g are nice differentiable functions. If g(a) # 0, everything’s
great—you just substitute z = a to see that the limit is f(a)/g(a). If g(a) =0
but f(a) # 0, then you're dealing with a vertical asymptote at = a and the
above limit is either co, —oco or it doesn’t exist. (See page 59 for graphs of
the four possibilities that can arise in this case.)
The only other possibility is that f(a) = 0 and g(a) = 0. That is, the
fraction f(a)/g(a) is the indeterminate form 0/0. The majority of the limits
we’ve seen have been of this form. In fact, every derivative is of this form!

After all,

)

and if you put A = 0 in the fraction, you get 0/0. So let’s concentrate on the
case where f(a) =0 and g(a) = 0.

Here’s the basic idea. Since f and g are differentiable, we can find the
linearization of both of them at x = a. In fact, as we saw in the previous
chapter, if x is close to a, then

fl@)= fla)+ f(a)(x—a) and  g(x) =g(a)+g'(a)(x - a).
Now, we’re assuming that f(a) and g(a) are both zero. This means that

J@ = f@@-a) ad  g()=g @) a)

If you divide the first equation by the second one, then assuming that = # a,

we get
f@) . f@)z—a) _ f(a)

g(@)  ga)(@—a) gla)
The closer x is to a, the better the approximation. This leads™ us to one
version of ’'Hopital’s Rule:

. = q(a) = n im 1) = lim (@
if f(a) = g(a) =0, the iﬁa g(z %Ha g'(z)

provided that the limit on the right-hand side exists. (Actually, there’s
another condition as well: ¢’(z) can’t be 0 when z is close to, but not equal

*We haven’t actually proved I’Hépital’s Rule here; see Section A.6.11 Appendix A for
a real proof.
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to, a. You have to be really unlucky for this to be a problem, though!) It’s
really important that f(a) and g(a) are both zero, or else everything could
get screwed up.
Let’s apply the rule to an example from the beginning of the chapter:
22 -9

lim .
z—3 xr — 3

Notice that if you put = 3, then both top and bottom of the fraction are 0.
This means we can use ’'Hopital’s Rule. All you have to do is differentiate the
top and bottom separately—don’t use the quotient rule! The solution looks
like this:
22 -9 .. 22
= lim

2o
wl—>3 r—3 z—3 1

Notice how there’s a little “I’H” above the equal sign to show that we’re using
I’Hopital’s Rule. By the way, you don’t need to use I’Hopital’s Rule here—you
can just factor 22 — 9 as (z — 3)(z + 3), like this:

x—3)(zx+3)

— i
z—3 T —3 _ilgé r—3

= 11H13(x+3):3+3:6.

Hey, we got the same answer! That’s a relief.
Here’s a harder example where the factoring trick doesn’t work:
iy £ 002)
z—0 X
If you put x = 0, then both top and bottom are 0. The principle that
sin(x) behaves like x for small z is useless in this case, since we're taking the
difference of the two quantities. So let’s apply I’'Hopital’s Rule, differentiating
x — sin(r) and 2 separately:
& , 1 —
lim & sin(x) H O cos(x)'
z—0 3 z—0 32
We actually saw how to solve the right-hand limit (without the 3 on the
bottom) in Section 7.1.2 of Chapter 7. There we used the trick of multiplying
top and bottom by 14+cos(z). There’s an easier way: just notice that the right-
hand limit is also of the form 0/0 when you replace x by 0 (since cos(0) = 1),
so we can use I’'Hopital’s Rule again! We get

. 7 1_ 7 .

lim & sin(x) HO cos(x) HO s1n(x)'
z—0 3 x—0 322 z—0 6Ox

We could actually use I’'Hopital’s Rule once more to find the final limit, but

a better way is to write

sin(z) 1 lim sin(z) 1 1

lim = — =—_Xx1=-.
z—0 Ox 6 z—0 T 6 6

(Here we used our classic trig limit which we proved in Section 7.1.5 of Chap-
ter 7.) All in all, we have proved that
x — sin(x)

li _1
wli% 3 6
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B

141.2 Type A oo/ t00 case

Before we move on to the next variation, here’s a nice observation. Way
back in Section 6.5 of Chapter 6, we saw that some limits can be thought of
as derivatives in disguise. For example, we worked out

. 32+ h-2
hmi

h—0 h

by the tricky technique of setting f(x) = ¥/z, then finding f’(x), writing it as
a limit, and finally putting = = 32. (Check back to see the details.) The point
is that I'Hopital’s Rule actually makes all these shenanigans unnecessary! For
example, since the above limit is of the indeterminate form 0/0, we can find it
by differentiating the top and bottom with respect to h. First write v/32 + h
as (32 + h)'/?; then we have

32+ h—2 32+ h)V/5 -2 L324+n)"%5 1
i Y22 T2 B2+h)" -2 ru lim u = (32)74/5,
h—0 h h—0 h h—0 1 5

which works out to be 1/80. This agrees with the answer we found previously.
Now you should go back and look at the other examples in Section 6.5 of
Chapter 6 and try using I’'Hopital’s Rule on them instead.

L’Hopital’s Rule also works in the case where lim f(z) = oo and lim g(z) = oo.
That is, when you try to put x = a, the top and bottom both look infinite,
so you are dealing with the indeterminate form co/oo. For example, to find

. 32?472
lim ———,
xr—0o0 2;52 — 5

you could note that both top and bottom go to co as x — oo, then use
I’'Hopital’s Rule:

li 1 -+ —
1m 1m 4—|—

z—oo 222 —5 z—00 T z—00 4x

322+ Tz .. 6x+7 . (6 7)
———— = lim = .

The term 7/4x goes to 0 as © — oo, so the limit is 6/4, which is just 3/2. Of

course, you could just have used the methods of Section 4.3 of Chapter 4 to

find the limit; try checking that you still get 3/2 using those methods.
Here’s another example. To find

lim csc(x)
e—0t+ 1 —In(x)’

notice that as * — 07, both the numerator and the denominator tend to
oco. Why? Well, sin(x) goes to 0 as ¢ — 0, so csc(x) blows up; and also
In(z) — —oo as ¢ — 07, so 1 — In(z) — oco. Now use I'Hopital’s Rule:

lim _osel@) 2 — osc(w) cot(z) = lim x csc(x) cot(x).
z—ot 1 —In(x) a0t —1/x z—0+
To find the limit, write it as

i T 1
im —————.
z—0+ sin(x) tan(z)
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We have
. T 1 1
b @)~ sm@) 1
r—0+ SIn(x lim

z—0T =z

but for the other factor we have

)

lim
z—0t tan(x)
since tan(z) — 0% as x — 07. So we have proved that

lim 7(35(3(17) =00
z—0+ 1 —In(z)

The rule also applies as © — 00, as we saw above. Here’s another example:

x )
lim — = lim — =0.
r—oo er rx—o0 et
The last limit is 0 because e* — oo as x — oo. Also, the justification for
using I’Hopital’s Rule is that both x and e® go to co as * — co. Notice that
the denominator e® was unscathed by the differentiation, but the numerator

x was knocked down to 1. This is even clearer when you consider the example

3

lim —.
r—o0 el

Just use 'Hopital’s Rule three times, noting that in each case we are dealing
with the indeterminate form oo/ occ:
2 ru . 32%rm . 6z orm 6

lim — = lim — = lim — = lim — =0.
r—oo0 el r—oo ev r—oo e¥ r—oo e¥

—

Of course, the same technique applies to any power of x; you just have to
apply the rule enough times, knocking the power down by 1 each time, while
the e® just sits there like some immovable lump. So we have proved the
principle that exponentials grow quickly, which is discussed in some detail in
Section 9.4.4 of Chapter 9.

Now, a gentle reminder: please, please, please check that you have an
indeterminate form! The only acceptable forms for a quotient are 0/0 or
+00/ 4 co. For example, if you try to use I’'Hopital’s Rule on the limit

2
lim ——,
i cos(x)
you’ll get into a real tangle. Let’s see what happens:

. z?  pE? 2
lim ———
z—0 cos(x)

= lim —— = -2lim —— = —
z—0 — sin(x) z—0 sin(z)
This is clearly wrong, since #? and cos(x) are both positive when x is near 0.
In fact, the correct solution is
2 02 0

m — = =2y,

z—0 cos(z)  cos(0) 1
L’Hépital’s Rule can’t be used here since the form is 0/1, which is not inde-
terminate. So be careful!
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MHB Type B1 (00 — 00)

Here’s a limit from the beginning of this chapter:

lim (—— ——).
z—0 \ sin(z) =«

As z — 07, both 1/sin(z) and 1/z go to co. As x — 07, both quantities go
to —oco. Either way, you're looking at the difference of two huge (positive or
negative) quantities, so we can express the indeterminate form as 4(co — 00).

Luckily, it’s pretty easy to reduce this to Type A. Just take a common

denominator:
. 1 1 .« —sin(x)
lm |( —— - | = lim ———=~.
20 \sin(x) =@ 2—0 zsin(x)

Now you can put z = 0 and see that we are in the 0/0 case. So we can apply
I’Hépital’s Rule:

( 1 l) i £ sin(z) v lim 1 — cos(x)

sin(z) « -

lim im .
0 x—0 xsin(x) @—0 sin(x) + x cos(x)

Notice that we used the product rule to differentiate the denominator. In any
case, we are again in 0/0 territory—just put = 0 and see that the top and
bottom both become 0. So we use 'Hopital’s Rule (and the product rule)
once more:

1—cos(z) r1H .. sin(x)

230 sin(z) + x cos(x)  =—0 cos(x) + cos(x) — wsin(z)’

Don’t use ’'Hopital’s Rule again! At this stage, just put z = 0; the numerator
is 0 and the denominator is 2, so the overall limit is 0. Putting everything
together, we have shown that

lmg <L - l) 0.
z—0 \ sin(z) =«

Taking a common denominator doesn’t always work. Sometimes you might
not even have a denominator at all, so you have to create one out of thin air.

For example, to find
lim (v/z + In(x) —

xr—00

first note that as x — oo, both y/z + In(z) and /z go to oo; so we are in the
0o — oo case. There’s no denominator, so let’s make one by multiplying and
dividing by the conjugate expression:

1m X Il 1m X Il (E—*—ln(x)—’_ﬁ
lim (y/z +In( —Vx) = lim (/2 +In( \/7vw+ln(@+\/?

Using the difference of squares formula (a — b)(a + b), this becomes

z+In(z) —x In(z)

lim
z—00 \/a:—i-ln(z)—&—\/f IHOO Vo +In(z) + vz
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Now we are in the oco/oo case of Type A, so we just differentiate top and
bottom (using the chain rule on the bottom) to see that

In(x) PH o 1/x
Vr+n(z) 4z v 1+1/x 1
2/ +In(z) 2V

If you multiply the top and bottom of the fraction by x, you get

i 1
1m .
z—00 r+1 NZS

S E—
2y/x +In(z) 2

lim
Tr—00

We're almost done, but we do need to take a little look at what happens to
the first fraction in the denominator as x — oo:

. r+1
lim ————.
=00 2, /x + In(x)

This is also an co/oo indeterminate form, so whack out another application
of ye olde I’Hopital’s Rule:

. z+1 IH . 1 . z + In(x)
lm —=Iim ——— = lim Y—«——

2y/z + In(x)

As © — oo, the denominator 1+ 1/x goes to 1 but the numerator \/x + In(x)

goes to co. This means that
z+1
lim ————
z—00 2, /x4 In(x)

Returning to our original problem, we have already found that

. . 1
A Vet —va) = n

2y/x+In(x) 2

Both fractions in the denominator go to co as x — 0o, so the limit is 0.

Unfortunately, it’s not always possible to use ’'Hopital’s Rule on type B1
limits. In fact, the only time it can actually work is when you’re able to
manipulate the original expression to be a ratio of two quantities, as in the
above examples.

141.4 Type B2 (0 X +00)

Here’s a limit we’ve looked at before, in Section 9.4.6 of Chapter 9 as well as
at the beginning of this chapter:

wlirgh xIn(z).

The limit has to be as * — 0T since In(z) isn’t even defined when x < 0.
Now, as z — 0T, we see that z — 0 while In(z) — —oo, so we are dealing
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with the indeterminate form 0 x (—o0). Let’s turn the limit into Type A by
manufacturing a denominator. The idea is to move x into a new denominator
by putting it there as 1/x:

1
lim zln(z) = lim n(:v)
z—0t z—0t 1/.17

Now the form is —oo/00, so we can use I’'Hopital’s Rule:

1 ’ 1
lim zln(x) = lim n(z) oy [z .
z—0+ z—0t 1/1’ z—0t —1/1’2

We can simplify the fraction on the right to —x, so that the overall limit is

lim (—z) = 0.
Jim (—z)
We'’ve solved the problem, but let’s just check out something: why did we
move z into the denominator and not In(z)? It’s true that
x

Jm wloe) = lim 0.

Now you have to differentiate 1/In(z) instead, which is much harder. If you
try it, you’ll see that

. . x I'H . 1 . 2
Jm () = Hm, s = i S T m))D) — .wn(@)”

This is actually worse than the original limit! So, take care when you choose
which factor to move down the bottom. As you can see from the above
example, moving a log term can be a bad idea—so avoid doing that.

Here’s another example:

lim (x — z) tan(x).
z—m/2 2
When you put « = /2, the first factor (z — 7/2) is 0, while the tan(z) factor
is either co (as z — (7/2)7) or —co (as z — (w/2)T). Sketch the graph of
y = tan(z) to make sure you believe this. In any case, we can move the tan(z)
factor down to a new denominator by putting it there as 1/ tan(z), or cot(x).
That is,
o 2= 7T/2'
z—m/2 cot(x)

T
lim (:E — —) tan(x) =

z—m/2 2 ( )
This is a lot easier than putting the (z — 7/2) term in the denominator—in
fact, that doesn’t even work. Anyway, the above limit is now in 0/0 form, so
you can use ’'Hopital’s Rule:

—7T/2 v 1
lim (:1: - E) tan(z) = lim z—m/ (L [ —
T2 2 z—w/2 cot(x) z—n/2 (— csc(x))

Since sin(7/2) = 1, we see that also csc(m/2) = 1, so the above limit is —1.
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where both the base and exponent involve the dummy variable (x in this case).
If you just put z = 0, you get 0°, which is another indeterminate form. To find
the limit, we’ll use a technique very similar to logarithmic differentiation (see
Section 9.5 in Chapter 9). The idea is to take the logarithm of the quantity
() first, and work out its limit as  — 07:
lim In(z57(@),
z—0t
By our log rules (see Section 9.1.4 of Chapter 9), the exponent sin(x) comes
down out front of the logarithm:
lim In(2¥™®) = lim_ sin(z)In(z).
Jim, n(x ) Jim in(z) In(z)
As x — 0%, we have sin(z) — 0 and In(z) — —o00, so now we're dealing
with a Type B2 problem. We can put the sin(z) into a new denominator
as 1/sin(z), which is just csc(x), then use I'Hopital’s Rule on the resulting

Type A problem:

1 ’ 1

lim sin(z)Iln(z) = lim n(z) = lim _ Y=
z—0+ z—0+ csc(x) w0t — cse(x) cot(x)

This can be rearranged to
lim _ sin(z)

z—0t

x tan(z) = —1 x 0 = 0.

Are we done? Not quite. We now know that

. sin(x) -0
mli)n&ln(x )=0;

so now we just have to exponentiate both sides to see that

lim 25 =0 = 1.
z—07t
(The exponentiation works because e” is a continuous function of x.)

Let’s review what we just did. Instead of finding the original limit, we
took logarithms and then found that limit, using the Type B2 technique.
Finally, we exponentiated at the end.

In fact, sometimes you don’t even have to go through the Type B2 step
on your way to Type A. For example, to do

limo(l + 3tan(z))Y/®

from the beginning of the chapter, first note that we are dealing with the form
1#°°. So take logarithms:

. 1 . In(1+ 3tan(x))
1/z) _ - _
im}) In ((1 + 3tan(z)) ) = ilmo - In(1 + 3tan(x)) = iln}) —
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This is now of the form 0/0, so it’s already a Type A limit. By the chain rule,

we have
3sec?(x)
; 2
lim In(1 + 3tan(x)) LH O 1+ 3tan(z) _ 3(1) _

‘We have now shown that

lim In ((1 + 3tan(m))1/m) = 3.

xr—

Exponentiate both sides to get
lir%(l + 3tan(z))/* = e

There is one more indeterminate form of this type, co®. An example is

lim =~

xr—00

1/z
)

since —1/x — 0 as © — oo. The same trick still works: take logarithms and
use the Type A methodology to get

1 ; 1
lim In(z~'/7) = lim n(@) 1 lim /@

xTr—00 r—00 —X r—0o0 —

Now exponentiate to get

lim 2z~ %/% =¢% = 1.

r—00
It’s not really necessary to learn that the only indeterminate forms involving
exponentials are 1(¥°) 0% and co®. You see, if you have any limit involving
exponentials, you can always use the above logarithmic method to convert
everything to a product or quotient, then work out the new limit L. The
actual limit will just be e”. The only exceptions are that if L = oo, then you
have to interpret e> as oco; and if L = —oo, then you need to recognize e~
as 0. This is consistent with our limits

lim e® = o0 and lim e*=0

r—00 r——00

from Section 9.4.4 of Chapter 9.

14.1.6 Summary of I'Hopifal’s Rule types

Here are all the techniques we’ve looked at:

e Type A: if the limit involves a fraction, like

check that the form is indeterminate. It must be 0/0 or +o00/ £ 0.
Use the rule

U
lim M T im / (:v)
a—a g(z)  a—ag'(z)
Do not use the quotient rule here! Now, solve the new limit, perhaps
even using I’Hopital’s Rule again.
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e Type B1: if the limit involves a difference, like

lim (f(z) — g(x)),

r—a
where the form is +(co — c0), try taking a common denominator or
multiplying by a conjugate expression to reduce to a Type A form.

e Type B2: if the limit involves a product, like

lim f(z)g(x),

r—a

where the form is 0 X 400, pick the simplest of the two factors and put
it on the bottom as its reciprocal. (Avoid picking a log term—Xkeep that
on the top.) You get something like

. = lim 9()
lim f(z)g(z) = lim 1/f(x)

This is now a Type A form.

e Type C: if the limit involves an exponential where both base and expo-
nent involve the dummy variable, like

lim f(:c)g(z),

r—a

then first work out the limit of the logarithm:

lim In(f(x)?®) = lim g(x)In(f(x)).
This should be either Type B2 or Type A (or else it’s not indeterminate
and you can just substitute). Once you’ve solved it, you can rewrite the
equation as something like
lim In(f(2)?")) = L,

r—a

then exponentiate both sides to get

lim f(z)9®) = ek

Tr—a
Now all that’s left is for you to practice doing as many I’Hopital’s Rule prob-
lems as you can get your hands on!

Overview of Limitfs

It’s time to consolidate. Here’s a brief summary of all the techniques we’ve
seen so far involving evaluating limits. The following techniques apply to
limits of the form

lim F(z),

r—a

where F' is a function which is at least continuous for z near a, but maybe
not at & = a itself. Also, a could be co or —oo. So, here’s the summary:
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e Try substituting first. You might be able to evaluate the limit.

e If your substitution leads to b/oco or b/(—oc), where b is some finite
number, then the limit is 0.

e If the substitution gives b/0, where b # 0, then you’re dealing with a
vertical asymptote. The left-hand and right-hand limits must be oo
or —oo, and the two-sided limit either doesn’t exist (if the left-hand and
right-hand limits are different) or is one of oo and —oo. Use a table of
signs around x = a to investigate the left-hand and right-hand limits.
(Also see Section 4.1 in Chapter 4.)

e If none of the above points are relevant, and your limit is of the form
0/0, try seeing if it is a derivative in disguise. If you can rewrite it

in the form
o S — f@)
h—0 h

for some particular function and possibly a specific number x, then the
limit is just f/(z). As we saw in Section 14.1.1 above, these sorts of
problems can also be done by using 'Hopital’s Rule. (See also Section 6.5
in Chapter 6.)

e If square roots are involved, multiplication by a conjugate expression
might help. (See Section 4.2 in Chapter 4.)

e If absolute values are involved, convert them into piecewise-defined
functions using the formula

A ifA>0,
|A] = .
-A ifA<O.

Remember to replace all five occurrences of A above with the actual
expression you're taking the absolute value of! (See Section 4.6 in Chap-
ter 4.)

e Otherwise, you can use the properties of various functions which can pop
up as ingredients in your main function. Remember that “small” means
“near 0,” and “large” can mean large positive or negative numbers. (See
Section 3.4.1 in Chapter 3.) Beware: if your limit is as z — oo, it doesn’t
necessarily mean that you are in the large case. For example, sin(1/x)
involves the sine of a small number as  — oo, since 1/x — 0. The same
warning applies to limits as x — 0, which need not be in the small case.
Anyway, here’s the deal for polynomials, trig functions, exponentials,
and logs:

1. Polynomials and poly-type functions:

— General tip: try factoring, then cancel common factors. (See
Section 4.1 in Chapter 4.)

— Large arguments: the largest-degree term dominates, so
divide and multiply by that term. (See Section 4.3 in Chap-
ter 4.)
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2. Trig and inverse trig functions:

— General tip: know the graphs of all the trig and inverse trig
functions, and their values at some common arguments. All the
stuff in Chapter 2 and Chapter 10 is helpful in this regard.

— Small arguments: sin(A) behaves like A when A is small,
so divide and multiply by A. The same goes for tan(A4), but
not cos(A): that just behaves like 1. This technique is useful
when only products and quotients are involved. It probably
won’t work when the trig function is added to or subtracted
from some other quantity. (See Section 7.1.2 in Chapter 7.)

— Large arguments: for sine or cosine, use the facts that
|sin(anything)| < 1 and |cos(anything)| < 1

in conjunction with the sandwich principle. (See Section 7.1.3
in Chapter 7.) Some other useful facts are

lim tan~'(z) = T and lim tan~!(z) = —=.
(Informally, you can think of these as tan~!(co) = m/2 and
tan~!(—o0) = —m/2, but make sure you understand that these
are just crude ways of expressing the limits above.)

3. Exponentials:

— General tip: know the graph of y = e*, and learn the limits

lim (1 + ha)t/h = e® and lim (1 + E) =e".
h—0 n

(See Section 9.4.1 in Chapter 9.)

— Small arguments: since e = 1, you can normally just isolate
any factors which involve the exponential of a small number
and replace them by 1 when you take the limit. The exception
is when sums or differences occur; then you might want to use
I’Hépital’s Rule, or perhaps the limit is actually a derivative in
disguise. (See Section 9.4.2 in Chapter 9.)

— Large arguments: learn the important limits

lim e = oo and lim e®=0.
Tr—00 Tr— —00
(For substitution purposes only, you can think of these limits as
e>® = oo and e~ = 0, even though these equations aren’t for-
mally true.) Also remember that exponentials grow quickly
as ¢ — o0o. This means that
. poly
lim =

r—oo eT

0.

The base e could instead be any number bigger than 1, and
the exponent z could instead be some other polynomial with
positive leading coefficient. (See Section 9.4.4 in Chapter 9.)
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4. Logarithms:

— General tip: know the graph of y = In(z) and the log rules,
which are in Section 9.1.4 of Chapter 9.

— Small arguments: a really important limit is

zli%l+ In(z) = —oc0
(or, as a memory aid only, In(0) = —o0). Also, logs “grow”

slowly down to —oo as z — 0t:

zlg& x*In(z) =0

for any @ > 0, no matter how small. (See Section 9.4.6 in
Chapter 9.)

— Large arguments: we have

lim In(x) = oo,

r—00

which has the informal abbreviation In(co) = co. Nevertheless
logs grow slowly, that is, more slowly than any polynomial:

In(x)

lim =
T—00 po]y
for any polynomial of positive degree. (See Section 9.4.5 in
Chapter 9.)

— Behavior near 1: we have In(1) = 0. L’Hépital’s Rule can be
very useful in this regard, or the limit might be a derivative in
disguise. (See Section 9.4.3 in Chapter 9.)

e If none of the above techniques work, consider using ’Hopital’s Rule (see
Section 14.1.6 above for a summary). If you do, you'll always get a new
limit to solve, which you can attack using any of the above principles or
I’Hépital’s Rule once again.

All these facts and methods above are just tools to help you solve limits.
They may not work on every limit you see—in fact, we’ll be looking at a
completely different type of limit problem in Chapter 17—but they should
help with a heck of a lot of them. There’s an art to knowing which tool to
use, and of course, practice makes perfect. So go forth and evaluate limits!



CHAPTER 15

INnfroduction o Infegration

15.1

So far as calculus is concerned, differentiation is only half the story. The
other half concerns integration. This powerful tool enables us to find areas of
curved regions, volumes of solids, and distances traveled by objects moving at
variable speeds. In this chapter, we’ll spend some time developing the theory
we need to define the definite integral. Then, in the next chapter, we’ll give
the definition and see how to apply it. So here’s the plan for the preliminaries
on integration:

e sigma notation and telescoping sums;
e the relationship between displacement and area; and
e using partitions to find areas.

Sigma Nofation

Consider the sum
1 1 1 1 1 1
1+4+9+16+25+36'
This is not just a sum of random numbers: there’s a definite pattern. The
terms in the sum are reciprocals of the squares from 12 through 62. Here’s a

more convenient way to write the sum:

—.
=17

To read it out loud, say “the sum, from j = 1 to 6, of 1/j2.” Now, here’s

how it actually works. The idea is that you plug j =1, j =2, j =3, j = 4,
j =5, and finally j = 6 into the expression 1/j2, one at a time, and then add
everything up. We can tell that we’re supposed to start at j = 1 and end up
at j = 6 by the symbols below and above the big Greek letter ¥ (which is a
capital sigma, hence the term “sigma notation”). So we have

1 1 1 1 11 1
Zﬁ_ﬁ+?+§+ﬁ+?+6_2'
j=1
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Notice that we haven’t actually worked out the value of the sum! All we've
done is abbreviate it.
Now consider the following series (that’s another word for “sum”) in sigma

notation:
1000

>

j=1

1
j_2.

The only difference between this sum and the previous one is that now we
have to go to 1000, not 6. So

%1—1+1+1+ L
e j2 12 0 22 0 32 9992 © 10002

(t. . .77

In this case, the sigma notation is particularly nice, avoiding the al-
together (unlike the right-hand side of the above equation). Here’s another
variation:

S ST S SRS S
252 62 T2 292 302
This sum starts at j = 5, not j = 1, so the first term is 1/52.

Sigma notation is also really useful when you want to vary where the sum
stops (or starts). For example, consider the series

1
-
1]

n
Jj=

This starts at j = 1 and finishes at j = n, so we have

~1 1 1 1 1 1 1
Zj—2—§+—+—+~-~+ - + .
=1

22 32 (n—=2)2 (n-1)2 n?

Notice that the second-to-last term occurs when j = n — 1, and the third-to-
last term occurs when j = n — 2; I wrote those terms, along with the first
three and the last term, on the right-hand side of the above equation. The
other terms are all absorbed into the “ --” in the middle.

In the sum
1
17 ’

)

n
j=
it looks as if there are two variables, j and n, but in reality there is only one:
it’s n. You can easily see this by looking at the expanded form
Lyl e, 1
12 5 22 32 (n—2)2  (n—1)2% n2

There’s no j at alll In fact, j is a dummy variable—it’s just a temporary
placeholder, called the index of summation, that runs through the integers
from 1 to n. So we could even change it to another letter without affecting
anything. For example, the following sums are all the same:

1 &1 & &
dm=d m =m0

S
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By the way, this isn’t the first time we’ve seen dummy variables: limits also use
them, so there’s nothing new here. (See the end of Section 3.1 of Chapter 3.)
Let’s look at some more examples. What is

200

> 52

m=1

Don’t fall into the trap of saying that it’s equal to 5. Let’s look a little closer.
When m = 1, we have a term 5. When m = 2, we again have 5. The same
goes for m = 3, m = 4 and so on until m = 200. So in fact

200
> 5=5+5+5+--+5+5+5,

m=1

where there are 200 terms in the sum. So the value works out to be 200 x 5,
or 1000. Similarly, consider the series

1000

Z l=14+14+1+---+14+1+1.
q=100

How many terms of 1 are there in this sum? You might be tempted to say
that there are 1000 — 100, or 900, but actually there’s one more. The answer
is 901. In general, the number of integers between A and B, including A
and B,is B— A+ 1.

How would you write

sin(1) + sin(3) + sin(5) 4 - - - + sin(2997) + sin(2999) + sin(3001)

in sigma notation? You might try

but that’s no good: that would be
sin(1) + sin(2) + sin(3) + - - - + sin(2999) + sin(3000) + sin(3001).

We don’t want the even numbers. Here’s how you get rid of them. First,
imagine that j steps through the numbers 1, 2, 3, and so on. Then the
quantity (25 — 1) goes through all the odd numbers 1, 3, 5, and so on. So for

our second try, let’s guess
3001

Zsin(2j —1).

This is better, but there’s still a problem. When j gets to the end of its run,
it’s at 3001, but (25 — 1) is then 2(3001) — 1 = 6001. This means that

3001
> sin(2j—1) = sin(1)+sin(3)+sin(5)+- - -+sin(5997)+sin(5999)+sin(6001).

j=1
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We have too many terms! How do you know when to stop? At the end, we
need sin(2j — 1) to be sin(3001), not sin(6001). So, just set 25 — 1 = 3001,
which means that 57 = 1501. Finally, we have

1501
sin(1)+sin(3)+sin(5)+- - -+sin(2997) +sin(2999) +sin(3001) = » _ sin(2j—1).
j=1

This is the correct answer. Make sure you agree with it by plugging in the
values j =1, j = 2, j = 3, and also j = 1499, 5 = 1500, and 7 = 1501. You
should get the terms written out on the left-hand side above. On the other

hand, the sum
1501

> sin(2y)
j=1

expands as
sin(2) + sin(4) + sin(6) + - - - + sin(2998) + sin(3000) + sin(3002).

So you get the even numbers using 25 instead of (25 — 1). Of course, if you
wanted multiples of 3, you'd use 3j. The possibilities are endless!

A nice sum

Consider the sum
100

>
j=1

First, let’s expand the sum. When j = 1, we get 1. When j = 2, we get 2.
This continues until 7 = 100; then we just add up all these quantities. So

100
> i=14243+--+98+ 99+ 100.
j=1
Yup, it’s the sum of the numbers from 1 to 100. Now, how about the sum

99

dG+1?

j=0
When j = 0, we get 1; when 5 = 1, we get 2; and so on until 7 = 99, in which
case we get 100. So in fact

99
DTG+ =142+3+ - +98+ 99+ 100.

Jj=0

This is the same sum as before! What we’ve done is shift the index of sum-
mation j down by 1. Now, consider this sum:

100

> (o1 —j).

j=1
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When j = 1, we get 100; when j = 2, we get 99; and so on until j = 100, in
which case we get 1. That is, the numbers 101 — j march down from 100 to
1, so

100

D (101 —5) =100+ 99+ 98+ - +3+2+1.

Jj=1

This is the same sum as before, just written backward. There are many ways
of expressing any sum in sigma notation.

In fact, this last way of writing the sum isn’t just a curiosity—we can
actually use it to find the value of the sum. Suppose that we let .S be the sum
14+2+---4+99+ 100; then we have seen that

100 100
S = Zj and also S = 2(101 — 7).
j=1 j=1

If you add up these two expressions, you get

100 100

28 = "j+> (101 ).
j=1 j=1

In the first sum, the numbers increase from 1 to 100; in the second sum they
decrease from 100 to 1. The nice thing is that you can add the numbers in
any order and still get the same result. So we can combine the sums and write

100

28 = (j+ (101 - j)).

j=1
Since j + (101 — j) = 101, this just works out to be

100

29 = Z 101.
j=1

There are 100 copies of the number 101, so we have 25 = 101 x 100 = 10100.
This means that S = 10100/2 = 5050. We have shown that the sum of the
numbers from 1 to 100 is 5050. Believe it or not, the great mathematician
Gauss worked this out (using the same method) at the age of 10!

15.1.2 Telescoping series

Check out the following sum:

This expands fully to

(12 =0%) 4+ (2 = 1%) + (3> = 2%) + (4> = 3%) + (5° — 4°).
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You can cancel a lot of the terms here. In fact, if you take a close look, you’ll
see that everything cancels out except 52 — 02, so the sum is just 52 = 25. The
same sort of thing happens even if you have a lot more terms. For example,

200

d (P -G-1?)

j=1
expands as
(17=0%)+(22=1%)+(32—2%) +- - -+ (198>-197%) + (199~ 198) + (200>~ 199?).

Once again, everything cancels except for 2002 —02, so the sum is 40000. Wait
a second, there doesn’t seem to be anything to cancel out the 3% or —1972
terms! Well, there are —32 and 1972 terms hidden inside the “---”, so the
cancelation does work.

This sort of series is called a telescoping series. You can compact it down
to a much simpler expression, just like collapsing one of those old spyglasses.
In general, we have

For example, we have

100

Z (ecos(j) _ ecos(j—l)) — cos(100) _ ,cos(10—1)
j=10

which is simply e**(190) — <2309 You just have to take the () part and
replace j by the last number (100), then subtract the ec*sU=1) part with the
Jj replaced by the first number (10). You should try expanding the sum and
check that the cancelation works.

Here’s another example. To find

> G- G -1,

j=1

notice that the sum telescopes; so you just take (j2 — (5 — 1)?) and replace
the first j by n, and the second j by 1, to see that

N GP-G-1)=n"-(1-1)2=n%

j=1

On the other hand, the quantity 52 — (5 —1)? works out to be j2— (52 —2j+1),
or just 25 — 1. So we have actually shown that

in—l ) =n?
j=1
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If you think about it, the left-hand side is just the sum of the first n odd
numbers. For example, when n = 5, the left-hand sideis 1 +3+5+ 749,
which works out to be 25. Hey, that’s 52 exactly! If instead you take n = 6,
then the left-hand side is 1 +3 + 54 7 + 9 + 11, which is 36. This is 62, so
once again the formula works. We have proved that the sum of the first n odd
numbers is n?.

We can say even more, though. We can split up the sum like this:

If you're a little skeptical about this, then check out how it works for the first
five terms. Instead of writing 1 +3 4+ 5+ 7+ 9, we're expressing the sum

s(2-1)+(4-1)+(6—-1)4+ (8 —1)+ (10 — 1), then rearranging to get
(244+6+8+10)— (1+14+1+1+1). In fact, we can take out a factor of
2 from the first sum and express it as 2(1 + 24 3 +4 + 5). In terms of our
equation above, this means that we can pull out the constant 2 from the first

sum and get
DR S
j=1 j=1

Stick the second sum on the right and divide by 2 to get
. 2 .
Jj=1 Jj=1

The sum on the right-hand side is just n copies of 1, so it’s actually equal to
n. So the right-hand side is (n? + n)/2, which can be written as n(n + 1)/2.
We have proved the useful formula

i n—l—l).

When n = 100, this formula specializes to

100
100(1 1
Z M = 5050,

agreeing with what we saw in the previous section.
Instead of starting with squares as we did in the previous example, let’s
try starting with cubes:

G -G-1)=n"-(1-1)%=n

j=1

Once again, finding the value of the sum is easy because it’s a telescoping
series. In any case, you can do some algebra and see that j3 — (j — 1)®
simplifies to 352 — 35 + 1. So the above sum becomes

> (B2 =3j+1)=n’
j=1
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15.2

15.2.1

Introduction to Integration
Let’s break the sum into three pieces and pull out some constants:
n n n
DIEE) A B
j=1 j=1 j=1

Now put the last two sums on the right-hand side and divide by 3 to get

zn:f:% n®+3> j->1
j=1 j j

The previous example shows that the first sum on the right-hand side works
out to be n(n + 1)/2, while the second sum is again n copies of 1, which is n.

So we have
, 1 3n(n+1)
2_ 1 (. 3 _
E i —3(n + 5 n)

A little algebra shows that the polynomial on the right-hand side can be
simplified to (2n3 + 3n? + n)/6, which factors to n(n + 1)(2n +1)/6. So we
have proved that

5, nn+1)(2n+1)

Now we know how to add up the first n square numbers. For example,

(100)(101)(201)
6

Even Gauss might have had to wait until he was 11 years old to find that
sum!

12422432 4+...49924+100% = = 338350.

Displacement and Area

Let’s move on from sigma notation, and spend some time investigating the
following question:

If you know the velocity of a car at every moment during some time
interval, what is its total displacement over that time interval?

In symbols, this means that we know the velocity v(t) at every time ¢ in some
interval [a, b], and we want to find the displacement x(t). We already know
how to do this the other way around: if we know z(¢), then v(t) is just z’(¢).
That is, velocity is the derivative (with respect to time) of displacement. In
order to answer the reverse question, let’s look at some simple cases first.

Three simple cases

Consider three cars going in the forward direction along a long straight high-
way. Since the cars are always going forward, we can work with speed and
distance instead of velocity and displacement (respectively)—there’s no dif-
ference in this case. Each of the cars leaves from the same gas station at 3
p.m. and finishes the journey at 5 p.m.
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The first car goes at a speed of 50 miles per hour the whole time. So
v(t) = 50 for all ¢ in the interval [3,5]. To work out the distance traveled in
this case, just use the fact that distance = average speed x time. Luckily, the
average speed v,, and the instantaneous speed v are both equal to 50, since
the speed never changes. So we get

distance = v x t = 50 x 2 = 100.

That is, the car has gone 100 miles. Now, if we draw the graph of v against
t, it looks like this:

50

T

You can see a rectangle marked off between the solid line of the velocity at
v = 50, the t-axis, and the vertical lines ¢ = 3 and ¢t = 5. The height of the
rectangle is the speed 50 (mph), while its base is the time taken, 2 (hours).
The quantity 50 x 2 is the area of the rectangle (in miles, but let’s not get
too bogged down about units for the moment). So in this case, the distance
traveled is the area under the graph of v versus t.

As for the second car, it goes at a speed of 40 mph for the first hour; then
at 4 p.m. it starts going 60 mph. Ignoring the few seconds that it takes to
accelerate, the graph of the situation looks like this:

60 -

40 1

I've already shaded the area under the graph down to the ¢-axis between the
lines t = 3 and t = 5, expecting this to be the distance. Let’s check it out.
During the first hour, the car travels at 40 mph, so the distance traveled is
40 x 1 = 40 miles. This is the area under the left-hand rectangle, which has
height 40 (mph) and base 1 (hour). The same thing works for the second
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hour, where the distance traveled is 60 x 1 = 60 miles—the same as the area
under the right-hand rectangle. The total distance traveled is again 100 miles.

The important thing to note is that we broke up the journey into pieces of
time where the car was going at a constant speed, found the distance traveled
for each piece, and then added them all up. Using a formula like d = v,, X t
is no good on the whole journey unless you know the average speed. Wait,
you say—the average speed here is obviously 50 mph, so there’s no problem!
OK, that’s true, but let’s look at the third car and then see if you still feel
the same way.

The third car travels at 20 mph for the first 15 minutes, then goes 40 mph
until 4 p.m. At that time, it switches to 60 mph for half an hour, before
shifting to the slower speed of 50 mph for the rest of the journey. Once again
ignoring the short accelerations and decelerations when the speed changes,
the graph of v against ¢ looks like this:

of L —

20

T
w
=
w
o
[\V]
ot

The average speed isn’t obvious from looking at the graph. On the other
hand, we can work out the distance by breaking the 2-hour time interval into
smaller pieces corresponding to the four rectangles in the above graph:

e From 3 to 3.25 (which is the way to write 3:15 p.m. in decimal hours),
the car traveled at 20 mph, so the distance traveled was 20 x 0.25 = 5
miles. That’s the area of the first rectangle above, since its height is
20 mph and its base is 0.25 hours.

e From 3.25 to 4, the speed was 40 mph, so the distance was 40 x 0.75, or
30 miles. That’s the area of the second rectangle.

e From 4 to 4.5 (that is, 4:30 p.m.), the car’s speed was 60 mph, so the
distance was 60 x 0.5 = 30 miles—the area of the third rectangle.

e Finally, from 4.5 to 5, the speed was 50 mph, so the distance traveled
during that time was 50 x 0.5 = 25 miles, precisely the area of the fourth
rectangle.

So, during the four time periods, the car went 5, 30, 30, and 25 miles, respec-
tively, as shown on the above graph; the total is therefore 5430+ 30425 = 90
miles. Finally, we’ve found the distance the third car traveled! This means
that its average speed was actually 90/2 = 45 mph, which isn’t even one of
the four speeds that the car went at. (This doesn’t violate the Mean Value
Theorem because the function in the above graph isn’t differentiable.)
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15.2.2 A more general journey

Let’s look at a general framework to describe the sort of journey that the three
cars made. Suppose that the time interval involved is [a, b]; also, suppose that
we can chop up this interval into smaller intervals so that the car is going at a
constant speed on each interval. We don’t want to fix the number of intervals,
so let’s call it n. We also need to have some way of describing the beginning
and end of each small interval:

e The first interval begins at time a and finishes at some later time ¢;.
Since a is earlier than ¢;, we can say that a < ¢;. In fact, it will be
useful to also let tg = a, so that we have a = tg < ;.

e The second interval begins at time ¢; and finishes at some later time ¢o,
so that t1 < ts.

e The third interval goes from ts to t3, where t5 < t3.

e Keep going in the same way, so that the jth time interval starts at time
t;—1 and ends at time t;.

e The second-to-last interval goes from ¢,,_o to t,—1, where t,,_o < t,,_1.

e Finally, the last interval goes from ¢,,_1 to t,, which is the same as the
very end time b. So we have t,_1 < t, = 0.

All together, we can summarize the situation by saying that
a=ty<ti <ta<tz<- - <th o<th1<t,=0

We have chopped up the time interval [a, b] into smaller intervals, which to-
gether are called a partition of the interval. On the number line, it looks
something like this:

1 1 L 1 1 1 1

-+
-

to=a 1 tats 14 tn—2 th-1 t, =b

The dots in the middle are supposed to show that we don’t want to fix the
number of smaller intervals in the partition.

That takes care of the time aspect, but we need to talk about velocities.
Let’s suppose that the car goes at velocity v; during the first small time
interval (fg,t1). This means that the graph of v against ¢ will have a line
segment above (g,t1) at height v;. As for the second interval, the velocity
will then be vq, so we get a different line segment at height vy above (t1,t2).
This keeps on going until the last time interval (¢,,—1,t,), where the velocity
will be v,,. Overall, the picture looks like this (for example):

Up—1 : : c ] 4 _——
vg : e

V3 [~ _

(%
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Now we’re ready to calculate the total displacement. During the first small
time interval (¢g,¢1), the car has gone at velocity v;. The length of time is
(t1 —to), so the displacement will be v X (t; —t¢). Let’s quickly repeat this for
the second interval (¢1,t2). The speed is vy and the length of time is (t3 —t1),
so the displacement is ve X (t2 — t1). Keep doing this all the way up to the
last time interval (t,—_1,t,). Finally, we add up all the displacements to see
that

total displacement = vy (t1 — t) + va(te —t1) + - -
+ ’Un—l(tn—l - tn—2) + Un(tn - tn—l)-

This is a perfect time to whip out the sigma notation that we looked at in
Section 15.1 above. Check that you believe that we can write the above
formula as

n
total displacement = Z vi(t; —ti—1)

Of course, this is also the shaded area in the above graph.
Let’s see how the three examples from the previous sections fit into the
framework. In each case, we know that a = 3 and b = 5.

e For the first car, we just have one interval [3,5], so set n = 1, t; = 3,
and t; = 5. We also know that the velocity is v1 = 50; so

displacement = Z (tj —tj_1) = vi(t1 — to) = 50(5 — 3) = 100.

e The second car needs two time intervals; set n = 2, tg = 3, t; = 4, and
to = 5, so that our partition looks like 3 < 4 < 5. On the first interval,

the velocity is v; = 40, while on the second interval, we have vo = 60.
So

n
displacement = Z’Uj (tj - tjfl) = (tl - to) + v2(t2 — tl)
j=1

= 40(4 — 3) 4+ 60(5 — 4) = 100,

e I'll let you fill in the full details for the third car. Suffice it to say that
n = 4, the partition is 3 < 3.25 < 4 < 4.5 < 5, and the velocities are
v1 = 20, ve = 40, vs = 60, and vy = 50, so

displacement = Z vi(t; —tj—1)
j=1
= Ul(tl — to) + Ug(tg — tl) + U3(f3 — tg) + U4(t4 — t3)
=20(3.25 — 3) + 40(4 — 3.25) + 60(4.5 — 4) + 50(5 — 4.5)
=5+ 30+ 30 + 25 = 90.

Notice that the calculations are identical to the ones we did in the previous
section—only the notation has changed.
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15.2.3 Signed area

What if our car goes backward? For example, suppose that the car goes
forward at 40 mph between 3 and 4 p.m., then backward at 30 mph until 6
p-m. The graph looks like this:

40 r S

-30

Now it’s really important to distinguish between distance and displacement.
Between 3 and 4 p.m., the distance and displacement are both 40 miles. From
4 to 6 p.m., the car travels a total of 30 x 2 = 60 miles, so the total distance
traveled from 3 p.m. to 6 p.m. is 40 + 60 = 100 miles. On the other hand, the
displacement is 40 + (—60) = —20 miles, since the second part of the journey
is backward. This means that the car finishes up 20 miles back from where it
started.

Now look at the above graph. The rectangle on the left has area 40 (miles),
no problem, but the right-hand rectangle is interesting. Its base has length
2 (hours), and if you consider its height as 30 (mph), then sure enough, the
area is 60 (miles). Adding the two areas gives 40 + 60 = 100 miles, which is
the distance.

On the other hand, take another look at that second rectangle. Suppose
that we say that its “height” is actually —30 mph, since the rectangle goes
below the horizontal axis. Of course, a rectangle can’t actually have a negative
height, but nevertheless it would be good to distinguish between rectangles
above and below the axis. So if the “height” is —30 mph, then the “area” is
2 x (—=30) = —60 miles. Let’s drop the quotation marks and correctly refer
to this as the signed area. Our convention, then, is that areas below the axis
count as negative toward the total. If we do that, then the total signed area
is 40 miles (from the first piece) plus —60 miles (from the second), giving a
total of —20 miles. Hey, the displacement is —20 miles!

In terms of our formulas from the previous section, we have a partition of
the total time interval [3,6] that looks like 3 < 4 < 6. The first velocity is
v1 = 40 while the second is v9 = —30. So we have

n
displacement = Z Uj (tj - tjfl) =1 (tl — to) + v2(t2 — tl)
J=1

= 40(4 — 3) + (—30)(6 — 4) = —20.

If instead we take vo = 30, which is the speed (not the velocity!) during the
second part of the journey, then the last sum is 40(4 — 3) 4+ 30(6 — 4) = 100,
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which gives the distance in miles. Of course, the speed 30 mph is the absolute
value of the velocity —30 mph. So instead of adding up the actual (unsigned)
area in the graph above to get the distance, we could graph |v| against ¢:

vl
40
30

\

Now it’s irrelevant whether the area is signed or not because there’s nothing
below the horizontal axis! So, we’ll make the convention that all areas are
signed. If we want the unsigned area, we’ll take absolute values first. See
Section 16.4.1 in the next chapter for some more on this point.

15.2.4 Confinuous velocity

We've seen that if a car (or other object) moves along a straight line so that
the velocity is constant on a finite number of intervals in a partition of [a, b],
then the displacement is the signed area between the graph of v versus ¢, the
t-axis, and the lines t = a@ and ¢t = b. The distance is the same thing, except
that you start with the graph of |v| versus ¢ instead.

What if the velocity isn’t constant on a finite number of intervals? Unless
you never turn off the cruise control, you’ll be speeding up from time to time
to pass another car, slowing down when you see a cop, and so on. Even
getting from 40 to 60 mph requires some acceleration—you can’t just change
speeds instantaneously. So, let’s consider the situation where velocity v is a
continuous function of time ¢, for example:

So the car is speeding up, then slowing down, and finally speeding up even
more. The displacement should still be the shaded signed area—actually,
since everything’s above the t-axis, this is also the distance traveled. How on
earth do we find the area?

Here’s the idea. Our velocity is changing quite a lot over the whole period
from a to b, but it doesn’t change as much during a shorter period. Let’s
take some little interval of time, which we’ll call [p,q|, and just focus on
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what happens during that interval. Even on this little interval, the velocity
is changing, but let’s pretend that it doesn’t. Let’s sample the velocity by
picking some instant of time ¢ during [p, ¢], and seeing what the velocity is
then. We’ll pretend that the sampled velocity is the actual velocity for the
whole interval [p,q]. If we write the velocity v as v(t) to emphasize that v
is a function of ¢, then the velocity at time c is v(c). So, here’s a graphical
interpretation of what we’re doing:

(%

a pcq b t

We’ve flattened out the curve above [p, q] at a height of v(c). The advantage
of this is that we can get some idea about the displacement over the time
interval [p, q]. The area of the little rectangle of height v(c) and base ¢ — p
is v(c) x (¢ — p). Now, this isn’t actually the correct displacement over that
time period, but it’s mighty close.

Why stop at just one little interval like [p, q]7 Let’s repeat the process on
an entire partition of [a,b]. Starting with the partition

a=ty<ti <ty < - <th o<t,1<t,=0b,

let’s sample the velocity during each time period. The first time interval is
from ¢ to t1, so let’s pick some time c¢; in that interval and pretend that the
velocity is equal to v(c1) for the whole period. The number ¢; could be equal
to the beginning number ¢y or the end number ¢, or some number in between,
as long as it lies in [tg,t1]. Now, repeat this for the second interval: pick ¢y in
the interval [t1, t2], and use v(cz) as the sample velocity for that period. Keep
doing this for every interval, up until ¢, in the interval [t,—1,t,]. Here’s an
example of what this could look like with n = 6:

HES A :

L

to=a 14,92ty B34 5y C6tg=b t
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All we’ve done is approximate the nice smooth velocity curve using some
staircase-like function, where each step intersects the curve. We can use the
techniques from the previous sections to work out the shaded (signed) area,
which will be an approximation to the actual area under the curve. We get

= > v(e)(ty —tj-1).
1

area under velocity curve

n

J

Unfortunately, the approximation is pretty lousy. That big rectangle on the
right in the picture at the bottom of the previous page doesn’t really do a
great job of approximating the area under the part of the curve above [ts, tg],
since there’s so much of the rectangle above the curve. So let’s take a different
partition with more intervals which are smaller, for example:

ti6=b t

Here we used 16 partitions instead of 6, and it looks as if the shaded area is
a much better approximation to the actual area than our previous attempt
yielded. This wouldn’t have been true if we used a lot of intervals in our
partition, but some of the little intervals were still quite wide. For example,
check out this picture:

tio=b t

Even though most of the rectangles are pretty narrow, that one big-ass rect-
angle screws up the approximation. So somehow we need to make all the little
time intervals small. The way to do this is to let the mesh of the partition be
the longest of all the time intervals, then insist that the mesh get smaller and
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smaller, eventually down to 0 in the limit. That way, all the time intervals
will become small and you won’t have a huge rectangle like the one in the
above picture.

Formally, the mesh is defined by
mesh = maximum of (¢; — tg), (t2 — t1),. .., (1 — tn—2), (tn — tn—1).

For example, if you have the partition 3 < 3.25 <4 < 4.5 < 5 of [3, 5] (which
was the partition that we used for the third car in Section 15.2.1 above), then
the lengths of the little intervals are 0.25 (which is 3.25 — 3), 0.75 (that’s
4 —3.25),0.5 (4.5 —4), and 0.5 (5 — 4.5). The largest of the quantities 0.25,
0.75, 0.5, 0.5 is 0.75, so the mesh of the partition is 0.75.

Now we can try to replace the approximation

v(e;)(t; —tj-1)
1

n
=
by a limit to get the actual answer. Suppose we repeat the above procedure
over and over again, each time taking a partition which has a smaller mesh
than the previous one, so that the meshes go down to 0 in the limit. Then
the approximations should get better and better. This is what we’re trying
to achieve in the following formula:

n

actual area under velocity curve = lim Z v(e)(t; —ti—1).
mesh—0

j=1

For the mesh to go to 0, we need the number of small intervals in the partition
to get larger and larger, so the limit automatically includes the idea that
n — oo as well.

15.2.5 Two special approximations

The above formula leaves a lot to be desired. How do you know that you
get the same answer no matter what partitions you take and no matter how
you choose the sampling times c¢;? It’s actually a theorem that if v is a
continuous function of ¢, then the above limit is independent of the partitions
and sampling times. The proof of the theorem is a little advanced for this
book, but can be found in most textbooks on real analysis. On the other
hand, we can get an idea of the flavor of the proof by investigating two special
approximations: the upper sum and the lower sum.

Starting with a partition, we are allowed to pick sample points in each of
the little intervals. Suppose that we always pick a point where the velocity
is the greatest possible. For example, we’ll choose ¢ in the interval [tg,#1] so
that v(eq) is the maximum possible value of v on that interval. We’ll do the
same for each of the intervals. This means that all our steps lie above the
curve. Here’s an example of what this looks like:
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ti6=b t

The area of the rectangles, which is called an upper sum, is clearly bigger than
the area under the curve. On the other hand, if we always sample the lowest
possible velocity, then we get a situation like this:

to=a tig=b t

The partition is the same, but the sampling times are different. Because of

the way they’re chosen, all the steps lie below the curve; the area of all the

rectangles, which is called a lower sum, is less than the area under the curve.
Combining these observations, we have

lower sum < actual area under curve < upper sum.

In fact, for the same partition, any choice of the sampling times c; will lead
to an area between the lower sum and the upper sum. If you use a sequence
of partitions with smaller and smaller meshes, then the lower sum and the
upper sum have the same limit (that’s what I’'m not going to prove). The
sandwich principle then shows that the formula at the end of the previous
section makes sense. It doesn’t matter what values of c¢; you choose—your
sums are trapped, along with the actual area, between the lower and upper
sums. As the mesh goes to zero, the sandwich principle ensures that your
sums converge to the correct area.

We now have all the tools we need to define the definite integral. This is
the subject of the next chapter....



CHAPTER 16

Definite

Infegrals

Now it’s time to get some facts straight about definite integrals. First we’ll
give an informal definition in terms of areas; then we’ll use our ideas about
partitions from the previous chapter to tighten up the definition. After one
(exhausting) example of applying the tightened-up definition, we’ll see what
else we can say about definite integrals. More precisely, we’ll look at the
following topics:

signed areas and definite integrals;
the definition of the definite integral;
an example using this definition;
basic properties of definite integrals;

using integrals to find unsigned areas, the area between two curves, and
areas between a curve and the y-axis;

estimating definite integrals;

average values of functions and the Mean Value Theorem for integrals;
and

an example of a nonintegrable function.

16.1 The Basic Idea

We start off with some function f and an interval [a,b]. Take the graph of
y = f(x), and consider the region between the curve, the z-axis, and the two
vertical lines © = a and = = b:

Y
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It would be nice to have a compact way to express the area of the shaded
region. Since there aren’t actually any units of length in the above picture,
we'll just call them “units,” so that area is measured in “square units.” (If
the above picture actually had some units, like inches, marked on it, the area
would be given in square inches instead.) In any case, let’s say that the area
of the shaded region above, in square units, is

/ab f(z)dx.

This is a definite integral. You would read it out loud as “the integral from «a
to b of f(z) with respect to x.” The expression f(x) is called the integrand,
and tells you what the curved part looks like. The a and b tell you where
the two vertical lines go, and are called the limits of integration (not to be
confused with regular old limits!) or the endpoints of integration. Finally,
the dz tells you that z is the variable on the horizontal axis. Actually, x is
a dummy variable—you can change it to any other letter, provided that you
change it everywhere. So all the following are equal to each other:

/abf(w)dx:/abf(t)dt:/abf(q)dq:/abf(g)dg.

In fact, they are all equal to the same number, which is the shaded area (in
square units) in the above picture; the only difference is that we are renaming
the z-axis to be the t-axis, g-axis, or [f-axis. This doesn’t affect the value of
the area!

What if the function dips below the z-axis? The situation could look like
this:

As we saw in Section 15.2.3 of the previous chapter, it makes sense for the
part of the area below the xz-axis to count as negative area. If all of the curve
y = f(z) between z = a and x = b actually lies below the z-axis, then the
integral must be negative. In general, the integral gives the total amount of
signed area. More precisely,

b
/ f(z)dz is the signed area (in square units) of the region between the
a curve y = f(x), the lines x = a and « = b, and the x-axis.
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Note that the integral is a number, but the area is in square units.

We saw in the previous chapter that the displacement of an object between
time ¢ = a and ¢t = b is the signed area between the graph of y = v(t), the
t-axis, and the lines t = a and ¢t = b. We also saw that the distance the object
traveled is found in exactly the same way, except that you deal with y = |v(¢)]
instead. Using our new notation, we can say that

b b
displacement = / v(t) dt and distance = / lv(t)| dt.

a

Here the understanding is that our clock starts at ¢ = a and ends at t = b.
Notice that the dummy variable here is ¢, and that the integrands are the
velocity v(t) and speed |v(t)|, respectively.

16.1.1  Some easy examples

Now, let’s look at a few simple examples of definite integrals. First, consider

1 2
/ T dx and / T dx.
0 0

In both cases, the integrand is x, so we should start off by drawing the graph
of y = z. In the first case, the area is from x = 0 to x = 1, while the second
case goes from x = 0 to © = 2. So we are looking for the following two areas
(respectively):

These areas are easy to find: both regions are triangles. The first has base
and height both equal to 1 unit, so its area turns out to be 1(1)(1) = 1 square
units; while the second has base and height both equal to 2 units, so the area
is £(2)(2) = 2 square units. We have shown that

1 1 2
/ rdr = = and / T dxr = 2.
0 2 0

Now, let’s use these formulas to solve a practical problem. Suppose that a
car starts at rest, then accelerates at a constant rate of 1 yard per second
squared; its speed (in yards per second) will be given by v(t) = t. So how fast
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does the car go in one second? How about two seconds? The answer is given
by the above integrals! Just replace x by t and you’re golden. First, note that
the displacement and distance are the same thing, since the car’s going in the
positive direction all the time. So, in the first second, we have

1 1

1

displacement = / o(t)dt = / tdt = —,
0 0 2

while for the first two seconds, we have

2 2
displacement = / v(t)dt = / tdt = 2.
0 0

These displacements are in yards, of course.
Now, let’s take a look at another definite integral:

5
/ ldz.
-2

To find the value of this integral, we need to draw a graph of y = 1, then put
in the vertical lines + = —2 and x = 5. The area we’re looking for looks like
this:

-9 0 5

So it’s a rectangle of height 1 unit and base 7 units, which has area 7 square
units. This means that .
/ ldx =1.
-2

In fact, the more general integral

b
/ldz

represents the area of this region:
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The rectangle has height 1 unit and base b — a units (even if a and/or b are
negative), so we have
b
/ lde=b—-a

in general. This could also be written as simply

b
/ dr =b—a,

since we can think of 1dz as being just dx.

Finally, what is
/ sin(x) da?

—T

Let’s draw a graph and see what area we’re trying to find:

2r y = sin(x)
1 —
| | |
—T 0 s
1t
9t

Luckily, we need the signed area, not the actual area. By symmetry, the area
above the axis (between 0 and ) exactly matches the area below the axis
(between —m and 0), so they cancel out and the signed area is 0 square units.

That is,
/ sin(x) dx = 0.

—T

If you want the actual area, not the signed area, then you have to be more
careful and chop up the integral into two pieces. We’ll see how to do this
in general in Section 16.4.1 below, then return to the above example in Sec-
tion 17.6.3 of the next chapter.

Before we move on, I'd like to point out a generalization of the previous
example. It turns out that the reason the integral is 0 is that the integrand
sin(x) is an odd function of z, and also that the region of integration [—, 7]
is symmetric about 0. We could replace sin(z) by any other odd function of
x, and we could change the bounds to —a and a for any number a, and the
integral would still be 0. That is,

if f is an odd function, then f(x)dz =0 for any a.

—a

This is true by symmetry: every bit of area above the z-axis has a correspond-
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16.2

ing bit of area below the x-axis, just as in the above picture. This fact can
actually save you a lot of time, since it means that you don’t have to do any
calculations if your integral happens to fit the above template. We'll give a
more formal proof of the above fact at the end of Section 18.1.1 of Chapter 18.

Definition of the Definite Integral

We have a nice working definition of the definite integral in terms of area,
but that doesn’t really help us to calculate specific integrals. Sure, we got by
in the last few examples, but only because we already know how to find the
area of any triangle or rectangle. We also got lucky with that last example
involving sin(z), because everything canceled out. In general, we won’t be so
lucky.

Actually, we’ve been in this situation before in the case of derivatives. We
could have defined f’(z) to be the slope of the tangent to y = f(x) at the
point (z, f(z)), but that wouldn’t have told us how to find the slope. Instead,
we defined f’(x) by the formula

/ . fla+h) - f(z)
fiz) = lim Y ;

provided that the limit exists. As we’ve observed, this limit is of the indeter-
minate form 0/0, but we can still work it out in many cases. Anyway, once
we’ve made the above definition, the interpretation is that f’(z) represents
the slope of the tangent we're interested in.

Unfortunately, the definition of the definite integral is a lot nastier than the
above definition of the derivative. The good news is that we’ve already done
the grunt work in the previous chapter, and we can just state the definition:

mesh—0

b n
[ f@yde= tim S ) - o),
a le

where a =xg <1 < -+ < xp_1 < T, = b and
¢jisin [zj_1,z;] foreach j=1,...,n.

Even though that definition is wordy, it still doesn’t tell the full story! You
also need to be aware of the following points:

e The expression a = zg < 1 < -+ < Tp—1 < T = b means that the
points xg, z1, X2, ..., Tn—1, and z, form a partition of the interval [a, b],
with zo = a on the left and x,, = b on the right. The partition creates
n smaller intervals [zo,x1], [1, Z2], and so on up to [Xyp_1,Zx].

e The mesh of the partition is the maximum length of these smaller inter-
vals; so we have

mesh = maximum of (z1—xo), (x2a—x1), ..., (Tn-1—Tn—2), (Tp —Tp_1)-

e The numbers ¢; can be chosen anywhere in their corresponding smaller
intervals, one for each smaller interval. This is what is meant by saying
that Cj is in [$j,1,$j].
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e The above limit is taken by repeating the calculation of the sum for
different partitions with smaller and smaller mesh, and consequently
more and more smaller intervals; that is, as mesh — 0, we must also
have n — oo. Each partition involves a choice of all the numbers c;.

e If f is continuous, then it doesn’t matter what partitions are used, nor
which ¢; are chosen, as long as the mesh goes to 0. In fact, this is also
true if f has a finite number of discontinuities, as long as f is bounded.
Such functions are referred to as integrable, since they can be integrated.
There are functions which are integrable even though they might have
infinitely many discontinuities, but that’s a little advanced for this book.
On the other hand, if f is unbounded, which would happen (for example)
if it has a vertical asymptote, then the integral is called improper; see
Chapters 20 and 21 for how to deal with this sort of thing.

e The sum .

> e (@ —xj1)

j=1
which appears in the definition is called a Riemann sum. It gives an
approximate value for the integral. If the mesh of the partition is very
small, the approximation should be pretty good.

See, I told you it was nasty! Now we’ll see how to use the definition to calculate
a definite integral.

16.2.1  An example of using the definition

‘\ Let’s use the above formula to find the following integral:

J 22
/:zrd:c.
0

So we are looking for the following area:

0 9

This isn’t a triangle or a rectangle, and nothing cancels out since the area is
entirely above the z-axis. So let’s set f(x) = 2% and use the definition of the
definite integral to find the area.
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We need to take partitions with smaller and smaller meshes. By far the
easiest way to do this is to use small intervals of equal size. So, we want to
chop up our interval [0, 2] into n pieces, each the same length. Since the total
length is 2, and we’re using n pieces, each piece must have length 2/n units.
The first piece goes from 0 to 2/n; the second piece goes from 2/n to 4/n; and
so on. Zooming in on the region of interest, here’s a picture of what we’ve

done:
4 -
3L
2L
1_
| | | | | | | | | | | | | | |
>
0 % % % ---- width of each interval = % 2(71—/;) 2(7171)'2\_71 _9

n n n

In this case, the general partition
a=To< T <T3< < Tp_1<xTp=2>0

specializes to

The mesh of this partition is 2/n, since every smaller interval has width 2/n.
It’s also pretty clear that the formula for a general x; in this partition is 2j/n.
Now, we need to choose our numbers c;. For example, ¢y could be anywhere
in the interval [0,2/n], ¢1 could be anywhere inside [2/n,4/n], and so on.
We'll make life simple by always choosing the right endpoint of each smaller
interval, so that ¢; = z; = 2j/n. That is,

2j 20 —1) 25
cj = = is our choice for the smaller interval [zj-1,2;] = [M, —j} .
n n n

This will lead to the following rectangles:
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it /
| _
1 7
e
1_
Iz 4 Tt

n n n

So we're actually dealing with an upper sum here—all the rectangles lie above
the curve. (See Section 15.2.5 in the previous chapter for a more general
discussion of upper sums.)

Now, we’re finally ready to use the formula. Consider the Riemann sum

Z flej)(@j —zj-1).

We know that f(z) = 22, ¢; = 2j/n, z; = 2j/n aswell, and ;1 = 2(j—1)/n.

So the sum becomes
i:azy_w—n
n n n '

j=1
The right-hand factor simplifies to 2/n. This isn’t surprising, since that’s the
width of each of the rectangles. On the other hand, the rectangles all have
different heights, which are given by the first factor (2j/n)?, as j ranges from
1 to n. In any case, the above sum simplifies to

4 .2 n .2
S 2_ 3 857

n? n n3
Jj=1 j=1

Now what? Well, the denominator n® doesn’t depend on the dummy variable
J, so we can take it out as a common factor to write the sum as

8 < .
—= i
j=1

In Section 15.1.2 of the previous chapter, we actually found that the value of
the above sum is n(n + 1)(2n 4 1)/6. This means that

8~ 8 nn+1)2n+1) 4n+1)2n+1)
=
7j=1

6 3n?
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All in all, we have shown that the shaded area of the rectangles in the above
picture (in square units) is given by

> ey =y = At VO Y,

j=1

This is only an approximation to the area we're looking for. Since the mesh
of the partition is 2/n, we can force the mesh to go to 0 by letting n — oo.
The rectangles become smaller and smaller, but there are more and more of
them which hug the curve y = x2 better and better. So we have

mesh—0 n—o0o 3n2

/2w2dw: lim znjf(cj)(mj_mj_l): i 20+ 1@ +1)
0 i=1

All that’s left is to find the last limit. You can use the techniques from
Section 4.3 of Chapter 4 to show that the limit is 8/3, so we have finally

shown that
2 8
/ 22de = =.
0 3

The area we’re looking for is 8/3 square units. Now you should try to repeat
the above method to show that

1
1

/ 22de = =.
0 3

As you can tell, this method is a pain in the butt. Not only is it long and
involved, but you also need to know how to find the sum

Things would be even worse if the integrand happened to be sin(z) or some-
thing similar. So we need another method in order to avoid all these rectangles
and sums. That will have to wait until we look at the Second Fundamental
Theorem of Calculus in the next chapter. In the meantime, let’s look at some
nice properties of definite integrals.

Properties of Definite Integrals

Let’s extend our definition of the definite integral a little bit. What do you

think of o
/ 2% dx?
2
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The only difference between this integral and the one we calculated in the
previous section is that the integral goes from 2 to 0, instead of 0 to 2. So
what on earth is a partition of the interval [2,0]? That’s not even a legitimate
interval, since 2 is greater than 0. The best we can do is to take a backward
partition, like this:

2=x9>x1>x9> - >Tp_1> Ty, =0.

Now the quantity (z; — z;_1), which appears in the definition of the definite
integral, is always negative. Our rectangles effectively have negative base
length! The end result is that
0
8
/ 22 dr = ——.
9 3

So if you reverse the limits of integration, you need to put in a minus
sign out front. In general, for an integrable function f and numbers a and

b, we have
a b
/b f(z)dx = —/a f(z)dx.

Another way of looking at this is that if you go backward in time, then the
displacement is reversed. For example, if you make a movie of a car which
is going forward, then play it in reverse, the car will appear to have gone
backward, so the displacement should be negative.

Now, what if the limits of integration are equal? For example, consider

3
/ z2 dz.
3

This isn’t much of an area. After all, there’s no area between £ = 3 and z = 3
at all! So the answer must be 0. In fact, it’s generally true that

/:f(,r)daj:O

for any number a and function f defined at a. Again, this makes sense in
terms of the physical interpretation: between times a and a, which is no time
at all, an object can’t move at all, so it has no displacement.

Moving on, let’s consider the following picture:
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The whole area, from z = —2 to x = 3, is clearly the sum of the two areas
labeled I and II. By definition, we have

1 3
area of I = / f(z)dx and area of IT = / f(z)dx,
-2 1

respectively; the conclusion is that

/_Zf(x)dﬂcz/_12f(9€)d90+/13f(:v)da;,

All we’ve done is split up the area into two pieces and express this in terms of
integrals. Of course, we could have split up the integral using any number in
the interval [—2, 3], as long as we replaced both the 1s in the above formula
by the same number. In fact it even works when the number is outside the
interval [—2, 3]. For example, the following formula is true:

/Zf(x)dx:/if(x)dx'f‘/jf(:v)da:.

Here’s a picture of what’s going on:

This time, we have
3 4
area of IIT = / f(z)dx and area of IV = / f(x)de.
-2 3

So we can add them up to see that

/if(x)dx_/Zf(:c)dx+/:f(z)dz.

Now reverse the limits of integration in the final integral above to get

/Zf(x)dx:/Zf(x)dx_lgf(x)dm-

It’s pretty easy to rearrange this and get the desired formula

/_zf(x)dx:/_Zf(w)dx‘F/;f(:E)da:.
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In general, for any integrable function f and numbers a, b, and ¢, we have

/abf(x)dx:/acf(:v)dx—k/cbf(:v)dx.

You can split an integral into two pieces, even if the break point c is
outside the original interval [a, b], as long as in both pieces the integrand f is

still integrable.
2
/ 22 dz,
1

For example, to find
we can use two facts that we've already found in the previous section:

2 1
1
/a:Qd:c:§ and /xQd:c:—

All you have to do is split up the first integral at = = 1, like this:

2 1 2
/ 22 dr = / x> dm+/ 2% da.
0 0 1

Using the above facts, this becomes

so we have

2
8 1 7

2
der=2—>=1,
/1:0;5 373 3

I now leave it to you to show that

2
3
/ rdr ==
1 2

using the following facts from Section 16.1.1 above:

2 1 1
/ Tz dr =2 and / rdr = —.
0 0 2

There are two more simple properties of integrals which are even more
useful. The first is that constants move through integral signs. That is,
for any integrable f and numbers a, b, and C,

/abCf(x)da; _ C/abf(x)dx.

This is not true if C' depends on z! C has to be constant. It’s actually quite
easy to prove this. Just write

mesh—0

b n
/Cf(m)dz: lim ZCf(cj)(:cj—:cj,l)
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and pull the constant C out of the sum and the limit:

/abCf(z)dz_ mcl;}{ILOchj =i 1) /f

For example, to find
2
/ 722 dz,
0

just drag the 7 outside the integral:

2 2
8 56
/ 7m2dm:7/ x2dx:7<—> = —.
0 0 3 3

The second property is that integrals respect sums and differences.
That is, if f and g are both integrable functions, and a and b are two numbers,

then
/ab(f(x) +g(x))dr = /ab f(z)dx + /abg(:c) da.

The same is true if you change both plus signs to minus signs. Either version
is easy to show using partitions. All you have to do is break up the sum and
limit, like this:

n

b
[ @)+ g@)de = tim S +g(es)) e - 1-)

= lim chj —zj—1)+ lim chj Ty —Tj_1)

mesh—0 mesh—0

/ab F(z)dz + / g(@) dz.

The same thing works with minus signs instead of plus signs.

For example, to find
2
/ (32% — 5z) dw,
0

split up the integral and also drag the constants through the integral signs.
We get

2 2 2 8
/(3x2—5x)da::3/ xQdm—S/ :vdx:3(—>—5(2):—2.
0 0 0 3

Here we have used the facts from above that

2 3 2
/ 22 dx = = and / zdx = 2.
0 3 0
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16.4  FHnding Areas

If y = f(x), then we can write

b
/ ydzx

instead of using f(z) as the integrand. This has a nice geometrical interpre-
tation: if we look at one of our thin rectangles, or strips, arising from the
partition method, we can think of it as having height y units and width equal
to some small length dx units:

The area of the strip is the height times the width, or y dz square units. Now
draw in more strips so that the bases form a partition of [a,b]. If we were
to add up the areas of all these strips, we’d get an approximating sum. The
beauty of the integral sign is that it not only adds up the areas of all the
strips, it also takes the limit as all the strip widths go to 0 (in the limit).

This idea is useful in helping to understand how to use the integral to find
areas. Now, let’s spend a little time looking at how to find three specific types
of areas: unsigned area, the area between two curves, and the area between a
curve and the y-axis.

16.4.1  Fnding the unsigned ared

We've seen that definite integrals deal with signed areas. Sure, if your curve
is always above the z-axis, then it doesn’t matter whether the area is signed
or unsigned. But what if some of the curve lies below the axis? For example,
suppose that f(z) = —2? — 22 + 3 and the region of interest is between x = 0
and x = 2. Since f(0) = 3 and f(2) = —5, the curve y = f(x) looks like this:

y=—-22—-22+3
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If you treat the shaded area as signed, so that the area of the region labeled
IT counts as negative, then we have

2 2 2 2
signed area:/ (—x2—2x+3)dm:—/ xzdm—2/ xdw+3/ 1dx.
0 0 0 0

Here we’ve broken up the integral using the principles from the previous sec-
tion. We also know what all three integrals are, having found them above.
We get

2
shaded signed area = —g —-2(2)+3(2) = —3 square units.

This is clearly not the unsigned area, since it’s negative! So, how do you find
the unsigned area? The trick is to break up the integral into pieces to isolate
the bits of area above and below the axis, then add up their absolute values.
In the above example, we need to know where the curve hits the z-axis. So

just solve —x2 — 22 + 3 = 0 and you will see that x = 1 or x = —3. Clearly
x = 1 is what we’re looking for here, since it’s between 0 and 2, while —3
isn’t.

Now we can write down two integrals:
1 2
/ (—2? — 2z + 3) dx and / (=% — 2z + 3) du.
0 1

These represent the signed areas of regions I and II, respectively, in the above
picture. To calculate the integrals, you’ll need some formulas that we’ve
developed earlier in this chapter:

I leave it to you to work out that

' 5 ? 7
/ (—2* — 2z +3)dr = = and / (—2* — 22+ 3)dr = —=.

As expected, the first integral is positive since region I is above the axis, and
the second is negative since region II lies below the axis. Also, the sum of
the two integrals is —2/3, which is the signed area (in square units). Now,
here’s the important point: we can get the actual area of region II just by
ignoring the minus sign! This works because the region is entirely below the
x-axis. So the actual area of region IT is 7/3 square units, while region I has
area 5/3 square units. The total area is therefore 5/3 + 7/3 = 4 square units.
Effectively, we just took the absolute value of each of the two pieces 5/3 and
—7/3, then added them up.
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Incidentally, we have actually just proved that

2
/ |—2? — 22 + 3| dx = 4.
0

To see why taking absolute values of the integrand gives the unsigned area,
just look at the graph of y = |—22 — 2z + 3|:

éy:|—x2—2x+3|

I IIa

The region labeled Ila is just the reflection in the z-axis of the old region II,
so it has the same unsigned area. The total shaded area is the same as the
total unsigned area in the original picture above.

Let’s summarize the method for finding the value of the unsigned area
between y = f(x), the z-axis, and the lines x = a and © = b. The same
method works for either of the following integrals, because they are both
equal to the unsigned area:

/ @l or / e

So, here’s the method:

e Find all the zeroes of f lying in the interval [a, b].

e Write down a bunch of integrals with integrand f(z), not |f(x)|. The
first integral starts at a and goes up to the lowest of the zeroes you just
found. The next one starts at that lowest zero and goes up until the next
one. Keep going until you run out of zeroes. The last integral starts at
this final zero and goes up to b.

e Work out each integral separately.

e Add up the absolute values of the numbers from the previous step to
get the unsigned area.
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We'll look at another example of this in Section 17.6.3 of the next chapter.
Note that you should use the above method in order to find the distance
an object travels, as opposed to the displacement. Indeed, as we saw in
Section 16.1 above,

b
distance = / lv(t)] dt,
a
so absolute values are involved and the above method applies.

16.4.2 Finding the area between two curves

Suppose you have two curves, one above the other, and you want to find the
area of the region between the curves and the lines x = a and x = b. If the
curves are y = f(z) and y = g(x), where the first is above the second, then
the situation looks like this:

The actual region we want to find the area of is labeled I. On the other hand,
the region II lies under the curve y = g(x), so it has signed area

/ab g(x)dz.

/ab f(x)dz?

That must be the signed area below the top curve all the way to the z-axis,
so it is actually the area of both regions put together. So we have

So what is

b b
/ f(z)dx = / g(x) dz + signed area of region I.
We can rearrange this and stick the two integrals together into one integral,
getting
b
signed area of region I = / (f(z) — g(x)) da.

So you just take the top curve’s function and subtract the bottom curve’s
function, then integrate. For example, let’s find the following shaded area:
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y=a’

—_
T

The region lies below y = = and above y = z2. The intersection points are at
x =0 and x =1, so we have

! ! ! 11 1
shaded area = / (z—2?) de = / x d:z:—/ 2? drx = ——= = = square units.

What about going from 0 to 2 instead? Here’s the picture:

Jy==x

S
T

It would be wrong to express this area as

/Oz(x—xz)dx.
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If you try it, you’ll actually get the answer —2/3 again, which can’t be a real
area. The problem is that y = z is above y = 22 only when z is between 0
and 1. To the right of z = 1, the curve y = 22 is on top. The quantity « — x>
is no good, then—we should really use |x — 22| instead. That way, we’ll make
sure we're always using the actual area, no matter which curve is on top. So
we have to apply the method from the previous section to find

2
/ |z — 22| da.
0

No problem. First, notice that x — 2% = 0 when = 0 or « = 1, so we consider
the integrals

1(x—z2)d:c and Q(x—z2)dz.
0 1

The first integral is 1/6, but the second works out to be 3/2 —7/3 = —5/6.
It makes sense that the second integral is negative, since y = z is not above
y = 22 when 7 is in the interval [1,2]. Never mind—we just add up the
absolute values of the two integrals:

2
1 5| 1 5
—2?lde=|Z|+|-S|=>+=-=1
/O|x vldr =151+ 175/ =5t 5

So the area we want is 1 square unit.
In summary, the area of the region bounded by y = f(z), y = g(x), z = q,
and x = b is given by the following formula:

b
area between f and ¢ (in square units) = / |f(z) — g(z)| du.

If f(x) is always greater than or equal to g(z) on the interval [a,b], then
the absolute value signs aren’t needed. Otherwise, use the method from Sec-
tion 16.4.1 above to handle the absolute value in the above integral. We’ll look
at another example of this technique in Section 17.6.3 of the next chapter.

16.4.3 Finding the area between a curve and the y-axis

A\ Let’s try to find the area of the region enclosed by the curve y = /z, the
\ } y-axis, and the line y = 2. Here’s a picture of the region:

y=vr
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It would be a mistake to write the above area as

2 4
/ Vrdx or even / Ve de.
0 0

Both of the above integrals represent areas down to the z-axis, not the y-axis;
in fact, they are equal to the following areas (respectively):

y=vz y=+vz

The second one is a little bit better, because x = 4 actually corresponds to
y = 2. On the other hand, neither is correct! To find the correct area, the best
way is to integrate with respect to y, not x. When we do this, we’re effectively
chopping up the region we want into horizontal strips, not the vertical ones
we’ve used before. Here’s an example of how this might look:

y=Vr

If you focus on any one of these strips, you can think of the dimensions as
being dy and x:

y=v=
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16.5

So the area of a little strip is x dy square units, and you get the total by
integrating. In our case, y ranges from 0 to 2 (not 4), so the area we want (in

square units) is
2
/ xdy.
0

Since y = \/z, we know that z = y2. So the above integral becomes

2
/ y2 dy.
0

This is none other than our old integral

2
/ 22 dx,
0

but with the dummy variable changed from z to y. This change has no effect:
the value is still 8/3, so the area we want is 8/3 square units. Now, if you
want to be clever about it, look back at the original area, and notice that
all you have to do is flip the whole picture in the mirror line y = z and you
get the area under y = 22 from & = 0 to x = 2 instead. That’s all we're
doing here—switching z and y. Of course, if y = f(z), then x = f~1(y),
provided that the inverse function exists. So, we can summarize the situation
as follows:

y)dy between the curve y = f(z), the lines y = A and

/B is the signed area (in square units) of the region
=
A y = B, and the y-axis, if f is invertible.

If you prefer, you can write the above integral as

B
/ xdy
A

instead. This is because x = f~!(y) when y = f(z). Also, notice that I used
capital letters A and B for the limits of integration—I did this to emphasize
that these numbers are on the y-axis, not the z-axis. So in our above example,
the integral has to be from 0 to 2, not the 0 to 4 that you might think by
looking at the z-axis. Since f(x) = /z, we know that f~!(x) = x2. So the
above formula does indeed give our integral

/ABf_l(y)dy = /02y2dy,

which is 8/3, as we saw above.

Estimating Integrals

Here’s a very simple but important principle: when one function is always
larger than another, its integral is also larger. Take a look at the
following picture:
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On the interval [a, b], the function g always lies above f. (I know, I had them
the other way around in Section 16.4.1 above!) In any case, the area under
y = f(z) (down to the z-axis) is clearly less than the area under y = g(x)
(down to the z-axis). In symbols:

b b
if f(x) < g(z) for all z in [a, b], then / f(z)dx < / g(x)dz.

This is true even if one or both of the curves go below the z-axis, thanks
to the fact that we’re using signed areas. For example, if f is always below

tlze x-axis and g is always above the z-axis, then f; f(z) dz is negative while
fa g(z) dx is positive, and the above inequality is still true.

The proof of the statement in the box above is quite easy using Riemann
sums. Without getting into the gory details, you just have to take a partition
and note that f(c;) < g(c;) for all j, so the whole Riemann sum for f is less
than the corresponding sum for g. I leave it to you to take it from there.

There’s also a nice interpretation of the above fact in terms of velocity
and displacement. Suppose that there are two cars starting at the same place.
The first one travels with velocity f(¢) at time ¢, while the second goes at a
velocity of g(t) at time ¢. Since the integral of velocity is the displacement,
the statement in the box above means that if the first car’s velocity is always
less than the second car’s velocity, then the first car’s displacement is less
than the second car’s displacement. This makes a lot of sense if you think
about it! The first car will always be more to the left of the second car on our
mythical number line, because it just doesn’t have as much rightward oomph
as the second car does.

16.5.1 A simple type of estimation

We can use the above inequality to get a feel for how big or small a definite
integral is, without actually finding the integral. For example, suppose we’d
like to estimate f: f(z) dx, which is the value of the following area:
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Let’s set M equal to the maximum value of f(z) on [a,b], and we’ll do the
same thing with the minimum value, except we’ll call it m instead. If we draw
in the lines y = M and y = m, then the situation looks like this:

Notice that the area we want is less than the area under y = M, but greater
than the area under y = m. This is easy to see by drawing some more pictures:

It’s not hard to find the area of the two rectangles in the left-hand and right-
hand pictures above. In the left-hand case, the base is (b — a) units and the
height is m units, so the area is m(b— a) square units. In the right-hand case,
the base is still (b — a) units but the height is now M units, so the area is
M (b — a) square units. So the above graphs indicate the following principle:

if m < f(x) <M for all z in [a, b], then

b
m(b—a) S/ f(z)dx < M(b—a).
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Of course, this is exactly the principle from the previous section applied twice.
Let’s look at an example of how to use it. Suppose we want to get some idea

about the value of
1/2 )
/ e ¥ dux.
0

The graph of y = e™® is a variety of the famous bell-shaped curve, which
pops up all over the place, especially in probability theory and statistics. We
are looking for the following area:

I2

-2 -1 0

ro|i [T .. ..

Even with all the techniques for finding integrals that we’ll develop in the
next three chapters, we still won’t be able to find the exact value of the above
integral. In fact, there isn’t any nice way to express the value without using
an integral sign or a sum which goes on forever or some other trick. We can
at least estimate the value of the integral by using the above principle.

We need to find the maximum and minimum values of y = e~ on the
interval [0, 2]. The chain rule shows that dy/dx = —2ze¢~*", which is 0 at the
endpoint 0 and is negative otherwise. This confirms that e~ is decreasing
in z on the interval [0, %], so the maximum value occurs when z = 0, and the
minimum value occurs when = = % Plugging these values in, we find that
the maximum value is e=*° = 1, and the minimum value is e—(1/2)* = =1/
That is, on the interval [0, %], we have

e 14 < e <1.

By our principle from the box above with a = 0 and b = %, we have

1/2
6_1/4<l—0)§/ e_m2d:v§1(l—0).
2 0 2

So the value of the integral we’re looking for lies between %e‘l/ 4 and % Again,

you can clearly see this by looking at the following graphs, which show the
underestimate and overestimate, respectively:

1
2

The areas of the two rectangles are %efl/ 4 and % square units, respectively.
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16.6

The above estimates are pretty crude. We can do a better job by using
more rectangles, or even more exotic shapes like trapezoids or parabola-topped
strips. See Appendix B for more details.

Averages and the Mean Value Theorem
for Intfegrals

At last, we can return to average velocities. Yes, once upon a time, we thought
nothing of saying that speed equals distance over time, or better still, velocity
equals displacement over time. That’s fine as long as the velocity is constant;
otherwise, as we saw in Section 5.2.3 in Chapter 5, we really need to say
average velocity.

Then we learned how to use differentiation to find the instantaneous
velocity, knowing what the displacement is at all times during the time interval
of interest. Using integration, we can find the displacement, knowing what
the instantaneous velocity is at all times during our time interval. This last
fact also allows us to find the average velocity, knowing the instantaneous
velocity at all times. All you have to do is find the displacement and divide
it by the total time. If the time interval goes from a to b, and the velocity at
time ¢ is v(t), then we've already seen that

b
displacement = / v(t) dt.

a

Since the total time is b — a, we have

displ t 1 [
average velocity = f(i:f:if; =5 a/ v(t) dt.
a

More generally, we can define the average value of an integrable function f
on the interval [a, b] as follows:

1 b
average value of f on [a,b] = b—/ f(x)de.
—al,

For example, what is the average value of f on the interval [0,2], where
f(x) = 22?7 No problem:

2 , 1
average value = 370 J, rdr = >
All you have to do is divide the integral by the difference between the limits
of integration.
Let’s look at a geometrical interpretation of this. Let’s write the average
value of f on [a,b] as fay for short. Here’s an example of what the graphs of
y = f(x) and y = fay might look like:
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[

Notice that f,, is just a constant number, so the graph of y = f., is a
horizontal line. Now, by the above boxed formula, we have

1 b
Jav = m/a f(z) da.

Multiplying by (b — a), we see that

b
/ f@)dz = fay x (b—a).

This actually says that the following two areas are equal:

Jav

After all, the rectangle in the right-hand picture has height f,, units and base
(b — a) units, so its area is fay X (b — a) square units. You can think of it
this way: if you disturb the water in a thin long fish tank so that the water
surface looks like y = f(x) for an instant, then after the water stabilizes, the
surface will look like the horizontal line y = fa.

16.6.1  The Mean Value Theorem for infegrals

In the above graphs, observe that the horizontal line y = f,, intersects the
graph of y = f(z). Let’s label the corresponding point on the z-axis as ¢, like
this:

[
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So we have f(c) = fay. It turns out that if f is continuous, then there is
always such a number c:

Mean Value Theorem for integrals: if f is continuous on [a, b],

then there exists ¢ in (a, b) such that (¢) =3 / f(z
—a

In words, you could say that “a continuous function attains its average value
at least once.” For example, we saw in the previous section that the average
value of f(z) =2 on [0,2] is 4/3. According to the above theorem, we must
have f(c) = 4/3 for some c in [0, 2]. Since f(c) = ¢?, we can see that ¢ = \/4/3
is a solution which does indeed lie in [0, 2] (unlike the other possible solution,
c=—/4/3).

If you think of the above theorem in terms of velocities, it just says that
v(c) = v,y for some ¢ in [a,b]. This means that for any journey, there is some
point in time (¢) such that the velocity at that time (v(c)) equals the average
velocity (vay). No matter how hard you try, during any journey you make,
there must be at least one instant of time where your instantaneous velocity
equals your average velocity. There might be more than one such instant, but
there can’t be none. Even if you go at 45 mph for an hour and 55 mph for an
hour, for an average velocity of 50 mph, you will still have to go at 50 mph
for an instant while you're accelerating from 45 to 55.

So, why is the above theorem also called the Mean Value Theorem? After
all, we already have a Mean Value Theorem. If you look back at our discussion
of the original theorem in Section 11.3 of Chapter 11, you’ll see that we reached
the same conclusion as we did above: the instantaneous velocity has to equal
the average velocity at some point during any journey. The difference between
the two versions of the theorem is that in the regular version, the conclusion
was interpreted in terms of slopes on the graph of displacement versus time;
whereas now we have interpreted it in terms of areas on the graph of velocity
versus time.

Now let’s see why the theorem is true. As we did in Section 16.5 above,
we'll let M be the maximum value of f on [a,b], and m be the minimum
value of f on [a,b]. Could f,, possibly be greater than M? If so, the situation
would look like this:

v
M

There’s no way that the area of the dashed rectangle equals the area of the
shaded region under y = f(x), since the rectangle contains the region! So that
situation can’t happen. In a similar way, f,, can’t be below the minimum m.
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It must lie between m and M. The Intermediate Value Theorem implies that
f takes every value between m and M (can you see why?), so in particular,
f takes on the value f,, somewhere. That is, f(¢) = fay for some ¢ and the
theorem is true. We’ll use the theorem in Section 17.8 of the next chapter
when we prove the First Fundamental Theorem of Calculus.

A Nonintegrable Function

In Section 16.2 above, I mentioned that if f is bounded and has only a finite
number of discontinuities in [a, b], then f is integrable. That is, the integral

f; f(z) dx exists. By the way, recall that discontinuities are a deal-breaker
as far as differentiability is concerned—if f is discontinuous at x = a, then it
can’t be differentiable there. (See Section 5.2.11 of Chapter 5.) Integration is
a little more forgiving, since it can deal with some discontinuities, as long as
there aren’t too many of them. Now, let’s look at an example of a function
where there are too many discontinuities.

First, remember that a rational number is a number that can be written
in the form p/q where p and ¢ are integers (with no common factor). An
irrational number can’t be written in that form. Now, for x in the domain
[0,1], let

(2) 1 if z is rational,
€Tr) =
2 if x is irrational.

This is a pretty weird function. There are lots and lots of rational and irra-
tional numbers between 0 and 1. In fact, between every two rational num-
bers, there’s an irrational number, and between every two irrational numbers,
there’s a rational number! So if you try to sketch a graph of y = f(x), you
might come up with the following picture:

2 y = f(z)

The values of f(x) jump between heights 1 and 2 faster than you can imagine.
There’s no connectivity whatsoever in the above line segments at heights 1 and
2: they are full of holes. The function is actually discontinuous everywhere.
So what on earth should .
/ f(z)dx
0

be? Let’s try taking upper and lower Riemann sums and see what we get.
Pick any partition of [0,1]. No matter how narrow they are, your strips will
pick up some irrational point. So the upper sum must look something like
this:
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Every rectangle has to reach height 2 in order to create an upper sum, even if
the rectangles are really really thin. Notice that the area of all the rectangles
above is 2 square units, no matter how many there are, since they fill out a
1-by-2 unit rectangle. In particular,

1' R‘ = 1. 2 = 2

mCéhmﬂo(upper iemann sum) lim

Similarly, in the lower sum for the same partition, every rectangle has to be
of height 1 unit. After all, no matter how thin a rectangle is, its base (on the
x-axis) will still contain a rational number, and the function has height 1 at
all rational numbers. So a lower sum must look like this:

2 y = f(x)

Now the area is 1 square unit, since the total rectangle filled in by all the little
strips is 1-by-1 unit. So we have shown that

lim (lower Riemann sum) = lim 1=1.

mesh—0 mesh—0
The limits, as the mesh goes to 0, for the upper and lower Riemann sums are
different. This doesn’t happen for continuous functions, but it does happen
for this crazy function! The only conclusion is that f cannot be integrated
on its domain [0, 1]. We say that f is nonintegrable. Actually, there is a way
to integrate this function, but it’s called Lebesgue integration (as opposed to
Riemann integration) and it’s way beyond the scope of this book. So, let’s
not worry about these sorts of pathological examples and concentrate instead
on finding a nice way to find definite integrals of well-behaved, continuous
functions.



CHAPTER 17

The Fundamental Theorems of Calculus

17.1

Here it is: the big kahuna. I'm talking about the Fundamental Theorems of
Calculus, which not only provide the key for finding definite integrals without
using messy Riemann sums, but also show how differentiation and integration
are connected to each other. Without further ado, here’s the roadmap for the
chapter: we’ll investigate

e functions which are based on integrals of other functions;

e the First Fundamental Theorem, and the basic idea of antiderivatives;
e the Second Fundamental Theorem; and

e indefinite integrals and their properties.

After all this theoretical stuff, we’ll look at a lot of different examples in the
following categories:

e problems based on the First Fundamental Theorem:;
e finding indefinite integrals; and

e finding definite integrals and areas using the Second Fundamental The-
orem.

Functions Based on Infegrals of Other Functions

In the previous chapter, we used Riemann sums to show that

1 2
1

/ w?dr = = and / :czd:c:g

0 3 0 3

(Actually, we only did the second one; I left the first one to you!) Unfortu-
nately, the method of Riemann sums was really nasty. It would be nice to
have an easier method to find the above integrals. Why stop there, though?

Let’s try to find
any number
/ 2% dz.
0
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So we want to allow the right-hand limit of integration to be variable. Ev-
eryone’s favorite variable is x, but you can’t write down

/ 2% dx
0

unless you want to be really confusing. After all, z is the dummy variable,
so it can’t be a real variable too. So let’s start over, this time using ¢ as the
dummy variable. First, we have

1 2
1 8
/ t?dt ==  and / t2dt = —.
0 3 0 3

Remember, the letter we use for the dummy variable is irrelevant—we’ve just
renamed the z-axis to be the t-axis. The actual area doesn’t change. Now we
want to consider the quantity
xr
/ t* dt.
0

If you substitute = 1 into this quantity, you get fol t2 dt, which is equal
to 1/3; if instead you substitute x = 2, you get f02 t? dt, which is 8/3. Why
stop there? You can substitute any number in place of z and get a different
integral. That is, the above quantity is a function of the right-hand limit of
integration, x. Let’s call the function F', so that

F(z) = /Ow t2 dt.

We have seen that F'(1) = 1/3 and F(2) = 8/3. How about F(0)? Well,

F(0) = /00 t2 dt.

In Section 16.3 of the previous chapter, we saw that an integral with the same
left-hand and right-hand limits of integration must be 0. That is, we know
that F'(0) = 0. Unfortunately, it’s not so easy to find many other values of F,
such as F'(9), F'(—=7) or F(1/2). We'll return to this point in the next section.
In the meantime, how would you describe F(x) in words? It’s precisely the
signed area (in square units) between the curve y = t2, the t-axis, and the
vertical line ¢t = z.

There are two ways we can make this whole thing more general. First, the
left-hand endpoint doesn’t have to be 0. You could define another function G
by setting

G(z) = /j t2 dt.

The quantity G(x) is the area (in square units) of the region bounded by
y = t2, the t-axis, and the lines ¢t = 2 and ¢t = x. So what is G(2)? Well,

2
G(2) = / t2dt =0,
2
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since the left-hand and right-hand limits of integration are the same. How
about G(0)? We have

G(0) = /20 t2 dt.

To handle this, remember from Section 16.3 of the previous chapter that you
can switch the limits of integration as long as you put a minus sign out front.

So
0 2 8
G(O):/ t2dt:—/ t2dt = ——.
2 0 3

In fact, there’s a really nice relationship between F' and G. First, let’s remind
ourselves what these functions are:

F(z):/ t*dt  and G(a:):/ 2 dt.
0 2

Let’s split up the first of these integrals up at ¢ = 2; see Section 16.3 in the
previous chapter to remind yourself how to split up an integral. We get

T 2 x
/tht:/ t2dt+/ t2 dt.
0 0 2

The left-hand side is F(x). Meanwhile, the first term on the right-hand side
is just 8/3, while the second term is G(z). Altogether, we have shown that

F(z) = g + G(x).

That is, F' and G differ by the constant 8/3. We can be even more general,
though. Suppose that a is any fixed number, and set

H(:c)_/:tht.

If you split the integral in the definition of F' at ¢ = a instead of ¢ = 2, you

get this:
F(z):/ t2dt:/ t2dt+/ 2 dt.
0 0 a

The second term on the right-hand side is exactly H(x), so we’ve shown that
F(x) :/ t2dt + H(x).
0

So what? Well, the integral foa t2 dt is actually a constant—it doesn’t depend
on z at alll Even though we didn’t specify the value of a, we did say it was
constant, so the integral must also be constant. We’ve shown that

F(z) = H(z) + C,

where C' is some constant that depends on a but not on . The moral of the
story is that changing the left-hand endpoint from one constant to another
doesn’t make too much difference.
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Our second generalization is that the integrand doesn’t have to be ¢2. It
can be any continuous function of ¢. Let’s suppose the integrand is f(¢). If a
is some constant number, then let’s define

F(z) = / " r)dt.

For example, if a = 0 and f(t) = t2, you get the original function F' from
above. In general, for any number z, the value F(z) is the signed area (in
square units) between the curve y = f(t), the t-axis, and the vertical lines
t = a and t = x. Here is an example of what this might look like for three
different values of z:

17.2

| a x | a x

The above pictures are reminiscent of a curtain with fixed left-hand edge,
while the right-hand edge slides back and forth. The only unrealistic aspect
is that the curtain rod at the top is pretty warped, unless the function f is
constant! In any case, note that the function F' comes directly from the choice
of the integrand f(¢) and the number a. By splitting up the integral, you can
show that changing the number a just changes the function F' by a constant.
All these ideas will be very important in the next couple of sections. . ..

The First Fundamental Theorem

/abf(x) dx

without using Riemann sums. Let’s do three things which are not really
obvious at all:

Here’s the goal: find

1. First, let’s change the dummy variable to ¢ and write the above integral

) / " foy .

As we saw in the previous section, this doesn’t make any difference—the
name of the dummy variable doesn’t matter.

2. Now, let’s replace b by a variable x to get a new function F', defined like
this:

F(z) = / " r) .

This is exactly the sort of function that we looked at in the previous
section. Eventually we're going to want the value of F(b), which is
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exactly the integral in step 1 above, but first let’s see what we can
understand about F' in general.

3. So we have this new function F. It’s like a brand new shiny toy to play
with. Since we’ve spent so much time differentiating functions, let’s
try differentiating this one with respect to the variable x. That is, we
consider

Flz) = % /xf(t) dt.

Understanding the nature of F’(z) will allow us to find F(x) in general.
Once we've done that, we can find F'(b), which is exactly the integral

we want.
d xT
— t)dt
T /a f(@)

might just about be the weirdest thing we’ve looked at so far in this book.
Let’s see how to unravel it. Pick your favorite number z and find F'(x). Then
wobble z a little bit—Ilet’s move it to  + h, where h is a small number. So
now our function value is F(z + h). Here’s a picture of the situation:

The expression

y = f(t)

F(z+h)

a zx+h ) a rx+h

As you can see, x and = + h are pretty close to each other. The values of
F(z) and F(x+ h) are pretty close to each other too—they represent the two
shaded areas above (respectively). Now, to differentiate F', we have to find

lim F(z—i—h)—F(a:)'
h—0 h

The difference F(x + h) — F(z) is just the difference between the two shaded
areas, which is itself just the area of the thin little region (with curved top)
between ¢t =z and t = x + h:




360 e The Fundamental Theorems of Calculus

You can see this in symbols by splitting up the integral for F'(z+ h) at t = z,
like this:

z+h T z+h z+h
F(:c+h):/ f(t)dt:/ f(t)dt+/ f(t)dt:F(;v)+/ £(1) dt.

Rearranging, we get

x+h
F(x—i—h)—F(m):/ f(t)dt,

which is exactly the shaded area (in square units) of the thin strip above.
Actually, it’s not a strip, since the top is curved, but it’s almost a strip when
h is small. The height of the strip at the left-hand side is f(x) units, so we can
approximate the thin region by a rectangle with base going from x to z + h
and height from 0 to f(x), like this:

a r x+h

The base of the rectangle is h units, and the height is f(z) units, so the area
is hf(x) square units. If h is small, then this is a good approximation to the
integral we want. That is,

x+h
Fa+h)-F@)= [ f®dt= ()

Dividing by h, we have
Fla+h) - F()
L= f(a).
The approximation gets really good when h is really close to 0. It should be
true, then, that the approximation is perfect in the limit as A — O:

F(z+h) — F(x)

fiy h = J(@).
As we'll see in Section 17.8 below, the above formula is indeed true; we con-
clude that
F'(z) = f().

Let’s summarize our conclusion as follows:

First Fundamental Theorem of Calculus: for
f continuous on [a, b], define a function F' by

F(z) = / f(t)dt for x in [a, b].
Then F is differentiable on (a,b) and F'(z) = f(z).
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In short, you can write the whole thing as

& [ swi= s,

So our weird expression simplifies down to f(z)!

A common concern with this last formula is that a appears on the left-
hand side but not on the right-hand side. This actually makes sense, believe
it or not. Suppose that A is some other number in (a,b), and set

F(z) = / f(t)dt and H(z) = / f(t)dt.
a A
Then, as we saw in Section 17.2 above, F' and H differ by a constant:
F(z)=H(z)+C

for some constant C. If we differentiate, the constant goes away and we see
that F'(z) = H'(z) for all z in (a,b). So the actual choice of a doesn’t affect
the derivative. In terms of the curtain, we only care how fast it’s being pulled
and how high the rail is at the right-hand point. Where it happens to be
attached at the fixed left-hand end doesn’t affect the rate of area being swept
out all the way over at the right-hand part of the curtain.

17.2.1 Introduction to antiderivatives

Now, let’s pause for breath. We started with some function f of the variable
t, as well as some number a; then we constructed a new function F' of the
variable z. Differentiating F' gives us back the original function f, except now
we evaluate it at x instead of ¢. Weird!

OK, weird, but really useful. It actually solves our whole darn problem.
Let’s see how. Suppose that f(t) =t and a = 0, so that

F(z) = /Ow t2 dt.

The First Fundamental Theorem tells us that F’(x) = f(x). Since f(t) = t2,
we have f(x) = z?; this means that F'(x) = 2% 1In other words, F is a
function whose derivative is x2. We say that F is an antiderivative of x>
(with respect to ). Can you think of any other function whose derivative is
22?7 Here are a few:

3 3 3

G(r) == H(:c):?—i-77 and J(z):?—%r.

In each case, you can check that the derivative is 22. In fact, any function of

x of the form .

% +C for some constant C'

is an antiderivative of z2. Are there any others? The answer is no! We actually
saw this in Section 11.3.1 of Chapter 11. If two functions have the same
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17.3

derivative, they differ by a constant. This means that all the antiderivatives
of x? differ by a constant. Since one of the antiderivatives is 2%/3, then any
other antiderivative must be 23/3 + C, where C is constant. Wait a second—
the weird function F above is also an antiderivative of 22. This means that

x 23
F(z):/ t?dt = —+C
0 3
for some constant C. Now all we have to do is find C. We know that

0
F(0) = / t2dt = 0.
0

So we have
03 o
0= — .
3 +

This means that C' = 0. We now have the formula we’ve been looking for:

x 3
/tzdt:x—.
0 3

Finally, we can integrate t? from 0 to any number! In particular, if we replace
t by 1 and then by 2, we get our well-worn formulas

1 3 2 3
131 23§
t2dt = — = = d t?dt =" =_.
/0 3 3 ™ /0 33

This can be made even simpler—we’ll do that in the next section. First,
I’d like to make one more point. We now have a way of constructing an an-
tiderivative of any continuous function. For example, what is an antiderivative
of =7 Just change x to t, pick your favorite number as a left-hand limit of
integration (let’s say 0 for the moment), and integrate to see that

xr
F(z) = / e~ dt is an antiderivative of e~ .
0
The number 0 could be replaced by any number you choose, and the same

statement would be true. Of course, you get a different antiderivative for each
potential choice of left-hand limit of integration.

The Second Fundamental Theorem

The example with f(¢) = t? in the previous section points the way to finding
f: f(t)dt in general. First, we know that the function F defined by

Pla) = / "y at

is an antiderivative of f (with respect to x). We really want to find F(b),
since

b
F(b) = / F(t) dt.
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We know one more thing:

Fla) = [ " f(tyde =0,

because the left-hand and right-hand limits of integration are equal.

Now, suppose we have some other antiderivative of f: let’s call it G. Then
F and G differ by a constant, so that G(x) = F(z) + C. Put x = a and you
see that G(a) = F(a) + C; since F(a) = 0 from above, we have G(a) = C.
This means that

F(z) = G(z) — C = G(z) — G(a).
If you replace = by b, you get

In other words, ,
/ f@)dt = G(b) — G(a).

This is true for any antiderivative G. Notice that we’ve gotten rid of z
altogether. So the convention now is to change the dummy variable back to
x and also change the letter G to F', arriving at the

Second Fundamental Theorem of Calculus: if f is continuous
on [a,b], and F is any antiderivative of f (with respect to x), then

b
/ f(z)dz = F(b) — F(a).

b
In practice, the right-hand side is normally written as F(x)| . That is, we set

So, for example, to evaluate

2
/ 2 dx,
1

start by finding an antiderivative of z2. We have seen that x3/3 is one an-
tiderivative, so

2 23

/ 22 de = =

1 3

Now just plug = 2 and z = 1 into 23/3, and take the difference:
2 3|2 3 3
9 T 2 1
zidr=—| =(=|—-|= 1|,
fee=sl=(5)-(5)

) which works out to be 7/3. Now, here’s another example. Suppose you want

to find
/2
/ cos(x) dz.
/6

2

1
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17.4

We need an antiderivative of cos(z). Luckily, we have one at hand: it’s sin(z).
After all, the derivative with respect to x of sin(x) is cos(x). So, we get
/2
/ cos(z) dx = sin(z)
s

—sin(ﬁ)—sin(ﬁ)—l—l—l
/6 B 2 6/ 2 2

We'll look at more examples of this sort in Section 17.6 below.

/2

/6

Indefinite Integrals

So far, we’ve used two different techniques to find definite integrals: limits of
Riemann sums (what a pain) and antiderivatives (not so bad). It’s quite clear
that we’re going to have to become pretty adept at finding antiderivatives—
in fact, that’s going to occupy us for the next couple of chapters after this
one. So, we might as well have a shorthand way of expressing antiderivatives
without having to write the long word “antiderivative.” Inspired by the First
Fundamental Theorem, we’ll write

/f(ac) dx

to mean “the family of all antiderivatives of f.” Bear in mind that any
integrable function has infinitely many antiderivatives, but they all differ by
a constant. This is what I mean when I say “family.” For example,

3
/ ?de =1 +C
3
for some constant C. This equation literally means that the antiderivatives
of 2% (with respect to x) are precisely the functions 2%/3 + C, where C is any
constant. It is an error to omit the “+ C” at the end, since that would only
give one of the antiderivatives and we need them all.
If you know a derivative, you get an antiderivative for free. In particular:

if iF(:zc) = f(x), then /f(x) de = F(z)+C.

dzr

The above example fits this pattern:

d (3 9 9 3
@<§)—CE, SO /ZZ? dz—?—l-C'

Similarly, we have
d
d—(sin(m)) = cos(z), S) /cos(m) dx = sin(z) + C.
T
One more example for now (there will be many more later!):
d 1 1 1 -1
%(tan (I)):—l—i—x?’ /—1—|—x2 dx = tan™ " (z) + C.
Again, the number C' is an arbitrary constant. It’s just the nature of things

that differentiable functions have only one derivative whereas integrable func-
tions have infinitely many antiderivatives.
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All the above integrals are examples of indefinite integrals. You can tell
an indefinite integral from a definite integral by noticing whether or not there
are limits of integration. Indefinite integrals don’t have limits of integration,
while definite integrals do. This might seem like a small difference, but these
two objects are very different beasts:

e A definite integral, like f: f(x) dz, is a number. It represents the signed
area of the region bounded by the curve y = f(x), the z-axis, and the
lines x = a and x = b.

e An indefinite integral, like [ f(z)dz, is a family of functions. This
family consists of all functions which are antiderivatives of f (with re-
spect to x). The functions all differ by a constant.

So, for example,
2 3
/ x2d:c:§, while /xQd:c:I——l—C'.
1 3 3

If it weren’t for the Second Fundamental Theorem, it would be crazy to use the
same symbol [ for both of these objects. Luckily, the indefinite integral (or
antiderivative) is exactly what you need in order to find the definite integral,
so it makes a lot of sense to use the symbol in both cases.

Here are two simple facts about indefinite integrals that follow directly
from the similar properties for derivatives: if f and g are integrable, and c is
a constant, then

Jt@+g@yde = [ r@ydo+ [ oo

and /cf(x)dx:c/f(m)dm.

That is, the integral of the sum is the sum of the integrals, and constant
multiples can be pulled through the integral sign. So, in particular,

3

/(5962 + 9cos(z)) dx = 5/:102 dx + 9/COS($) dx = 5% + 9sin(z) + C.

Notice that we only need one constant—even though 523/3 and 9 sin(x) could
each get their own constant added to them, you can just combine the two
constants into one by adding them up. By the way, what works for sums also
works for differences, as well:

Again, only one constant is needed.
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Before we look at some more examples, I want to make one more comment
about the two Fundamental Theorems. The First Fundamental Theorem says
that

& [ swi= s,

In some sense, the derivative of the integral is the original function. You just
have to be careful about what you mean by the “integral,” bearing in mind
that the variable has to be the right-hand limit of integration, not the dummy
variable. Now, the Second Fundamental Theorem says that

b

/a ' fa)do = F(2)

a

where F is an antiderivative of f. This means that f(z) = L F(z). We can
therefore rewrite the above equation as

*d
/a %F(z)dz:F(zv)

a

which can be interpreted as saying that the integral of the derivative is the
original function. Again, it’s not really the original function: it’s the difference
between the evaluations of the original function at the endpoints a and b.
Even with all this vagueness, it should still be clear that differentiation and
integration are essentially opposite operations.

Now, let’s see how to use the Fundamental Theorems to solve problems.

How to Solve Problems: The First
Fundamental Theorem

Think about how you’d find the following derivative:

d xT
o /3 sin(t?) dt.

You could try to find the indefinite integral [ sin(¢?) dt, then plug in = and 3
and take the difference; this will give

/ sin(?) dt,
3

which you could finally differentiate. Why go to all that work when the
derivative and integral effectively cancel each other out? After all, if you
wanted to find (v/54756)%, you wouldn’t waste time looking for /54756 when
you just have to square it again. You’d just write down the answer 54756 and
be done with it. Similarly, we can use the First Fundamental Theorem from
above to say that

d x
. /3 sin(t?) dt = sin(z?).

All you have to do is take the integrand sin(¢?) and change ¢ to x. The number
3 doesn’t even come into it (see Section 17.1 above for a discussion of this).
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By the way, it would be a mistake to put a “+C” at the end: you are finding
a derivative, after all, not an antiderivative!
Of course, you have to be versatile—the letters can change around. For
example, what is
i : 2cos(w2 In(w+5)) dw?
dz J_,

Just replace w by z in the integrand and see that

d

il ? 2(:os(u;2 In(w+5)) dw = 2cos(z2 ln(z+5))'
dz

—e

Note that —e is a constant, but once again this could have been replaced
by any other constant and the answer would be the same. (By the way, the
integral only makes sense if z > —5.)

That’s really all there is to the basic version, where the variable (that
you're differentiating with respect to) is just sitting there on the right-hand
limit of integration. All you have to do is replace the dummy variable in the
integrand with the real variable. There are four variations that can arise,
however: let’s look at them one at a time.

Variation 1: variable left-hand limit of infegration

Consider
d [T
E/m t3 cos(tIn(t)) dt.

The problem is that the variable = is now the left-hand limit of integration,
not the right-hand one we’ve been used to. No problem—just switch the x and
7 around, introducing a minus sign to compensate for this (see Section 16.3
in the previous chapter to remind yourself why this works). You get

7 x
% ) t3 cos(tIn(t)) dt = % (—/7 t3 cos(tIn(t)) dt) .

Now pull out the minus sign and use the First Fundamental Theorem to see
that this is equal to
—2® cos(xIn(z)),

if x > 0. In effect, all we are doing is taking the integrand, replacing the
dummy variable ¢ by z, and putting a minus sign out front. It’s important to
justify the minus sign and the use of the First Fundamental Theorem by first
switching the limits of integration, as we did in the above example.

17.5.2 Variation 2: one tricky limit of integration

Here’s another example:

2
d x

— tan~1(¢7 + 3t) dt.
i J, (t" + 3t)

Because the right-hand limit of integration is 22, not x, we can’t just use the
First Fundamental Theorem directly. We're going to need the chain rule as
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well. Start off by letting y be the quantity we want to differentiate:

2

y = / tan~'(t” + 3t) dt.
0

We want to find dy/dx. Since y is really a function of 22, not x directly, we
should let u = 22. This means that

y = / tan~' (7 + 3t) dt.
0

The chain rule says that
dy _ dydu
dr  dudx’
while the First Fundamental Theorem says that
dy d

du " du ), tan~1(¢t” + 3t) dt = tan"' (u” + 3u).

Also, since u = 22, we have du/dx = 2x. Altogether,

dy _ dydu

T e (tan™"(u” + 3u)) (2z).

Now all we have to do is replace u by z? to see that

d
% = 2z tan~'((22)7 + 3(2?)) = 2z tan" ' (2** + 32?).

In summary,

12

— tan"!(t7 4 3t) dt = 2z tan™! (2! + 32?).
dx 0

Not so bad when you break it down into little pieces.
Let’s look at one more example of this sort of problem: what is

L™ oncosta)) da?
— tan(cos(a a'l
dq J4

Well, let y be the integral in question:
sin(q)
y = / tan(cos(a)) da,
4

and remind yourself that you're looking for dy/dq. Now set u = sin(q), so

Y= Au tan(cos(a)) da.

By the chain rule, we have
dy dydu

dg  dudq’
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By the First Fundamental Theorem,

d d [
% = , tan(cos(a)) da = tan(cos(u)).
Since u = sin(q), we have du/dgq = cos(q), so the chain rule equation above
becomes
d dy d
d—z = d—id—z = tan(cos(u)) cos(q).

Finally, replace u by sin(q) to see that

d [sn@
4 tan(cos(a)) da = tan(cos(sin(q))) cos(q).
4
You might also encounter both of the above variations in the same problem.
For example, to find

d [
— tan(cos(a)) da,
dq sin(q)
start by switching the limits of integration, introducing a minus sign as you
do so:
LI anfcos(@)da =~ [ tanteos
— tan(cos(a))da = —— tan(cos(a)) da.
dq sin(q) ( dq 4 ))

Now you can find the right-hand side as we did above; the final answer will
be the same, except for that minus sign out front:

d 4 d sin(q)
— tan(cos(a))da = —— tan(cos(a)) da
= (cos(a))da =~ 2. | tan(eos(a)

= — tan(cos(sin(q))) cos(q).

sin(q)

1/7.6.3 Variation 3: two fricky limits of infegratfion

Here’s an even harder example:

d [*

— In(t* — sin(t) + 7) dt.
iz )., ( ) +7)
Now there are functions of z in both the left-hand and right-hand limits of
integration. The way to handle this is to split the integral into two pieces at
some number. It actually doesn’t matter where you split it, as long as it is at
a constant (where the function is defined). So, pick your favorite number—say
0—and split the integral there:

6
d xr
o In(t? — sin(t) + 7) dt

x5
6

0 T
( / In(¢? — sin(t) + 7) dt + / In(t? — sin(t) + 7) dt> :
T 0

5

o d
T dx
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We’ve reduced the problem to two easier derivatives. The first one is a combi-
nation of the first two variations above. Just switch the limits of integration,
introducing the minus sign, to write

d [° d [

In(t? —sin(t) + 7) dt = - In(t? — sin(t) + 7) dt.
T Jo

dx 5

Now use the chain rule by setting v = 2° and following the method from the
previous section. You should check that the above derivative works out to be

—5z*In((2%)? — sin(2®) 4+ 7) = =52t In(2'° — sin(z®) 4 7).

As for the other derivative above,

6

d xr
A In(t? — sin(t) + 7) dt,

there’s no need to switch the limits of integration—just set v = 2® and apply
the chain rule once again. You should check that the above derivative is equal
to

62° In((2%)? — sin(2%) + 7) = 62° In(z? — sin(z%) + 7).

Putting it all together, we have shown that

6
d xr
o In(t? — sin(t) + 7) dt

x5

= 52t In(2® — sin(z®) + 7) + 62° In(2'? — sin(z®) + 7).

17.5.4 Variation 4. limit is a derivative in disguise

\ Here’s an example which looks a little different:

1 x+h
lim — logs (cos®(t) + 2) dt.
fin 2 [ togy (cost() + 2)
This isn’t a derivative—it’s a limit. Actually, it is a derivative in disguise (see
Section 6.5 in Chapter 6 for a discussion of these types of limits). The trick
is to set

F(z) = /x logs (cos®(t) + 2) dt

for some constant a. You can put in a specific constant if you like, or you can
just leave it as a. It doesn’t matter, because in any case we have

x+h
F(zx+h)—F(x) = / logs (cos®(t) + 2) dt.

Check that you believe this, or look back at Section 17.2 above. In any case,
in terms of our function F', we have

.1tk 6 . F(z+h)— F(z)
flzli% Wl logs(cos®(t) +2) dt = ]{12%)

= F'(z).
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So actually, we have

1 x+h d x
;ILiE% ) log,(cos®(t) +2) dt = . /a logy(cos®(t) 4 2) dt
for any a you like. See, I told you that the limit was a derivative in disguise!
To finish the problem, just apply the First Fundamental Theorem in its basic
form to see that the above limit is just logs(cos®(x) + 2).

17.6 How fo Solve Problems: The Second
Fundamental Theorem

To find a definite integral using the Second Fundamental Theorem—and this
is how you want to find definite integrals, believe me—you need to find the
indefinite integral first, then substitute in the endpoints and take the differ-
ence. So let’s spend a little time discussing how to find indefinite integrals
(that is, antiderivatives), then look at some examples of how to find definite
integrals. This is only the beginning of the story; in the next two chapters,
we’ll look at many more ways of finding indefinite integrals.

17.6.1 Fnding indefinite integrals

As we saw in Section 17.4 above, whenever you know a derivative, you get
an antiderivative for free. We gave some examples there, but here’s another:
since

d
E(x‘l) = 423,

we immediately know that
/4x3d:v=x4—|—C.

Since constants just pass through the integral sign, we can write this as
4/x3d:c:z4—|—0.

Now divide by 4:

4 4

This is fine, but the quantity C/4 is a bit silly. It’s some arbitrary constant
divided by 4, which is another arbitrary constant. So we can just replace the
constant C'/4 by some other constant, which we’ll also call C, and get

4

3 xr
de = —+C.
/:vac 4—1—

Let’s repeat this for any power of z. Start off by noting that

S
/x?’d:c:x——k—.

d
(@) = (a+1)2%
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this means that
/(a + 1)z de = 2T 4+ C.

If @ # —1, then a + 1 # 0; so we can divide through by (a + 1) and write

IaJrl
/xadz: + C.
a+1

(Once again, we replaced C'/(a+ 1) by simply C'; this is OK since C is just an
arbitrary constant.) Now, what happens when a = —1? The above method
doesn’t work on [ 2~ dz, which is just

1
/—dm.
T

On the other hand, we do know from Section 9.3 of Chapter 9 that

%(ln(z)) = $7 SO / é dx =1In(x) + C.

This is fine, but actually we can do better. You see, 1/z is defined everywhere
except at x = 0, while In(z) is only defined when = > 0. We can rectify this
by writing

/ldz = In|z| + C.
T

Let’s check that this works. We need to show that
d

1
il | —
dx nlz] x

for all z # 0. When = > 0, the left-hand side is just In(x) and there’s no
problem. If x < 0, then |z| is actually equal to —z, so the left-hand side

becomes

d
. In(—z).
It looks a bit weird, but remember that —z is actually positive when = < 0.

In any case, by the chain rule, the above derivative is

d 1 1

So we have proved the formula

/lda: = In|z| + C.
T

See Section 17.7 below for a technicality involving this formula. In the mean-
time, we can now summarize most of the basic derivatives and corresponding
antiderivatives that we’ve seen so far in one big table.
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Derivatives and integrals to learn:

ix“ = qz®!

de™

d 1

d x x

—e" =¢

dx

d

Lt = b In(b

. n(b)

4 sin(x) = cos(x)

dz N

d cos(x) sin(x)

— cos(z) = —sin(x

dx

. tan(z) = sec?(z)

. sec(z) = sec(x) tan(z)
. cot(z) = — csc?(x)

e csc(z) = — csc(z) cot(x)
d 1

o sin” " (z) = 7\/@

d 1
%tan (x) = o2

4 sec 1 (z) = 1
dx |z|vo2 — 1
d

T sinh(z) = cosh(x)

% cosh(z) = sinh(x)

xa-i—l

z%dr =

—a+1+C (if a #£ —1)

1
—dx =lnjz|+C
x

csc(z) cot(z) dr = —csc(z) + C
_
V1—21?
———dx =tan '(z) +C

dr =sin"!(z) + C

1 _

/cosh(:c) dx = sinh(z) + C

/sinh(:c) dx = cosh(z) + C

As we’ve seen, if you replace x by the constant multiple azx in any of the above
differentiation formulas, you just have to multiply the corresponding formula

by a. For example,

d
e tan(7x) = 7sec?(7x).

What if you integrate instead? Now the rule of thumb is that if you replace
x by ax, then you have to divide by a. For example,

/se62(7:v) = ;tan(%c) +C.

You can see this directly from the previous equation by dividing by 7. Here’s
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/e_w/?’ dx.

You can think of z as having been replaced by —1/3 times z; so divide by
—1/3, like this:

another example:

1
8 dy = T C =3P 4 C.
/e X _1/36 + e +

How about one more for good measure? Consider

1
/7@
1+ 222

o

and now you can consider z as being replaced by v/2x. So divide by v/2 to
get

This can be written as

; x:ian_l T
/1+(\/§x)2d \/it (V2z) + C.

There are many more complicated techniques for finding antiderivatives which
we’ll look at in the next two chapters, but it certainly doesn’t hurt to remem-
ber this simple one, since constant multiples do come up often in integrands.

17.6.2 Fnding definite infegrals
The Second Fundamental Theorem tells us that to find

/a e

just find an antiderivative, plug in x = b and x = a, and take the difference.
We've already looked at some examples of this in Section 17.3 above; let’s
look at five more. First, consider

2
/ 2t dz.
-1

IaJrl
/xadm: +C,
a+1

By the formula

we know that an antiderivative of 2* is 2°/5. No need for the constant—
you can choose any antiderivative, so just choose the one with C = 0 for
simplicity. So, we have

2 5|2 5 _1)5 —
/szdx:w_:?__(l):%__l:ﬁ
1 5, 5 5 5 5 5
It’s important to use parentheses to make sure you don’t screw up the minus
signs! Now, you might be wondering what happens if you did happen to use a
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different antiderivative. Well, the constant will just cancel out. For example,
if you chose the antiderivative 2°/5 — 1001 instead, you'd get

/21 ztdr = <%5 - 1001) 2_1 = <2—55 - 1001) - <% — 1001>
- (%5) — 1001 — (%) 4 1001.

Notice that the —1001 and +1001 terms cancel and we’re left with exactly
what we had before. The moral of the story is to omit the constant C' when
calculating a definite integral.
-1
4
/ —dz.
_e2 T

Here’s our second integral:
The factor 4 can just pass through the integral sign, so we need to use the
formula

/ldx:1n|x|+0
x

from the above table to see that 41In|z| is an antiderivative for 4/z. So we
have

-1
/ édgc = 41n|z|
2

e2

- = (41n|-1]) — (41n|—€?|) = 4In(1) — 4In(e?) = —8.

_e2

Here we have used the facts that In(1) = 0 and In(e?) = 21In(e) = 2.
The third example is

/3 .
/0 (secz(x) — 5sin (5)) dx.

You should mentally split up the integrand into two components, sec?(x) and
sin(x/2), ignoring the constant 5 outside the second integral. By the above
table, an antiderivative of sec?(x) is tan(x). As for sin(x/2), an antiderivative
ils — cos(z/2) divided by 3, since = has been replaced by the constant multiple

sx. This works out to be —2cos(x/2) (since dividing by % is the same as

multiplying by 2). Altogether, we have

/3 T T
/0 (secQ(a:) — 5sin (5)) dx = (tan(z) —5x (—2 cos (5)))

Simplifying and substituting, we get

<tan(7r/3) 410 cos (”7/3» - (tan(()) 410 cos (g)) :

/3

0

\ You should check that this works out to be 6+/3 — 10.

Here’s the fourth example:

91
— da.
Ax\/;‘”
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The trick here is to write the integrand as z—3/2; make sure you believe this!

Now we can just use the formula for [ 2® dz from our big table in the previous
section to get

’ 0 3/2 1 1/2
—d = - d = — 7
/4 e T /4 T T _1/290

4

Now, our final example for this section is

1/6 dx
0o V1-922
Don’t let the dx on the top worry you—this is just an alternate way of writing
1/6 1
—dx.
0 vV 1-— 91‘2
Express the 922 term as (3z)? to see that

1 1/6
= —sin"'(32)

1/6 dx 1/6 1
—_— = —dx
/0 V1 — 922 01— (3z)2 3 0
We have used the integral

1
- dr=sin"Y(z)+C
/ V1— 22 (@)
from the above table, except that we have divided by 3, since x was replaced
by 3x. Now let’s substitute to see that our integral becomes

(%sinl (3 x %)) - <%sin1(3 x 0)> = <% x %) —(0) = %.

Here we’ve used the fact that sin_l(%) =7/6.

17.6.3 Unsigned areas and absolute values
In Section 16.1.1 of the previous chapter, we saw that
/ sin(xz)dr =0

because the area above the axis cancels the area below the axis. Here’s a
recap of the graph of the situation:

2r y = sin(x)
1 -
| | |
—T 0 s
1k
ok
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We can check the above integral using antiderivatives:

™

/F sin(x) dz = — cos(x)

—T

—T

How about finding the unsigned, actual area in the above picture? We looked
at a method for doing this in Section 16.4.1 of the previous chapter: the actual
area in square units is equal to

/_:|sin(x)| dx.

Our method calls for splitting the original integral

/: sin(x) dx

at the x-intercept 0, then taking the absolute value of each piece. That is,

/_ T;|sin(:c)|d1: = ‘ /_ i sin(z)| + /0 " sina)].

I leave it to you to use the antiderivative — cos(x) to show that these two
integrals are —2 and 2, respectively. If you just add these numbers, you get
the signed area 0 square units; but if you take the absolute values first, you
get the actual area, which is |—2| + |2| = 4 square units.

Now, let’s look at an example of finding the area between two curves. We
already saw how to do this in Section 16.4.2 of the previous chapter, but now
we have the power of the Second Fundamental Theorem at our disposal, so
we can find more exotic areas like this one:

N|—=
T
<
I
8=

We're looking for the area between the curves y = z, y = 1/z, and the line
x = 2. We'll need to find where y =  and y = 1/ intersect: set z = 1/x and
we see that 2 = 1. This means that x = 1 or x = —1. In the above picture,
the z-coordinate of the intersection point is positive, so we need x = 1. Since
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y = x is above y = 1/x, we take the top function  minus the bottom function

1/x and integrate:
2 1
shaded area = / (w — —) dzx.
1 X

An antiderivative of x is 22/2, as we can easily see by using the formula
Jz =2t /(a+1) 4+ C with a = 1; also, an antiderivative of 1/z is In|z|, as
we saw above. So the above integral is equal to

2
(% —ln|x|>

This simplifies to 3/2 —In(2), so the area we want is 3/2 — In(2) square units.
Now, consider what happens if the area we actually want to find is this instead:

2 2 2
2 1 1

1

§ y==
P SR P .
1t 5
o 5 1
% i '
1 1 2
2

It’s tempting to write this area as

2
new shaded area — / (w — l) dx,
1/2 £

but that would be a load of bull. You see, the curve y = x isn’t on top of
y = 1/x between 1/2 and 1. We discussed this point in Section 16.4.2 of the
previous chapter, and saw that we actually need to take absolute values:

2 1

r— =
T

new shaded area = / dx.

1/2

Since the only intersection point is at = = 1, split the integral up into two
pieces there and take the absolute value of each piece to get

2 1 1 2 1
/ dz:/ (x——) dz—l—/ <3:——) dx| .
1/2 1/2 T 1 €

T — —
X
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We already saw that the second of these integrals is 3/2 — In(2), which is a
positive quantity, since In(2) < In(e) = 1. As for the first integral, we have

1

/1;2 <x— %) do = <w_22 —ln|:c|> .
() (022
_ % “ (1) - % +1n (%) = g ~In(2).

Here we have used the fact that In(1/2) = —In(2), which you can see either
by writing In(1/2) = In(1) — In(2) or In(1/2) = In(271), then using one of the
log rules from Section 9.1.4 in Chapter 9. Notice that the quantity 3/8 —In(2)
is negative. You can see this by noting that x is actually less than 1/x when
x is in [1/2,1], so the integrand x — 1/ is negative there. So when we take
the absolute value of 3/8 — In(2), we actually get In(2) — 3/8. Altogether, we

have
/1;2 <x—é) dar| + /12 <x—é) do _‘g_ln(z)‘+'g—1n(2)'

- 1n(2)—g + g—ln@) :%.
(

The shaded area we’re looking for is 9/8 square units. Actually, we could
have worked this out without using calculus at all. You see, both y = x and
y = 1/x are symmetric in the line y = z, so if you flip the wedge-shaped
region in the line y = x, then it fills in a triangle, like this:

(SIS
8

This triangle has base and height equal to 3/2 units, so its area works out to
be 9/8 square units, agreeing with our above answer!
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1/7.7 A lechnical Point

In Section 17.6.1 above, we saw that

1
/—dz = In|z| + C.
T

Although everyone writes the formula like this, technically it’s not correct!
You see, we want to find all antiderivatives of 1/z. Sure, In|z| + C is an
antiderivative for each constant C', but actually there are more. To see why,
let’s start off with the graph of y = In|z|:

y = In|z|

This has two pieces, either of which can be shifted up or down without af-
fecting the derivative. For example, if we shift the left piece up by 1 and the
right piece down by 1/2, the graph looks something like this:

This function isn’t of the form In|z| + C, but its derivative is still 1/z. So
we really need to allow two constants, possibly different—one for each of the
two pieces of the curve:

/ld In|z| + Cy if x <0,
Zdr =
x In|z| + Cs if x> 0.
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The reason we can get away without this level of formality, at least most of
the time, is that we only really use one of the constants at a time. Consider
the following three integrals:

°1 ! °1
/ —dx, / —dx, and / —dx.
1 x e X 1z

In the first integral, you are only using the right-hand piece of the curve
y = 1/x. Similarly, in the second integral, only the left-hand piece is relevant.
Try doing both integrals and make sure you get 1 and —1, respectively. As
for the third integral, now we are using both pieces of y = 1/z, but there’s
a problem: the vertical asymptote at = 0 lies in our interval [—1,e]. We
don’t know how to handle that. In fact, we will learn how to deal with this
sort of thing when we look at improper integrals in Chapter 20. In this case,
it turns out that the third integral above doesn’t even make sense because of
that vertical asymptote. So the only time that definite integrals of the form

b
1
/—dz
o T

make sense is when a and b are both positive or both negative. In either case,
only one of the pieces of In|z| is involved, and there’s no need to mess around
with two different constants!

Proof of the First Fundamental Theorem

g In Section 17.2 above, we gave an intuitive proof of the First Fundamental

Theorem of Calculus. Let’s tighten it up. Recall that

) = [ 5w

and we want to find F’(x). We have already seen that

x+h
F(:c—|—h)—F(:v):/ () de.

Suppose that h > 0. By the Mean Value Theorem for integrals (see Sec-
tion 16.6.1 of the previous chapter), there is some number ¢ lying in the
interval [z, z + h] such that

x+h
/ F(t)dt = ((z + ) — 2) ()

That is, we have

x+h
F(I—I—h)—F(z):/ f@)dt =hf(c)

for some ¢ in [x,2 + h]. Actually, this is also true if h < 0, except that the
interval is [z + h, z] instead, since  + h < z in that case. Anyway, divide the
above equation by h to get

F(x+h)—-F(x)
)P _ o),
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The important thing is that when x is a fixed number (for the moment), the
number ¢ depends on h only, and it lies between x and x 4+ h. Perhaps we
should really rewrite the above equation as

F(z+h)— F(x)
h

= f(cn)

to emphasize that ¢ depends on h. Now, what happens when h — 07 The
quantity cp, is sandwiched between = and = + h, so as h — 0, the sandwich
principle (see Section 3.6 of Chapter 3) says that ¢, — x as h — 0. On the
other hand, since f is continuous, we must also have f(cp) — f(z) as h — 0.
That is,
lim F(z+h) — F(x)
h—0 h

= lim flen) = f(=).

This shows that F'(z) = f(x), wrapping up the proof of the First Fundamen-
tal Theorem. As for the Second Fundamental Theorem, we actually already
proved it in Section 17.3 above, so we’re good to go!



CHAPTER 18

Technigues of Infegration, Part One

181

Let’s kick off the process of building up a virtual toolkit of techniques to find
antiderivatives. In this chapter, we’ll look at the following three techniques:

e the method of substitution (otherwise known as “change of variables”);
e integration by parts; and
e using partial fractions to integrate rational functions.

Then, in the next chapter, we’ll look at some more techniques involving trig
functions.

Substitution

Using the chain rule, we can easily differentiate e’ with respect to x and see

that y
T (612) — 9ze® .

The factor 2z is the derivative of 22, which appears in the exponent. Now,

as we saw in Section 17.4 of the previous chapter, we can flip the equation
around to get

/2:069”2 dz = e +C

for some constant C. So we can integrate 2ze®” with respect to x. How about
just e® 7 You’d think it would be just as easy, if not easier, to find

2
/e”” dx.

It turns out that it’s not just hard to find this—it’s impossible! Well, not quite
impossible, but the fact is, there’s no “nice” expression for an antiderivative
of %" (You have to resort to infinite series, definite integrals, or some other
sort of roundabout device.) Perhaps you think that e’ /2x works? Nope—use
the quotient rule to differentiate this (with respect to z) and you’ll see that
you get something quite different from v’
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What saves us in the case of [ 2ze® dz is the presence of the 2z factor,
W}%iCh is exactly what popped out when we used the chain rule to differentiate
e” . Now, imagine starting with an indefinite integral like this:

/ x? cos(x?) du.

We're taking the cosine of the somewhat nasty quantity x3, but there’s a ray
of hope: the derivative of this quantity is 3z2. This almost matches the factor
22 in the integrand—it’s only the constant 3 that makes things a little more
difficult. Still, constants can move in or out of integrals, so that shouldn’t be
a problem.

Start off by setting ¢ = 23, so that the cos(z?) factor becomes cos(t). Our
aim will be to replace everything that has to do with x in the above integral
by stuff in ¢ alone. You might say that the above integral is in z-land and
we’d like to migrate it over to t-land. We've already taken care of cos(z?),
but we still have 22 and dx to worry about.

In fact, the dz factor is really important. You can’t just change it to dt!
After all, t = 22, so dt/dx = 3x2. If there’s any justice in the world, then we
should be able to rewrite this as dt = 322 dz. Let’s not worry about what this
means; we’'ll leave that until Section 18.1.3 below. Instead, suppose we divide
both sides by 3 to get 4+ dt = 22 dz. Then we can get rid of the 22 and du
pieces from our integral at the same time, replacing both by % dt, like this:

/:v2 cos(z®) dox = /cos(m‘o’) (2% dx) = /cos(t) (% dt) .

The middle step isn’t really necessary, but it helps to see 22 and dx next to
each other so that you can justify replacing them by %dt. Anyway, now we
can drag the factor of % outside the integral, then integrate; altogether, we
have

/x2 cos(z®) dx = /cos(t)% dt = % /cos(t) dt = % sin(t) + C.

It’s pretty lazy to leave the answer as % sin(t) + C. We started in z-land, then
migrated over to t-land; now we have to come back to xz-land. This isn’t hard

to do: just replace ¢t by x® once again. We have shown that

/:1:2 cos(z®) dx = % sin(z®) + C.

Check that this is true by differentiating % sin(z®) with respect to .
Let’s look at some more examples. First, consider

/ e*® sec?(e*®) du.

Since we’re taking sec? of the annoying quantity e2*, let’s replace that quantity
by t. So substitute ¢t = 2. Differentiate this to see that dt/dz = 2e?*. Now
throw the dx onto the right-hand side to see that dt = 2¢%* dz. That’s almost
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what we have in the integral—we just need to get rid of the factor of 2. So
divide by 2 to get %dt = 2% dz. Moving the above integral to t-land, we get

/62:6 sec’(e?) dx = /secz(ezx) (e’ dz) = /secQ(t) (% dt) .

Now pull out the factor of % and integrate to get tan(t) + C. Finally, move
back to x-land by replacing ¢ with e2*. We have proved that

1
/621 sec?(e?”) dx = 3 tan(e?*) + C.

Again, you should check this by differentiating the right-hand side.
Here’s another example:
/ 3x2 4+ 7 e
3+ T7r -9

This looks pretty difficult. Fortunately, if you differentiate the denominator
23+ Tz — 9, you get the numerator 322 + 7. This suggests that we substitute
t=a3+T7x —9. Since dt/dx = 32> + 7, we can write dt = (322 + 7)dx. In
t-land, our integral is

322 +7 1 9 1
——dr = | —((3 Tdzx) = [ —dt =Inl|t| + C.
/x3+7x—9 o /x3+7x—9((x+ ) dz) /t nlt] +

Now switch back to z-land by replacing ¢ with 2% + 72 — 9; this shows that
3%+ 7 3

Actually, this is a special case of a nice fact: if f is a differentiable function,
then

ZEP
/ﬂ@m_uﬂn+a

So if the top is the derivative of the bottom, then the integral is just the log of
the bottom (with absolute values and the +C). We can prove this in general
by making the substitution ¢ = f(x). Then dt/dx = f'(z), so we can write
dt = f'(x) dx. See if you can follow each step in this chain of equations which
migrate from z-land to ¢-land, then back:

/ f'(x)
f(z)
This fact means that in the above example,
/ 3z2+7

—— duz,

3+ T —9
you can just write down the answer In|z® + 7z — 9| + C, since the top is the
derivative of the bottom. Sometimes the top is a multiple of the derivative of

LI —l:n =In|f(z
M:/ﬁBU@””—/t“ Injt| + C = In|f ()] + C.

/\\ the bottom, like this:

x
—dx.
/x2+8 o
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The derivative of the bottom is 2z, but we only have z on the top. No
problem—multiply and divide by 2, like this:

x 1 2z
P ge=c [ 24
/x2+8m 2/x2—|—8x
Now you can just write down the answer % In|z? + 8| 4 C, since the top (2z)
is the derivative of the bottom (22 + 8). Finally, consider

/#@)dx

The nicest way to do this is to rewrite the integral as

/ 131{5) o

then notice that the derivative of the bottom (In(x)) is the top (1/z). By the
formula in the box above, the integral is just In|In(z)| 4+ C. That is,

1
18.1.1  Substitution and definite infegrals
O

You can also use the substitution method on definite integrals. There are two
legitimate ways to do this. For example, to find

x? cos(x?) dz,

0

you could find the indefinite integral [ 22 cos(x®) dx first, then plug in the
limits of integration. We actually found this indefinite integral in the previous
section to recap, we made the substitution ¢ = x3, noting that dt = 32% dz
so &+ dt = x? dz, then wrote

/x2 cos(z?) dr = /cos(t) C;t = 515 /cos(t) dt = %sin(t)—&—C’ = %sin(:c3)+0.

It’s really important to go back to z-land at the last step. Anyway, the
important thing is that we have found an antiderivative for 2 cos(z3), and
we can use the Second Fundamental Theorem from Section 17.3 of the previous
chapter to write

0 (etyae = L] - (5 /m727) - (50",

0

which works out to be % So one way to use the substitution method on a
definite integral is to focus on the indefinite integral first, then after you've
found it, plug in the limits of integration.

There’s a snazzier method, though! You can keep the whole thing as a
definite integral the whole way through, provided that you also move the
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limits of integration over to t-land as well. In our example, we substituted
t = 23 and used % dt = 22 dx to help move the integral to t-land. Now, when
x =0, we have t = 0% = 0, so we can leave the left-hand limit of integration

3
as 0. On the other hand, when z = {/7/2, we have t = (\3/71'/2) =7/2.

This means that we must change the right-hand limit of integration to m/2.
Altogether, here’s the effect of the substitution:

/2 /2
/ 22 cos(z®) dx = = / cos(t) dt.
0 3 Jo

We'll finish this soon, but first note that it would be a major error to write

1 /)2
i

cos(t) dt

on the right-hand side instead. Since we're integrating with respect to ¢, not
x, the limits of integration must refer to relevant values of ¢. In fact, we can
make things clearer by writing out the limits of integration in terms of the
variable of integration, like this:

z=3/7/2 1 t=n/2
/ x? cos(x®) dr = = / cos(t) dt.
T t

—0 3 Ji=o

This really highlights what’s going on: when x = 0, also ¢t = 0; but when
x = {/m/2, we see that t = w/2. So, all in all, we’ve substituted three things:

1. the dx bit—that became something to do with dt, burning up some of
the other x stuff in order to make the change;

2. all the remaining terms in the integrand involving x, so that they became
terms in t;

3. the limits of integration.

Let’s finish the problem. The best way to set it out is to make a working
column at the left of your page, like this:

t =23 /3V7r/2

/2 1
2 (2 dp — 1
dt = 322 dz,so a* dx = L dt 2 cos(z”) dz = /0 3 cos(t) dt

0

when z =0,t=0 _1,(?5)77/2
when z = ¢/7/2, t =7/2 — 3o

_ <%sin(7:/2)> - (%sin(())) - %

Note that the entire left-hand column is filled in before we even get to the first
equality of the right-hand column, since we have to use all the information
(=) there to get to t-land.
‘ , Here’s a trickier one:

V3/2 1
/ dzx.
1/v3 sin”H(x)V/1 — 22
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Ask yourself this: do you see any term somewhere whose derivative is also
present? Hopefully, you do: the derivative of sin™*(z) is 1/v/1 — 22. So try
the substitution ¢ = sin~*(z). Yes indeed, dt/dx = 1/+/1 — 22, so we have

1
dt = ——=dx.

V1—a?
We also have to transfer the limits of integration to t-land by plugging in
x =1/v/2 and z = v/3/2 into the equation ¢ = sin~*(z), one at a time. You
should get t = 7/4 and ¢t = 7/3, respectively, provided that you remember
your inverse trig basics! (See Chapter 10 to refresh your memory.) Putting
everything together, we get:

t =sin"*(z) V3/2 1
dz
dt = L dz /1/\/5 sin™! (z)V/1 — 2
V1—a? p
1 1 ™ /3 B
when . = —, t =sin"!(—=) = — :/ = dt = In|t|
V3 B =3 o 1 o
4
Whenzzﬁ,t:sin_l(ﬁ):z —|Z —m|Z =m ().
2 2 3 3 4 3

To get the final simplified answer, notice that we had to know the log rules
(see Section 9.1.4 of Chapter 9). It’s a really good idea to have these at your
fingertips.

By the way, if you're particularly eagle-eyed, you might notice that the
above substitution is actually a special case of the rule from the end of the
previous section. This provides an alternative way of finding our integral

V3/2 1
dz.
/1/\/5 sin™!(z)v/1 — 22
Let’s start with the indefinite integral, and rewrite it like this:
/ 1 / 1/v 1 — x2
sin™(2)v/1 — x2 sin™

Notice that the top is the derivative of the bottom, so we just have to take
the log of the absolute value of the bottom to see that

1 L
/ VI dx = Ilnlsin™ " (x)| + C.
Now to find the definite integral, you can substitute the original limits of
integration, v/3/2 and 1/v/2, one at a time into the expression In|sin™!(x)],
then take the difference. I leave the details to you.

Here’s a different sort of problem involving substitution. At the end of
Section 16.1.1 of Chapter 16, we claimed that

if f is an odd function, then f(z)dz =0 for any a.

—a
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How would you prove that this is true? Start off by splitting up the integral

at x =0: 0
f(z)dx = f(x) dm—i—/ f(z)dx.
—a —a 0
In the first integral on the right-hand side, let’s substitute ¢ = —x. Then
dt = —dz; also, when t = —a, we see that * = a, and when t = 0, x = 0 as

well. So we have

0 0 a
ﬂf(:c)d:c:—/a f(—t)dt_/o f(—t)dt.

In this last step, we used the minus sign to switch the bounds of integration.
Now, since f is odd, we know that f(—t) = —f(¢). This shows that

/Oaf(—t) dt = — /Oaf(t) dt.

Now if we switch the dummy variable back to x, we see we’ve proved the
following nice result:

0 a
_af(:v)dx = —/0 f(z)dx.

This is only true when f is an odd function! Anyway, we can finish by going
back to our first equation and using our nice result:

a 0 a a a
T)dr = x)dx r)dr = — x)dx z)dxr = 0.
[ f@as= [ e+ [ @ == [ e [ @
We’re all done!

18.1.2 How to decide what fo substitute

How do you choose the substitution? Good question. The basic idea is to
look for some component of the integrand whose derivative is also present as
a factor of the integrand. In the integral

1
dx,
/ sin~!(z)v/1 — 22

the substitution ¢ = sin~!(z) works because its derivative 1/v/1 — 2 is right
there, waiting for us to use it. The same substitution would work on any of
the integrals

sin™!(x) esin ™ (@)

VR A e

and

1
/ dz.
\/sin ™ (2)(1 — 22)
In t-land, these integrals become
/tdt /et dt and /idt
3 3 \/E 3
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respectively. This is pretty easy to see for the first two; for the third, you just
have to split up the square root and write

1

/mm_/%i:w VI=a

to see how the substitution works. Now make sure you can complete all three
above integrals in t-land and change back to z-land. (For the third integral,
it might help to write 1/v/f as t_1/2.) In any case, you should get

(sin~"(2))”
2

respectively. Try differentiating each one of these to check your answers.
Sometimes the substitution is not obvious at all. For example, how would

you find
/ © a7
e2r +1

Reasonable choices for the substitution are t = e®, t = €%, or t = 2* + 1.
The last two don’t work very well, because dt = 2e?* dz in both cases, and
there’s no e2* term in the numerator of the integrand. So let’s try t = e”.
We then have dt = e” dx, which does care of the numerator of the fraction.
As for the denominator, the trick here is to notice that e%* is (e®)?, which is

precisely 2. So
e’ 1
——dr= | ——dt
/62I+1 v /t2+1 ’

which is just tan=!(¢) + C. Moving back to x-land, we find that

dx

+ C, esin (@) 4 C, and 2¢/sin" () + C,

/ 2:7_’_1 dx = tan~!(e%) + C
e

for some constant C'. Check this by differentiating the right-hand side.
Let’s look at one more example:

/1\5/330 + 2dx.

There is a nice technique for dealing with integrals involving terms such as
Vax +b. You simply set t = Vax + b, but take nth powers before you
differentiate to find dt. So:

to deal with {/ax + b, set t = {ax + b and

differentiate both sides of t" = ax + b.

So in our example, substitute ¢ = v/3z + 2. To find dt, first take 5th powers to
get t° = 3z + 2. Now differentiate both sides with respect to the appropriate
variables (this is justified by the chain rule) and get 5t* dt = 3 dz. Here 5t* is
the derivative with respect to ¢ of t°, and 3 is the derivative with respect to
x of 3x + 2. So, we have a nice expression for 3 dx in terms of ¢, and we can
make it a nice expression for dx by dividing by 3. Specifically, we have

5

de = =t* dt.
173
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(You could also have seen this by solving for z all the way down to z = %(tf’ —2)
and then differentiating with respect to t.) Now let’s look back at the integral.
There are three pieces: z, v/3x + 2, and dz. The second piece is just ¢ itself,
and we have just worked out the third piece in the above equation. How about
the first piece, 7 Well, we know ¢t = 3x + 2, so we can rearrange this to get
T = %(tf’ —2). All in all the integral becomes

/x\5/3z +2dr = /%(ﬁ —2)(t) x gt“ dt.

Now we can multiply and integrate to see that this equals

5 10 5 5 11 5 6
O (110 —95) @t = 2411 — 246 4
9/( ) 99 Tall

Back to 2-land: resubstituting ¢ = (32 + 2)/% gives
3(31: +2)1/5 3(31: +2)%5 1 ¢
99 27 '

You should try working this problem on your own, setting your answer out
using a working column on the left, as we’ve been doing previously. Also, you
should check that if you differentiate the answer above, you get the original
integrand x+v/3x + 2. By the way, did you notice anything different about this
substitution from all the others we’ve done so far? It’s a subtle point, but
in all the other examples, we had an equation like dt = (z-stuff) dx, whereas
here, we have dz = gt"‘ dt. This worked out quite nicely, since we just replaced
dx directly. In all the other examples, we had to find a constant multiple of
the z-stuff already present in order to have much of a chance. In Section 19.3
of the next chapter, we’ll see some other examples of integrals where we can
replace dz directly.

In general, there are no hard and fast rules about what to substitute. You
just have to go along with your instinct, which will be accurate only if you
have done plenty of practice problems. You can always try any substitution
you like. If the new integral is worse than the original one, or you can’t see
how to migrate everything to t-land, then don’t panic: just go back to the
original integral and try something else.

Now, before we move onto integration by parts, there are two things I want
to deal with. One is a justification of the substitution method; I'll do this in
the next section. The other is to summarize the method of substitution:

o for indefinite integrals, change everything to do with « and dz to stuff
involving ¢ and dt, do the new integral, then change back to x stuff;

o for definite integrals, change everything to do with  and dz to stuff
involving ¢ and dt, and change the limits of integration to the corre-
sponding ¢ values as well, then do the new integral (no need to go back
to x-land here). Alternatively, treat the integral as an indefinite inte-
gral and when you get the final answer, then substitute in the limits of
integration.



392 e Techniques of Integration, Part One

18.1.3 Theoretical justification of the substitution method

Suppose you want to make the substitution ¢ = 22 in some integral. You’d

note that dt/dx = 2z, so you write dt = 2z dx. In some sense, this is a mean-
ingless statement—after all, what are dt and dz? We know that dt/dx is a
derivative, but dt and dz have only been defined as differentials in Chapter 13.
So what does dt = 2z dx actually mean? A good way to think of it is that a
change in x produces a change in ¢t which is 2x times as large. We actually
looked at this sort of thing all the way back in Section 5.2.7 of Chapter 5.
You can run with this observation and see what it does to a Riemann sum,
but there’s a better way: just use the chain rule.

Here’s how to justify everything. Imagine you have done a substitution
t = g(z), and you work your magic to end up in ¢-land with [ f(¢) dt, which
works out to be F(t) + C for some constant C. So the ¢-land part of the
calculation looks like this:

/f(t) dt = F(t) + C.

Since t = g(z), and we have decreed that dt = ¢'(x) dx, the above equation
means the same thing in z-land as

/ flg(z))g' (z)dz = F(g(z)) + C.

All T did was replace both t’s by g(z) and dt by ¢'(z) dz. So, if we want to
prove that substitution is a valid method, we need to show that the above
equation is true. Let h(z) = F(g(z)); by the chain rule (see Version 1 in
Section 6.2.5 of Chapter 6), it’s true that h'(z) = F'(g(z))g’(x). We can
write this in terms of indefinite integrals like this:

Since h(zx) = F(g(z)), we have

/ F(g(x))g/(z) dz = F(g(x)) + C.

Now, since [ f(t)dt = F(t) + C, we know that F'(t) = f(t). Since ¢t = g(z),
we have F'(g(x)) = f(g(z)). The above equation becomes

/ F(9(2))g () dx = F(g()) +C,

which is exactly the equation we wanted to prove!

By the way, this nice equation allows us to prove the alternative method of
substitution, which was discussed after the last example in the previous section
above. (We’ll also use it over and over when we look at trig substitutions in
Section 19.3 of the next chapter.) In the alternative method, instead of setting
t = g(x), we set = g(t) for some other function g, and replaced dx by ¢’ (¢) dt.
In that case, our original integral | f(z)dz now supposedly becomes

/ Fg(t)g' (1) dt.



182

Section 18.2: Integration by Parts e 393

We are now supposed to work this out and try to move back to z-land. Well,
by our nice equation, with x replaced by t, we see that the above integral is
equal to F(g(t))+ C, where F is an antiderivative of f. This is just F(x)+C,
which is exactly what we want. So this method works as well, and we have
justified the method of substitution.

Intfegration by Parts

We saw how to reverse the chain rule by using the method of substitution.
There is also a way to reverse the product rule—it’s called integration by
parts. Let’s recall the product rule from Section 6.2.3 of Chapter 6: if u and

v depend on z, then

d( )= du+ dv
dxr u _vd:c ud:c'

Let’s rearrange this equation and then integrate both sides with respect to x.

We get
dv d du

The first term on the right-hand side is the antiderivative of the derivative
of uwv, so it’s just equal to uwv + C. The +C' is unnecessary, though, because
the second term on the right-hand side is already an indefinite integral: it
includes a +C automatically. So we have shown that

dv du
/u%dz—uv—/v@dz.

This is the formula for integration by parts. It’s perfectly usable in this form,
but there’s an abbreviated form which is even more convenient. If we replace
g—; dx by dv, and replace Z—Z dzx by du, we get the formula

/udv:uv—/vdu.

Again, this is just an abbreviation for the real formula, but it is pretty useful.
Let’s see how it works in practice. Suppose we want to find

/xew dx.

Substitution seems useless (try it and see), so let’s try integration by parts.
We’d love to get the integral in the form [ u dv so we can apply the integration
by parts formula. There are a number of ways to do this, but here’s one that
works: set u =z and dv = e” dz. Then we certainly have [ze”dz = [udv.

Now, to apply the integration by parts formula, we need to be able to find
du and v as well. The first one is easy: we know u = z, so du = dzx. How
about the second one? We have dv = e* dx, so what is v? Just integrate both
sides: [dv = [e”dxz. This means that v = e* + C. Actually, we don’t need
a general v like this—we just need one v that gives dv = e dz. So we can
ignore the +C' in this situation and just set v = e”.
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We are now ready to apply the formula for integration by parts, with
u =z, du=dx,v=e® and dv = e” dx. The easiest way to use the formula is
to write a small version of it with generous spacing, then do the substitutions
underneath, like this:

Ju dv =uwwv — [ v du

~ =
/:v e” dx :xew—/ewdx.

Now we still have one integral left, but it’s just [ e”dz, which is e* + C.
Plugging this in, we see that [ ze” dz = ze” — e” 4+ C. (Technically it should
be —C, not +C, but minus a constant is just another constant and there’s no
need to distinguish.)
In order to set out the calculation for du and v, I recommend writing the

following:

U=z v =

du = dv = e* dzx,

and then filling in the blanks by differentiating u and integrating dv:

u=ux v=c¢e"

du = dzx dv = e® dx.

Then you can easily substitute into the integration by parts formula, since
you have everything you need at your fingertips.

Now, how on earth did we know to choose u = = and dv = e* dz? Why
couldn’t we have chosen u = e® and dv = x dz? Well, we could have. In that
case, we would have

u = e’ v = %xz
du = e"dz dv = zdx;
note that we integrated dv = x dx to get v = %x2 (remember, we don’t need

+C here). Then by the integration by parts formula, we have

fu dv = u v 7f'u du

x x x 1,2 1,2 " x
zeldr =1 e xd:c:e-§:17 — 327 e dr .

There’s nothing wrong with this, but it’s not very useful. You see, the last
integral on the right-hand side is nastier than the original integral! So we’d
better stick with the first way above. In general, if you see e” in there, treat
it well—it is your friend, since its integral is also e®. The moral is that if e*
is present, you should normally let dv = e” dz so that v is simply equal to e”.

Some variations

A few complications can arise. Sometimes you need to integrate by parts
twice or more. For example, how would you find

/x2 sin(x) dx?
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Well, it’s a product, and substitution doesn’t seem to work, so let’s try inte-
gration by parts. There’s no e®, but there is a sin(z) which is almost as good.
Let’s try u = 2% and dv = sin(z) dz. We get

u=z2 v = —cos(x)
du =2z dx dv = sin(z) dx;
here we integrated dv = sin(z) dz to get v = [sin(z)dz = — cos(z) (remem-

ber, no +C' is needed). So we have

S u dv = u v - f v du
—_—— —_—— —_——N— =
/x2 sin(z)dz = 2? (—cos(z)) — /(— cos(x)) 2z dx

= —2” cos(x) + /cos(m) -2z dx.

Now we can pull out the 2 from the last integral and we would be finished
if only we knew what the integral [ x cos(z)dz was. This is a little simpler
than the first integral, since we now have x instead of 22, and after all, the
cosine and sine functions are pretty darn similar. So we integrate by parts
again. Let’s try U = x, and dV = cos(z) dz; P'm using capital letters since I
already used w and v in this problem. We now have

U=z V =sin(x)
dU = dx dV = cos(z) dx,

so substituting in, we get
Ju  av U Vv - [ VvV au
—_———

/ x cos(z)dx = z sin(z) — / sin(x) dz.

How about that—we know that [ sin(z)dz = — cos(z) + C, so we get
/xcos(m) dx = xsin(z) + cos(z) + C.
We’re almost done. We just have to plug this back in above and get
/:v2 sin(z) dz = —2? cos(x) + 2z sin(z) + 2 cos(x) + C.

(Once again, I didn’t write +2C because it’s just a constant.)

Sometimes you can integrate by parts twice but things don’t seem to get
simpler. In this case, if you're lucky, then you might just get a multiple of the
original integral back at the end. Then unless you are actually unlucky, you
can throw it over to the other side and solve, which is a neat trick. (If you
are unlucky, then the integrals cancel out, which doesn’t help at all!) To see
what on earth I'm talking about, here’s an example:

/cos(z)ezx dzx.
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In the integrand, the cosine bit and the exponential bit are both nice, but the
exponential bit is nicer, so I'll set u = cos(z) and dv = e** dz. We get

u = cos(x) v=1e¥
du = —sin(z) dx dv = e?® dx.

(Don’t forget to divide by 2 when you integrate e?* to get v.) This gives

I u dv = u v J v du

/ cos(z) e*"dz = cos(z) e — /%621 (—sin(z)) dz

= 1cos(z)e* + 3 /sin(:c)e2”” dx.

Now the new integral on the right is about the same level of difficulty as
the first one, so it’s not clear we’ve gained anything at all. Nevertheless we
persevere and integrate by parts again, this time setting U = sin(x) and
dV = e2* dx. Let’s see what we get:

U = sin(x) V=
dU = cos(x) dz dV = e dx.

Integrating by parts, we find that
/U v = U

/v
/ sin(z) e**dr = sin(z) 1e* — /%62:6 cos(x) dx

All in all, then, we have

1 1/1 1
cos(z)e?” dr = = cos(x)e* + = ( =sin(x)e* — = [ cos(z)e*” dx
2 2\ 2 2
1 2x L. 2x 2z
=3 cos(x)e”” + 1 sin(x)e*® — = [ cos(z)e™ dz.
Does this help? Well, yes—if we notice that the same integral appears on
both sides, and then put both integrals on the left-hand side. In fact, we can

add % of the integral to both sides to eliminate it from the right-hand side,
and put in a +C to get

) 1 1
1 /cos(x)eh dx = 3 cos(z)e?” + n sin(z)e*” + C.

Now we just multiply by 4/5 to see that
2x 2 2z 1 : 2z
cos(x)e** dx = = cos(x)e”” + B sin(x)e** + C.

(Once again, we don’t write +%C’; we just relabel the constant and write +C'.)
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There’s one other type of integral that needs integration by parts but is in
disguise. In particular, the integrand doesn’t appear to be a product. Some
integrals that fall into this category are

/ln(:v) dx, /(111(96))2 dx, /sinfl(x) dx, and /tan_l(x) dx.

That is, the integrand is any inverse trig function (by itself) or a power of
In(x). In this case, you should let u be the integrand itself, and let dv = dz.

For example, to find
1
/ tan~'(z) dz,
0

let u = tan~*(z) and dv = dz. We then have
u = tan~1(x) v=ux
du = ——dx dv = dx,
1+ 22

and so (ignoring the limits of integration for the moment)

f u dv = u v — f'u du
—N—

/tanfl(x) dr =tan"'(z) z — /x ! dx

1+ 22

x
—ztan " (z) — [ —2— da.
xtan™ (z) /1—1—1:2 x

Using the method from the end of Section 18.1 above, the right-hand integral
works out to be equal to %ln(l + 2%) + C (make sure you agree with this!),
so we have

/01 tan~'(z) dz = (:v tan~!(z) — %ln(l + mz))

How do you get the last answer? Know thy logs and inverse trig functions!
Make sure that you believe that the above answer is correct. Also, notice
that we found the indefinite integral first in order to find the definite integral
(as opposed to trying to migrate the limits of integration to u-and-v-land!).
This is a good idea in general. That is, when solving a definite integral by
integrating by parts, find the indefinite integral first, then substitute the limits
of integration at the end.

|
= — — =1In(2).

Partial Fractions
Let’s focus our attention on how to integrate a rational function. So we want

to find an integral like
/ P 4
q()

where p and ¢ are polynomials. This covers a whole slew of integrals, for
example,

2249 T 1
d —d dx.
/£C4—1 “ /x3—|—1 oo /x3—2x2+3m—7 v
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These seem a little complicated. Here are some simpler ones:

/Ld:c, /#dz, /Ld:c, and /3—$dz
xr—3 (x+5)2 z2+9 z2+9

The last four integrands are all rational functions, but they are a lot simpler.
Try to work out all of these integrals using substitution. (Hint: some substi-
tutions which work are t = x — 3, t =2 +5, ¢t = x/3, and t = 22 + 9 for the
four integrals, respectively.) The first two of these integrals have denomina-
tors which are powers of linear functions, whereas the last two have quadratic
denominators which cannot be factored.

So, here’s the idea: first we’ll see how to take a general rational function
and do some algebra to bust it up into a sum of simpler rational functions;
then we’ll see how to integrate the simpler types of rational functions. The
simpler functions I'm talking about are all like the four above: they either
look like a constant over a linear power, or they look like a linear function
over a quadratic. We'll look at the algebra first, then the calculus. Finally,
we’ll give a summary and look at a big example.

The algebra of partial fractions

Our goal is to break up a rational function into simpler pieces. The first step
in this process is to make sure that the numerator of the function has degree
less than the denominator. If not, we’ll have to start off with a long division.
So in the examples

2 _
/x_“dz and /Mdm,
2 —1 2 -1

the first is fine, since the degree of the top (1) is less than the degree of the
bottom (2). The second example isn’t so great, because the degrees of the top
and bottom are equal (to 2). We’d have the same trouble if there were a cubic
or higher-degree polynomial on the top. So, we have to do a long division. To

do this, write
denominator ) numerator

512 -3
/&d%

2 -1

here’s what the long division looks like:

5
22 -1 ) 522 4+ 2 —3
2

5% —
T+ 2

In our example of

The division shows that we get a quotient of 5 and a remainder of z + 2. So

we have
522 +x—3 T+ 2
——— =5+ .
2 —1 2 —1
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If we integrate both sides with respect to x, we get

S5r2 +x—3 T+ 2

Now we can break up the integral into two pieces, and actually do the integral
in the first piece, to see that our original integral is equal to

T+ 2 T+ 2
/5dx—|—/w2_1d:c:5x—|—/x2_ld:c.

The new integral has a degree of 1 on the top and 2 on the bottom, which is
the way we like it. We’re now ready to proceed.

Next, we’ll factor the denominator. If the denominator is a quadratic,
check the discriminant: as we saw in Section 1.6 of Chapter 1, if this is
negative, you can’t factor the quadratic. Otherwise, you can factor it by hand
or by using the quadratic formula. If your denominator is more complicated,
you may have to guess a root and do a long division.

After factoring the denominator, the next step is to write down something
called the “form.” This is made by adding together one or more terms for
each factor of the denominator, according to the following rules:

1. If you have a linear factor (x + a), then the form has a term like

A

r+a

2. If you have the square of a linear factor (z+a)?, then the form has terms
like
A B

(I+a)2+x+a'

3. If you have a quadratic factor (22 + ax + b), then the form has a term
like
Az + B

22 +ar+b
Those are the most common ones. Here are some rarer beasts:

4. Tf you have the cube of a linear factor (x +a)3, then the form has terms

like
A n B n C
(x+a)® (z+a)? =x+a
5. If you have the fourth power of a linear factor (z + a)*, then the form
has terms like

A 4 B 4 C 4 D
(x+a)*  (z+a)P (z+a)2 zxz+a

Notice that the form only depends on the denominator. The nu-
merator is irrelevant! Also, when I use constants like A, B, C, and D above,
bear in mind that you can’t reuse constants in different terms. So you need
to keep advancing along the alphabet. In our example

2
/:172_'— dzr
x? —1
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from above, the denominator factors as (x — 1)(z + 1); so we have two linear

factors, and the form is
A B

x—1+:17—|—1'

We can’t use A twice, so we used B for the second term. By the way, you're
playing with fire if you write the constants as Cy, Cs, C3 instead of A, B, C,
and so on. You're less likely to make a careless mistake if you can actually
tell the difference between the constants without having to look at tiny little
numbers in subscripts.

Here’s another example of finding the form. What would the form of

any old junk
(x—1)(x+4)322+42+7)(322 -z +1)

be? The answer is

A L B n c n D n Ex+F Gr+ H
x—1 (443 (z+4)?2 z+4 22+440+7 322—z+1

You may write these terms in a different order, or switch the constants A
through H around; that’s OK.

Once you've found the form, you should write down that the integrand
equals the form, then multiply through by the denominator. For example, we
just found that the form for the integrand of

T+ 2
/xz—ldx
is given by
A n B
r—1 ax+1
so we write
r+1 A B

xz—l_x—l—i—x—i-l'

Actually, you're better off writing the denominator on the left-hand side in
the factored manner, like this:

T+ 2 A B

(x—1)(z+1) x—1+:17—|—1'

Now multiply through by the denominator (z — 1)(z + 1) to get
r+2=A(x+1)+ Bz —1).

Notice that the factor (z — 1) cancels in the first term on the right-hand side,
and the factor (x + 1) cancels out in the second term. Anyway, now there are
two different ways we can proceed. The first way is to substitute clever values
of z. If you put & = 1, then the B(x — 1) term goes away, and you get

1+2=A(1+1).
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That is, A = % Now if instead you put x = —1 in the original equation, the
A(xz 4+ 1) term goes away:

—1+42=B(-1-1).

So B = —%. Alternatively, another way of finding A and B is to take our

original equation  + 2 = A(z + 1) + B(z — 1) and rewrite it as
xr+2=(A+B)x+ (A—- B).

Now we can equate coefficients of = to see that 1 = A + B. We can also
equate the constant coefficients to get 2 = A — B. It’s easy to solve these

simultaneously and find that A = % and B = —% as before.
You might have noticed that in both of the ways we found A and B, we
needed two facts. For the substitution method, we put x = 1 and then x = —1,

whereas for the method of equating coefficients, we equated the coefficients of

2 and also the constant coefficients. We actually could have used one instance

of each method. For example, if you put « = 1, you find that A = % as above;
then if you equate coefficients of z, you find that 1 = A+ B, so B = —%.

In general, however many constants you have to find, that’s how many times
you have to apply one or both of the methods, mixing and matching as you
choose.

All that’s left is to rewrite your integrand as equal to the form again, but
this time with the constants filled in. So in our example,

z+2 A B 32  —1/2

$2—1_$—1+$+1:$—1 r+1

Now integrate both sides, pulling out the constant factors as you split up the

integral:
T+ 2 3 1 1 1
/:172—1dx_§/x—1dx_§/x+ldx'

We have successfully busted up our original integral into two integrals which
are much simpler. We’ll solve these integrals very soon.

So far, we’ve seen that we do a long division unless the degree of the top
is less than the degree of the bottom; then we factor the denominator; then
we write down the form; then we use one of two methods to find the unknown
constants. Finally, we write down the integrals of the various pieces. We’ll
see another example of how to do all this in Section 18.3.3 below. In the
meantime, let’s do some integration.

18.3.2 Infegratfing the pieces

We need to see how to integrate the various pieces which remain after you
break up the original integral. The simplest type of integral is of the form

1
dz.
/a:c—kbm

To do this, just substitute ¢ = ax 4+ b. For example, at the end of the previous
section, we saw that

/x—i_2d:c:§ Ld:c—l/Ld:c
2 —1 2) z—-1 2) z+1
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You can let t = x — 1 to do the first integral, and t = x + 1 to do the second.
In both cases dt = dx, so it’s easy to see that

2 1
/;;tldz:glog|z—1|—§log|z+1|+C’.

Here’s another example: to find

1
/4:c—|—5dm’

put ¢ = 4x + 5 so that dt = 4 dx; then when the integral migrates to t-land,
it simply becomes % [ 1/tdt, which is %ln|t| + C. Finally, substitute back for
t to see that the above integral works out to be 1 In|4x + 5| + C.

The same trick works for a power of a linear factor in the denominator;

for example, to find
/ _
(4z +5)2

substitute ¢ = 4z + 5 once again. The integral becomes 1 [1/t?dt, which is
—1(1/t) 4+ C; going back to z-land, we have shown that

1 11 1
7d = —— S — 02—7 C.
/(4z+5)2 TE T Ty idz+5) T

The difficult case involves a quadratic in the bottom, like this:

/ Az + B

27 dl’.

ax?+bx+c

Beware! If the quadratic can be factored, then you need to do this first. This
was the case in our previous example,

T+ 2
/xQ—ldm'

We factored the denominator as (z — 1)(x + 1); this eventually led to two
integrals whose integrands had linear denominators. So there was no need
to integrate anything with a quadratic on the bottom. Even the previous
example, with (42 + 5)2 on the bottom, posed no problem, since we just had
to deal with the square of a linear term.

So, what’s left? The only possibility is that the quadratic on the bottom
cannot be factored. That is, its discriminant b2 — 4ac is negative. An example

of such an integral is
/ x+38
- dzx
22 + 62+ 13

The denominator is a quadratic with discriminant 62—4(13), which is negative.
We actually don’t have to do any of the algebra from the previous section in
this case, since the denominator can’t be factored. There’s no need to use any
form at all; we just have to do the integral. Here’s how: complete the square
on the bottom, then make a substitution. (See Section 1.6 in Chapter 1 for a
review of completing the square.) Let’s complete the square in our example:

2 +6r+13=2"+62+9+13—-9= (v +3)*+4.
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/Iiﬁdm_/l‘i%dw
2+ 6x+13 ) (x+3)2+4

Now substitute t = x + 3, so that x =t — 3 and dz = dt:

T+ 8 T+ 8 (t—3)+8 /t+5
/x2+6z+13 o /(a:+3)2—|—4 o / 2+ 4 2+ 4
The next step is to break this last integral into two integrals and pull out the
factor of 5, so the above integral becomes

¢ 1
——dt+5 | =——dt.
/t2+4 + /t2+4

The first integral is just like the ones at the end of Section 18.1 above. You
put a factor of 2 on the top and bottom, then recognize that the derivative of
the bottom is just the top, so you get the log of the bottom:

/ 1 [ 2t 1.,

So we have

Actually, since t? + 4 is always positive, we can drop the absolute values.
Anyway, to do the second integral, which is

1
5 | ——dt
/t2+4 ’

just remember the useful formula

1 1 [t

(You should try to prove this by differentiating the right-hand side, or by
substituting ¢ = aw in the left-hand side.) Anyway, with ¢ = 2, this formula

becomes ) )
t
5 ——dt=5x=tan (= C.
/t2+4 * g (2>+

So, we have evaluated our integral as

1 5 t

3 In(t? +4) + 3 tan~! <§) +C.
Now just replace t by x« + 3 once again to see that

%ln((:v +3)244)+ gtan_l (xTJF?’> +C.

The expression (z+3)2 44 immediately simplifies to 22 + 62+ 13, our original
denominator. There’s actually no need to expand it—just look back to where
we completed the square and you’ll find the equation you need. So, we have
finally shown that

8 1 5 3
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If the original quadratic on the bottom isn’t monic, I suggest that you pull
out the leading coeflicient before completing the square. So, to find

/ T +38

- dux,

222 + 12x + 26

pull out a factor of 2 in the bottom to write the integral as
1 T+ 8 d
2 ) 22+6x+13 -

This is the same integral as before, except for the factor of % out front, so it
simplifies to

1
1 In(x? + 62 + 13) + Ztanfl <xT+3> +C.
Now, let’s summarize the whole partial fraction method, then see a big exam-

ple of the whole darn thing.

18.3.3 The method and a big example

Here’s the complete method for finding the integral of a rational function:

Step 1—check degrees, divide if necessary: check to see if the degree of
the numerator is less than the degree of the denominator. If it is, then you’re
golden—go on to step 2. If not, do a long division, then proceed to step 2.

Step 2—factor the denominator: use the quadratic formula, or guess
roots and divide, to factor the denominator of your integrand.

Step 3—the form: write down the “form,” with undetermined constants,
as described on page 399 above. Write down an equation like

integrand = form.

Step 4—evaluate constants: multiply both sides of this equation by the
denominator, then find the constants by (a) substituting clever values of x;
(b) equating coefficients; or some combination of (a) and (b). Now you can
express your integral as the sum of rational functions which either have con-
stants on the top and powers of linear functions on the bottom, or look like
a linear function divided by a quadratic function.

Step 5—integrate terms with linear powers on the bottom: solve any
integrals whose denominators are powers of linear functions; the answers will
involve logs or negative powers of the linear term.

Step 6—integrate terms with quadratics on the bottom: for each
integral with a nonfactorable quadratic term in the denominator, complete the
square, make a change of variables, then possibly split up into two integrals.
The first one will involve logs and the second should involve tan~!. If there’s
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only one integral, it could involve either logs or tan~'. This formula is very
useful most of the time:

1 1 [t

Remember, you don’t always need to use all six steps. Sometimes you can
go directly to the last step, such as in our example

/ x+38

- dzx

22 + 6x + 13

from the previous section. Now, here’s a nasty example that does involve all
the steps:

dx.

/ x® — 7t + 1923 — 1022 — 192 + 18
z? — 523 + 922

Here’s how to apply the above method to solve this example.

Step 1—check degrees, divide if necessary: in the above integral the
degree of the top is 5, but the degree of the bottom is only 4. Bummer—we
have to do a long division:
r — 2
ot =528 + 907 ) 2® — Tat +192% — 100% — 192 + 18
x® — 5zt + 923
—2z* 4+ 1023 — 1022
—2z* 4+ 1023 — 1822

8x? — 19z + 18

Check the details! In any case, we have shown that

25 — 72t + 1923 — 102% — 192 + 18 . 8x2 — 19z + 18
=x— ——— =5 -
x4 — 53 + 922 x4 — 513 + 922

Now integrate both sides to see that

x® — Tat + 1923 — 102% — 192 + 18 8x2 — 19x + 18
de = r—24+ — - | dx.
x4 — 53 + 92 x4 — 53 + 92

The first two terms in the right-hand integral are easy: they integrate to

12? — 22 (we'll put in the +C at the very end). So now we have to find

/ 8x2 — 19z + 18
dzx.

x4 — 523 + 922

Now the degree of the top is only 2, which is less than the degree of the bot-
tom (which is still 4). We’re ready for the next step.

Step 2—factor the denominator: we have a quartic in the denominator,
but it has an obvious factor of 22. So we’ll factor the denominator as

zt — 523 + 927 = 22(2% — 5z 4+ 9).



406 e Techniques of Integration, Part One

The quadratic 22 — 52 + 9 has discriminant (—5)? — 4(9) = —11; because this
is negative, the quadratic can’t be factored. So we’re done with step 2.

Step 3—the form: we have two factors, 2 and z? — 5z +9. Don’t think of
the first factor 22 as a quadratic; instead, think of it as the square of a linear
factor. It might be better to write 22 as (x — 0)? to clarify this point. So the
22 factor contributes

A B

2z
to the form. On the other hand, the factor 22 — 5z + 9 contributes

Cx+D
2 —5x+9

Altogether, we have

82° —19z+18 A B Cr+D
x2(x? =5 +9) a2 22 -5z +9

Step 4—evaluate constants: now we have to find the values of A, B, C,
and D. First we multiply both sides of the above equation by the denominator
22(2? — 51 +9) to get

87% — 19z + 18 = A(z* — 52 + 9) + Ba(2? — 5z + 9) + (Cx + D)2*.

Notice that the bits of the denominator that appear in each term of the right-
hand side are precisely the bits that don’t appear in the original form. For
example, when you multiply the B/z term by x?(2? — 52 +9), you knock out
a factor of x to get Bx(z? — 5z +9).

Let’s try substituting a clever value of x in the above equation. The only
value of = that will kill off much of this equation is x = 0. If we put x = 0,

the above equation becomes
18 = A(9),

so we immediately know that A = 2. We still need to find three more con-
stants, so we’d better equate coeflicients of three different powers of z. Let’s
start off by expanding the above equation, then grouping together the different
powers of x:
8% — 192 + 18 = Az? — 5Ax + 9A + Ba® — 5Bz + 9Bz + Ca® + Da?
=(B+C)2* + (A—5B+ D)x® + (-5A+ 9B)x + 9A.

Now we can equate coefficients of 2%, 2% and z, one at a time:

coefficient of z3 : 0 = B+C
coefficient of z2 : 8 = A-5B+D
coefficient of z' : —19 = —5A+9B.

Note that the coefficient of 23 on the left-hand side is 0, since the left-hand
side 822 — 192 + 18 doesn’t have an 2 term. (By the way, if you equate the
constant coefficients, you get 18 = 9A, which is the same equation we got
when we substituted = 0 above. Can you see why this happens?)
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Anyway, we have some simultaneous equations to solve; starting at the
last one and working back using the fact that A = 2, it’s pretty easy to see
that B=—1, D =1, and C = 1. Substituting into the form that we got at
the end of step 3, we have:

822 19z +18 2 -1 z+1

x2(x? — 5x +9) F+?+x2—5z—|—9'

This means that

8x2 —19 18 1 1 1
[ St gde=2 [ o [ Lo [ T
x2(x? — 5z +9) x? x 22 —5x+49
Instead of one nasty integral, we have three simpler integrals. Let’s work them
all out.

Step 5—integrate terms with linear powers on the bottom: The first
two of our integrals are pretty easy:

1 1 2
2/—2d:c—/—d:c:———ln|:c|+C’.
x T T

So, there’s really not a lot to step 5 in this case. Unfortunately, step 6 is a lot
more involved. . ..

Step 6—integrate terms with quadratics on the bottom: We need to
find the third integral, which is

/xiﬂdx
x2—5x+9

Start by completing the square:

2
25 25 5) 11
x2—5x—|—9:(w2—5x+1)+9—zz(x—§>+—. (%)

Now let’s rewrite our integral using the fruits of our completing-the-square

labors: ) )
/%dx:/%dﬁ
vEo T (@-3)+7%

We can substitute t = x — % to make life a lot easier. Indeed, then x =t + g
and dt = dz, so the integral becomes

t+34+1 t+1
/72211 dt:/2 2 dt
2+ 2+ 4

in t-land. Now break it up into two new integrals:

t 7/ 1
—dt and — [ ———dt.
11 11
/ 2+ T 2 2 + T

To do the first of these integrals, multiply and divide by 2 to get

¢ 1 2t 1 11
/*Hdt:—/iudt:—ln
2+ 2) 24+ 2

24+ =+ C.
+ 7
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Once again, the absolute value signs aren’t necessary, since t2 + % must be
positive. To change back to z-land, we need to replace t by = — % again:

1 [, 11 1 5\ 11
iln(t +Z) C—§1n<<x—§)+z>+c.

Don’t bother multiplying out this last expression—just look at the equation
marked (%) on the previous page, where we completed the square, to see that
everything simplifies to %11?1(1‘2 —bx +9) 4+ C. That takes care of the first of
our new integrals.

We still have to worry about the second integral, which is

7/ 1

— [ ———dt.
11

2) 2+

1 1. [t

with @ = y/11/4, which in fact is equal to v/11/2:

Let’s use the formula

7/ LIV 2ta1( ! >+O 7ta1(2t)+0
— | ——+dt = - X —tan —_— = ——tan — :
2) 2+ 4 2 V11 V11/2 V11 V11

Now put t =z — % again to see that this works out to be

7 " (296 - 5) Lo
—— tan .
V11 V11

Altogether, then, our two pieces give us the final answer for the step 6 part:

z+1 1 7 2r — 5
P = —m(@® —5e49) + ——tan ! [ 222 ) 4
/x2—5x+9 z =g n(e” =5 +9)+ = tan ( V1T )+

Guess what? We’re ready to assemble all the pieces for our big-ass integral!
The first four steps established that

/a:5 — 72t + 1923 — 1022 — 192 + 18 4
X

at — 53 + 9a2
2 1 z+1
- S ST A I N
/<x +x2 x+:102—5x+9) v

This is the complete partial fraction decomposition. Now, using steps 5 and 6
to do the actual integration, the above integral works out to be

! ta _1<2m—5)+0
—— tan .
V11 V11

We're finally done with our big example! Admittedly, it was pretty nasty, but
if you can do something that difficult, you should have no trouble with easier
integrals. As an exercise, see if you can come back to this problem tomorrow
and work it out from scratch without looking at these pages.

2

2 1
?—217—5—1n|:c|+§ln(z2—5z—|—9)—|—




CHAPTER 19

Technigues of Infegration, Part Two

191

In this chapter, we’ll finish gathering our techniques of integration by taking
an extensive look at integrals involving trig functions. Sometimes one has to
use trig identities to solve these types of problems; on other occasions there
are no trig functions present, so you have to introduce some by making a trig
substitution. After we finish all this trigonometry, there’ll be a quick wrap-up
of the techniques from this and the previous chapter so that you can keep it
all together. So, this is what we’ll look at in this chapter:

e integrals involving trig identities;

e integrals involving powers of trig functions, and reduction formulas;
e integrals involving trig substitutions; and

e a summary of all the techniques of integration we’ve seen so far.

Integrals Involving Trig Identities

There are three families of trig identities which are particularly useful in eval-
uating integrals. The first family arises from the double-angle formula for
cos(2x). In Section 2.4 of Chapter 2, we saw that cos(2x) = 2 cos?(z) — 1 and
also that cos(2x) = 1 — 2sin®(z). (Remember, you get one of these from the
other by using sin?(z) 4 cos?(x) = 1.) For use in integration, it turns out that
the best way to use the formulas is to solve the relevant equation for cos?(z)
or sin(z). So, we have

cos? (z) = % (14cos(22))|  and  |sin®(@) = = (1 — cos(2)) .

N =

It is well worth remembering these identities! In particular, if you ever have
to take a square root of 14 cos(anything) or 1 — cos(anything), these identities
save the day. For example,

/2
/ /1 —cos(2z) dx
0
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f@

looks pretty nasty, but in fact

/2 /2
1 — cos(2x dx:/ 2sin?(z) dz
| Vi = [ f2sinia)

by the second boxed identity above. (We had to multiply the identity by 2
before using it.) Anyway, it’s very tempting to replace y/2sin?(z) directly

by \/isin(gc)7 but let’s do a quick reality check. The square root of A2 isn’t
actually A, it’s |A|. So the above integral becomes

/2
\/5/0 |sin(x)| dx.

Luckily, when x is between 0 and /2, the values of sin(x) are always greater
than or equal to zero, so we can drop the absolute value signs after alll We
have reduced things to

/2
\/5/ sin(x) dz;
0

I leave it to you to show that this is just v/2.
Sometimes you have to be a little more versatile. Consider

2
v/ 1+ cos(z) dz.

It looks like we want to use the first identity in the box above, but that has
a factor of 1 + cos(2x) on one side and we need 1 + cos(x). No problem—if
you replace x by /2 in the identity, and multiply through by 2, you get

2 cos? (g) =1+ cos(z).

This is exactly what we need! Check ’dis:

Ve [ e () an = v [eos (5)]

Now we have to be very careful. When z is between 7 and 27, we see that x/2
is between /2 and 7, but cos(z) is less than or equal to zero on the interval
[r/2, 7] (draw the graph to check this). So the above integral is actually equal

to
A" (e (3)) o

I leave it to you to show that this works out to be 2v/2. By the way, if you
incorrectly replace |cos(z/2)| by cos(z/2) instead of — cos(z/2), you'll get the
answer —24v/2. This cannot be correct: the original integrand /1 + cos(z) is
always positive, so the integral must be positive too.

Let’s move on to the second family of trig identities. These are the
Pythagorean identities:

sin?(z) + cos?(x) = 1 tan?(z) + 1 = sec?(z) 1+ cot?(z) = csc?(x).
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These identities are valid for any x, as we saw in Section 2.4 of Chapter 2.
Sometimes they are obviously helpful. For example,

/O’dex

should just be written as

/OW \/sin®(z) dz = /Ow|sin(z)| dz.

Since sin(z) > 0 when z is between 0 and 7, we can drop the absolute values

to get
/ sin(x) d,
0

which is just 2. (Check this!) Compare this example, [ /1 — cos?(z) dz,
with the example foﬂ v/1 — cos(z) dx we just did. They may look similar, but
the trig identities we used are different.

Now, sometimes you have to apply a devious trick in order to use the
above identities. If you see 14 trig(z) or 1 — trig(x), where “trig” is some trig
function (specifically sine, cosine, secant, or cosecant), in the denominator of
an integral, consider multiplying by the conjugate expression. For example,

to find
1
—d
/sec(x) —1%

multiply top and bottom by the conjugate expression of the denominator,
which in this case is sec(z) + 1. That is,

1 B 1 sec(z) + 1
/ sec(z) — 1 do = / sec(z) — 1 . sec(z) + 1 de

Now you can use the difference of squares formula (a — b)(a +b) = a? — b* on
the denominator to write the integral as

/ sec(z) + 1 .

sec?(x) — 1

Aha, the bottom is just tan?(z), by one of our trig identities in the boxes
above. Rewriting the integral using this, then splitting it into two integrals,
we find that our integral is

1 1
[l ity [ L,
tan®(z) tan?(z) tan?(z)
The first of these integrals looks a little nasty, but you can save the day by
converting everything to sines and cosines. Specifically,

[ e [ L)y, [0l
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The next step is to substitute ¢t = sin(z), since dt = cos(z) dx is on the top.
Try this and see what you get. A fancier way is to rewrite cos(z)/sin(x) as
cse(z) cot(z), so

[ o~ [ escla)cotta) e = —eseta) + €.

sin?(x)

since the derivative of csc(z) is — csc(z) cot(x). Now we still have to deal with

the second integral,
1
——d
/ tan?(z) v

No problem—rewrite this as [ cot?(z) dz, then use another of the trig identi-
ties from the boxes above to express this as

/ (esc®(z) — 1) da = — cot(z) —z + C.

(Did you remember the integral of csc?(z)? It is a close cousin of the integral
of sec?(z), which is tan(z) + C. Just put “co-” in front of everything and
throw in a minus sign to get the csc?(z) version!) In any event, we put these
two pieces together to conclude that

1
/ sec(z) — 1 dr = —csc(x) — cot(z) -z + C.
Pretty tricky stuff.

Let’s look at the third family of identities, the so-called products-to-sums
identities:

cos(A) cos(B) = %(COS(A — B) + cos(A+ B))

sin(A) sin(B) = %(COS(A — B) —cos(A+ B))

sin(A) cos(B) = %(sin(A — B) +sin(A + B)).

It’s quite a pain in the butt to remember these. Actually, they all follow
from the expressions for cos(A £ B) and sin(A + B) (which are also in Sec-
tion 2.4 of Chapter 2), so if you have those down, you can reverse engineer
the above identities from them. These identities are quite indispensable for
finding integrals like

/ cos(3x) sin(19z) dx.

Indeed, it looks like we need the third formula above with A = 19z and
B = 3x. (Don’t let the order of the cos and sin fool you here! The integral is
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the same as [ sin(19x) cos(3z) dx.) So we use the identity to get
1
/cos(?)a:) sin(19z) dx = 3 / (sin(19z — 3x) + sin(19z + 3z)) dz

= %/(sin(lﬁx) + sin(22z)) dx
1 (_cos(lﬁa:) B cos(22:z:)> Lo

) 16 22

_ cos(16x)  cos(22x)
B 32 ¢

19.2  Integrals Involving Powers of Trig Functions

Now we’ll see how to find certain integrals which have powers of trig functions
in their integrands. For example, how would you find [ cos”(z)sin'"(z) dz or
[ sec®(z) dz? Unfortunately, these types of integrals require different tech-
niques, depending on which trig function or functions you're dealing with.
So, let’s take them one at a time.

19.2.1 Powers of sin and/or cos

Our example [ cos’(z)sin'’(z)dz from above fits into this category. Here’s
the golden rule: if one of the powers of sin(z) or cos(x) is odd, then grab it
and don’t let it get away—it is your friend! (If they are both odd, then take
the one with the lowest power as your friend.) If you've grabbed your odd
power, then you need to pull out one power to go with the dz; then deal with
what’s left (which is now an even power) by using one of the identities

cos’(z) = 1 —sin?(z)| or [sin®(z) =1 — cos®(x).

Note that these are just rearrangements of the identity sin®(z) + cos?(z) = 1.
Anyway, the best way to see how the technique of pulling out one power
from the odd power works is by looking at an example. In particular, to find
[ cos”(x) sin'®(x) dz, note that 7 is odd, so we grab cos”(x) and pull out just
one cos(z) to go with the dz. We get

/ cos” () sin'(x) dx = /cos6 () sin'%(z) cos(x) da.
So what? Well, we need to deal with the cos®(x) which is left over. Now 6 is

even, so we can write cos®(z) = (cos?(x))? = (1 —sin?(z))?, and the integral
becomes

/(1 — sin?(x))? sin'®(x) cos(x) da.

Now if we put t = sin(z), then dt = cos(z) dx, so it’s easy to get this integral
over to t-land—it’s just

/(1 — 12310 dt = /(1 =32 4+ 3t — 1%V dt = /(tlo — 312 4 3t1 — #1%) dt,
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which works out to be
tll 3t13 t15 t17
_l’_
11 13 5 17
Converting back to z-land, we get our answer:
sint'(z)  3sin'?(2) n sint®(z)  sin'?(2)

11 13 ) 17 +C.

/cos7(:v) sin'®(z) dz =

You see how stealing one power of cos(z) allowed us to change the rest of the
integrand so that it only involved sin(z), leaving the cos(z) to take care of
the dx via the substitution ¢ = sin(z).

Now, what if neither power is odd? Well, if both powers are even—for
example, if you had to work out [ cos?(z)sin(z)dz—you should use the
double-angle formulas. We just saw them in the previous section, but here
they are again for reference:

(1 — cos(2z)) .

cos?(z) = % (1 4 cos(2z)) and sin?(z) =

N =

Now you can just replace everything in sight, and you'll get a whole bunch of
simpler integrals which are various powers of cosines. You then need to find
them using the same techniques as we have just used, depending on whether
the power in each integral is even or odd. In our example, we need to think

of sin*(x) as (51112(:10))27 so we get

/cosQ(:c) sin®(z) do = /% (1 4 cos(2z)) <% (1- cos(2;1:)))2 dx.

Now we expand and multiply to get

é / (1 — cos(2z) — cos?(2z) + cos®(2z)) dx.

We need to break this up into four integrals. Let’s not worry about the % out
front or the minus signs for the moment; we’ll take care of them later. The first
two integrals are easy, since [1dz = z + C and [ cos(2z) = %sin(2x) +C.
How do we find [ cos?(2z)dxz? It’s an even power, so we need to use the

double-angle formulas again, but with = replaced by 2z:

1 1 1
/cos2(2:c) dz = /5 (14 cos(4z)) dx = 3 <a: + 1 sin(4z)> +C.
How about [ cos®(2z) dz? Well, now we have an odd power (namely 3), so we
grab it! Let’s write the integral as [ cos?(2z) cos(2z) dz and replace cos?(2x)
by (1 —sin?(2z)). Substituting ¢ = sin(2x), we have dt = 2 cos(2z) dz, so the
integral [ cos®(2z)dx is

1 t3

/(1 —sin?(2z)) cos(2z) dx = % /(1 —t3)dt = 3 <t - 5) +C

_ sin(2z)  sin®(22)
= s T C.
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(Pause to catch breath.) Now we put it all together and simplify a little; you
should check that we get

_ é (:1: _sin(2z) = sin(4a) n sin(2z) sin3(2:c)> Lo

2 2 8 2 6
r  sin(4z)  sin®(2x)
=— - - C.
16 64 48 +

Make sure you can fill in all the details.

19.2.2 Powers of tfan

Consider [ tan”(z)dz, where n is some integer. Let’s look at the first couple
of cases. For n = 1, we need to know how to do [ tan(z)dz. This is a pretty
standard integral, which you can solve by setting ¢ = cos(z), noting that
dt = —sin(z) dx:

/tan(x) dzr = / sin(z) dr = — a_ In(t) + C' = —In|cos(z)| + C.

cos(x) t

The answer can also be written as In|sec(x)| + C. (Why?)
How about n = 27 For this case, and indeed other cases, it’s essential to
use the Pythagorean identity

‘tanQ(:z:) =sec’(z) — 1 ‘

which we looked at in the previous section. So we have
/tanQ(:c) dx = / (sec®(z) — 1) dx = tan(z) — z + C.

To do higher powers (n > 3), you have to extract tan?(z) and change
it into (sec?(x) — 1). This gives you two integrals. The first can be done
by substituting ¢t = tan(x) and using dt = sec?(z)dx. The second is a lower
power of tan(z) and you can just repeat the method. For example, how would
) you find [tan®(x)dz? Let’s see:

/tanG(x) dx = /tan4(x) tan?(z) do = /tan4(x) (sec®(z) — 1) da
= /tan4(x) sec?(x) dx — /tan4(:1c) dx.

So now we have to work out two integrals. To do the first one, set ¢ = tan(z);
as we just said, dt = sec?(z) dw. This gives

5 5
/tan4(:c) sec?(z) dx = /t4 dt = % 40 = tan5(55) e
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Now, the second integral is [ tan'(z)dz, so we have to repeat the whole
process. Take out a factor of tan?(z) and change it to (sec?(z) — 1):

/tan4(x) dx = /tanz(x) tan?(z) do = /tan2(x) (sec®(z) — 1) da
= /tanz(x) sec?(x) dx — /tanQ(:C) dx.

Once again, we have two integrals. To do the first, let ¢ = tan(x), so that
dt = sec?(z) dr (sound familiar?). So

3 3
/tan2(x) Secz(gc) dr = /t2 dt — % L0 = tang(gc) Lc

Meanwhile, we saw above that

/tanQ(x) dx = / (sec®(z) — 1) dz = tan(z) — z + C.

Putting it all together (being careful not to forget the minus signs), we see
that s .
t t
/tanﬁ(ac) dx = an5(x) - ang(x) + tan(z) —z + C.

What a pain. Still, it could be worse:

19.2.3 Powers of sec

Yup, this one really sucks, except for [ sec?(x) dx, which is easy. Let’s start
with the first power, [sec(z)dz. There are many ways of finding this in-
tegral. The easiest involves a cool trick that is well worth remembering, as
it’s a real timesaver. Unfortunately it’s the sort of trick that is completely
counterintuitive, and it boggles the mind that anyone even thought of it in
the first place. The idea is to multiply top and bottom by the bizarre quantity
(sec(z) + tan(z)). Watch and be amazed:

/ sec(z) dz = / sec(x) x sec(z) + tan(z) , / sec” () + sec(x) tan(x)

sec(z) + tan(z) sec(z) + tan(z)
= In|sec(z) + tan(x)| + C,

since the derivative of the denominator sec(x) + tan(x) is miraculously equal
to the numerator.
How about the second power of sec(z)? Not much to this one:

/sec2 () dz = tan(z) + C.

That was easy. Unfortunately, it gets pretty messy for larger powers. The
standard idea is to pull out sec?(z) (which is similar to what we did with
powers of tan(x)) and integrate by parts, using dv = sec?(x) dz and u as the
rest of the powers of sec(x). This means that v = tan(z) (remember, we don’t
need a constant here). When you do the integration by parts, you will of
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course get a new integral; the integrand should be a lower power of sec(z)
multiplied by tan?(x). Once again, we have to use tan?(x) = sec?(z) — 1 and
get two integrals. Omne of them is a multiple of the original integral! You
have to put this back on the left-hand side. The other one is a lower power
of sec(z), and you have to repeat the whole process until you get down to
[ sec(z)dz or [sec?(z)dx, both of which we now know how to do.

That Was quite a technical explanation. Let’s see a formidable example:
find [ sec®(z)dx. Start off by breaking out sec?(z), like this:

/secﬁ(ac) dx = /sec4(:1c) sec?(z) d.

Now integrate by parts with u = sec*(x) and dv = sec?(z) dz. By differenti-
ating v and integrating dv as usual, we find that

du = 4sec®(x) sec(x) tan(x) do = 4 sec! () tan(x) da and v = tan(z).

So now we can integrate by parts to get

I u dv = u v - f v du
—_——
/ sect(x) sec?(z)dx = sec’(z) tan(z) — /tan(x) 4sect(x) tan(z) dz .

Let’s look at the integral on the right-hand side. We can write this as

4/sec4(ac) tan?(z) dx —4/sec (z) (sec®(z) — 1) da

=4 ( / sec®(z) dz — [ sect(x) dz> .

Putting it all together, we have

/sec6 (z) dx = sec*(x) tan(x) — 4 / secl(z) dx + 4 / sec!(z) dx.

Now comes the sexy part: transfer the first integral on the right-hand side
over to the left-hand side to get

5/se(36(:1c) dx = sec? () tan(z) + 4/sec (x) dz.
We can divide this equation by 5 to get
6 Loa 4 4
sec®(x) dx = 5 sec (x) tan(z) + 5 [ sec (x) dz.
Are we done? No, we still need to know how to do [ sec?(z) dz! We just have

to repeat the whole darn process again. Here’s where it’s your turn to repeat
all the above steps. If you don’t screw up, you should get

/sec4(z) dx = %sec2 (z) tan(z) + ; /sec2(:1:) dx.
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Now we need [ sec?(z)dz, but we've finally knocked this down to something
we can do—it’s just tan(x) + C, as we’ve already seen. Putting it all together,
we have

/sec6 (x)dx = % sec* () tan(z) + % <% sec?(x) tan(z) + ;tan(x)) +C

1oy 4 9 8
= g sec (x) tan(z) + T5 Sec (z) tan(z) + 5 tan(z) + C.

Man, I'm exhausted just writing about this. Look, the idea with powers of
both tan(z) and sec(z) is to knock the power down by 2 and then repeat;
keep going until you either get down to the first or second power, which you
can just do directly. By the way, how would you do

/ dx ?
cost(x)
That’s right, you write it as [ sec®(z)dz, of course (which we just worked

out!). How about
-2
/ sin”(z) dx?
cos3(z)

Write the numerator as 1 — cos?(z) and break up the integral:

e

Now use the techniques above to find these two integrals involving powers of
sec(z).

19.2.4 Powers of cof

These work just like powers of tan(x). You pull out cot?(x) and use the
Pythagorean identity

‘ cot?(z) = csc?(z) — 1. ‘

Just beware that when you set ¢ = cot(z), you have dt = — csc?(x) dz. That
is, don’t forget the minus sign! Now try doing a few for practice. For example,
try [ cotS(z)dz and compare your answer with the solution to [ tan®(x)dx
in Section 19.2.2 above. You will see that they are very similar indeed.

19.2.5 Powers of csc

These work just like powers of sec(x). You pull out csc?(z) and integrate by
parts, using dv = csc?(z) dz. Beware: you now have v = — cot(z), and du
also involves a minus sign which you have to worry about. Again, try some
examples. If you work out [ cscS(x) dr and compare your solution to the
worked example [ sec®(z)dx from Section 19.2.3 above, you should see more
than a passing resemblance.
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19.2.6 Reduction formulas

The methods of the last four sections all involve knocking the power of the
trig function you're dealing with down by 2, then repeating the process. For
example, in Section 19.2.2, we saw that we can integrate a power of tan(z)
by extracting tan?(x) and replacing it by sec?(x) — 1. Let’s try to write out
the method in general. First, we're dealing with [ tan"(z)dz, so we’ll give it
a name: I, (for integral number n). That is,

I, = /tan"(ac) dx.

We already know that
Ioz/tano(:v)dx:/ldm:x—i—C and
L= /tan(x) dx = —In|cos(z)| + C.

Now, when n > 2, we can steal tan?(z) away from tan”(z), leaving behind
tan""2(x); then we can use our trig identity and split up the integral to get

I, = /tan"(:v) dx = /tan"‘Q(:E) tan?(z) do = /tan"_2(:1c)(secz(:1c) —1)dx
= /tan"_2(x) sec?(x) dr — /tan"‘Q(:E) dx.

The second integral in this last expression, [ tan""2(x) dz, is just I,,_o. As for
the first, if you put ¢ = tan(z) so that dt = sec?(x) dx, you'll see it becomes
Jt"2dt, which is just t"~/(n — 1) + C. Replacing t by tan(z), we have
shown that

1
I, = 7 tan" "1 (z) — I,_o.

There’s no need for a constant, since both I,, and I,,_» are indefinite integrals.
The above equation is called a reduction formula, since it helps us reduce the
number n to a smaller number n — 2.

Let’s see how to use the formula to find [ tan®(z)dz. This is just Is. So,
put n = 6 in the reduction formula to get

1
I = £ tan®(z) — 1.
OK, so we need I;. Let’s write out the reduction formula again, this time
with n = 4:

1
I, = 3 tan®(z) — Is.

Once again, but with n = 2:

1
I, = 1 tan'(z) — Iy = tan(z) —z + C,

where we have used the above formula for Iy. So we now know Is, and we
can work backward to get I:

1 1
Iy = 3 tan®(z) — I, = 3 tan®(x) — tan(z) + 2 + C.
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Finally, we can find our desired integral, which is none other than Ig:

/tanﬁ(:zr) de = Is = % tan®(z) — Iy = é tan®(z) — % tan®(z) + tan(z) —x + C.
This agrees with our answer from Section 19.2.2. Now try to repeat this for
powers of secant, cosecant, and cotangent—the methods are given above, and
all you have to do is rewrite them as reduction formulas.

The method also works for definite integrals. For example, how would
you find the definite integral foﬂ/ ? cos8 () dz? You could use the double-angle
formulas, as described in Section 19.2.1 above, but that would be a pain in
the ass. (Try it if you don’t believe me!) Instead, let’s set

/2
I, = / cos™(z) dx
0

and make a mental note that we eventually want to find Ig. The trick now is
to pull out one factor of cos(x), like this:

/2 /2
1, = / cos" (z) dx = / cos" () cos(z) du.
0 0

Now integrate by parts with u = cos"~!(z) and dv = cos(x) dz. This means,
of course, that v = sin(x). (See Section 18.2 in the previous chapter for more
about integration by parts.) I leave it to you to show that we get

/2

/2
= cos" ! (z) sin(z n — 1) cos" 2 (x) sin?(z) dz.
I = o @)sina)| -+ [ (= Do Ha)sind(a)d

0

If n > 2, then the first expression on the right-hand side is 0, since we have
cos(m/2) = 0 and sin(0) = 0. On the other hand, we can replace sin®(z) by
1 — cos?(x) in the integral to see that

/2
I, = /0 (n—1)cos" *(z)(1 — cos*(z)) dx

/2 /2
=(n-— 1)/0 cos" %(x) dx — (n — 1) /0 cos™ (z) dx.

Now what? Well, notice that the last two integrals are just I,_o and I,,,
respectively. So
In=n—-1I,—2— (n—1)I,.

Solving for I, by adding (n — 1)I,, to both sides and dividing by n, we arrive
at the following reduction formula:

~1
I,=2""1 .
n

That should make life a lot easier! In particular, we are looking for Ig, so by
using the above formula over and over again, with n = 8, then n = 6, then
n =4, and finally n = 2, we get



Section 19.3: Integrals Involving Trig Substitutions e 421

/2

Now we need to find Iy. Since cos(z) is just 1, we have Iy = [

Simplifying the above fraction, we have shown that

lde =7/2.

As a bonus, we can easily find foﬁ/ % cos™ (z) dx for any other positive integer

n. (Youll need to note that I = foﬁ/2 cos(xz)dr =1 in order to get the odd
powers.)
By the way, reduction formulas don’t have to involve trig functions. For

example, if
I, = / z"e” dx,

then you can integrate by parts with « = 2™ and dv = e* dx (so v = %) to
get

I, =x"e" — /nx”flex dx.

This gives the reduction formula I,, = z"e® — nl,_;. Incidentally, unlike the
situation with all the trig function examples, this time I,, is expressed in terms
of I,,_1, not I,,_s. So you only need to know I at the end of the chain, which
isn’t hard to find: Iy = [e*dz =e* + C.

19.3  Infegrals Involving Trig Substitutions

Now let’s look at how to do integrals involving an odd power of the square
root of a quadratic. Here are some examples of the type of integral we're
considering:

dx a? 2 —5/2
/m or /md.@ or /(CC +15) d.’l?

The basic idea is that there are three types, corresponding to whether you
have to worry about a? — 22, 2 4 a2, or 22 — a?. Here a is just some number.
For example, the first integral above involves z2 — a? with a = 2, the second
involves a? — 22 with a = 3, and the third involves 2% +a? with a = /15. Each
of these three types requires a different substitution. Most of the time, after
substituting, you end up with an integral involving powers of trig functions,
which is where the previous section comes in. Let’s look at the three types of
integrals one at a time; then we’ll summarize the whole situation at the end.

1931 Type 1: Va2 — 2

If you have an integral involving an odd power of v/a2 — x2, the correct sub-
stitution to use is x = asin(f). (You could use z = a cos(#) if you prefer, but
there would be no advantage to it, so stick with sine.) The reason that this
substitution is effective is that

a® —2? = a®> — a®sin*(0) = a® (1 - sin2(9)) = a® cos?(0),
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and now you can easily take a square root. Remember that if you are changing
variables from x to €, you have to go from z-land to #-land. That is, everything
about the integral has to be in terms of 6, not z. In particular, we’ll need
to replace dz by something in 6 and df. No problem—just differentiate the
equation ¢ = asin(f) to get dr = a cos(#) df. (This sort of substitution, where
the equation is solved for x instead of the substituting variable, was discussed
at the ends of Sections 18.1.2 and 18.1.3 of the previous chapter.) Anyway,
now we can hopefully do the integral in #-land, but in the end we have to
change the answer back to z-land. To do this, it will be useful to draw the
following right-angled triangle with one angle equal to 6:

Now we know sin(f) = z/a, so we can fill in two of the sides as shown:

Finally, we can use Pythagoras’ Theorem to see that the third side is va? — 22,
so we complete the triangle as follows:

a2 — 22

Now we can easily read off from this triangle the values of cos(6), tan(f), or

any other trig function of 8, and get back to z-land without too much trouble.
Let’s see how it works in practice. We’ll use an example from above:

2
x
/7(9 RpIETE dx.

We make the substitution x = 3sin(f), so dz = 3 cos(f) df. Also, we see that
9 — 22 =9 — 9sin*(f) = 9cos?(6). So the integral becomes

in(6))? 2 in2
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since 93/2 = 27. Now we use the techniques from Section 19.2.2 above to see
that

/tanz(ﬁ) df = / (sec®(f) — 1) df = tan(6) — 6 + C.

We just have to get back to z-land. Since sin(f) = x/3, the relevant triangle
looks like this:

V9 — 22

We can read off from the triangle that tan(fd) = z/v9 — 2. Also, since
sin(f) = x/3, we have § = sin~'(x/3). Substituting into the answer above,
we see that

z? x (T
/(9_x2)3/2dx— _9_z2—51n (§>—|—C.

If you didn’t use the triangle, you might be tempted to write tan(f) as the

messy expression
x
tan (sin_1 (5)) ,

but I hope you agree that our actual answer above is preferable.

Before we go on to Type 2, do you see that we’ve been a little careless
here? We had to work out (9 cos?(6))3/? and just claimed that it is 27 cos®(6).
Certainly 93/2 = 27, but is it always true that (cos?(#))3/? = cos?(0)? Actu-
ally, this is only true if cos(d) > 0. The problem is that raising a quantity to
the power 3/2 actually involves taking a positive square root. Indeed, for any
positive number A, we have A%/2 = (AY/2)3 = (v/A)?. So we should really
have written

(cos2(0))%/% = (1/cos2(0))® = |cos®(0)].
Luckily, the absolute value signs turn out to be unnecessary for Type 1 and

also for Type 2 below (but not for Type 3), so we were right all along. This
point will be discussed in gory detail in Section 19.3.6 below.

19.3.2 Type 2. vVa? + a?

If an integral involves an odd power of v/z2 + a2, the correct substitution is
x = atan(f). This works because

22 +a® = a*tan*(0) + a® = a*(tan*(A) + 1) = a®sec?(6).
Also, we'll need to know that dx = asec?(0)df. Since tan(d) = z/a, the

triangle now looks like this:
2
o
X
I
x
a

0
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And now we're ready for an example:

/(:c2 +15)7%/2 d.

Here the substitution is z = v/15tan(f). We have dz = v/15sec?(6) df, and
we also note that 22 +15 = 15 tan?(0)+ 15 = 15sec?(#). The integral becomes

/ (15 sec2(9))_5/2 V15sec? () df = %;Z /(sec(@))*5 sec?(6) do

= (15)*2/cos3(9) de.
(Once again, we have done something dubious: we replaced (15sec?(6))~>/2
by 1575/2 sec™°(#), completely neglecting to use absolute value signs. If you
like, check out Section 19.3.6 below to see why this is OK.) We still need to
find 1572 [ cos®(6) dfl. Let’s use the techniques from Section 19.2.1 above. We
notice that the integrand is an odd power of cos(f), so we grab it, pull out
one power of cos(f), and then substitute for sin(6):

(15)72 /6083(9) df = (15) 2 / (1 —sin®(0)) cos(6) do

= (15)72 <sm(9) - Slrﬁ%) +C.

(T omitted the details of the substitution here—make sure you can fill them in.)
Now, back to a-land. Since tan(8) = 2/+/15, the following triangle applies:

\v‘)
J(S:L/X
xT

V15

From this triangle, you can simply read off the fact that sin(6) = x/vx? + 15,
which means that

/(x2 +15)7%/2 dx = (15) 2 (sin(@) - sinZ(@)) +C

_ 1 T _ 3 ‘C
225 \ /22 £ 15 3(z2 + 15)3/2 '
(Can you see why sin®(0) = 2%/(z% + 15)3/2? Just rewrite sin(f) in terms of

x as /(2% 4 15)1/2))

19033 Type 3 Va2 —a?

Finally, how about integrals involving an odd power of vz2 — a2? Now the
correct substitution is z = asec(f), since

1 — a® = a*sec?(0) — a® = a*(sec?(0) — 1) = a® tan*(9),
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and you can easily take square roots. To make the substitution, we’ll also
need the fact that dz = asec(d)tan(d)df. Since sec(f) = z/a, the triangle
looks like this:

x2 —qa?

For example, to find
/ dz
23y/22 =4
set x = 2sec(f), so dz = 2sec() tan(#) df and 22 —4 = 4tan?(#). The integral
becomes
/ 2sec(f) tan(d) J0 — 2sec(f) tan(6)
(2sec(6))3+/4 tan>(0) 8sec3(f) x 2tan(h)

1 1 1 2

Actually, this time it’s wrong to replace /4 tan®(#) by 2tan(6); this is only
correct if x > 0 in the original integral, as we’ll see in Section 19.3.6 below. So
let’s make that assumption. Now we need to find % [ cos?(6) df. The power of
cosine is even, so we have to use the double-angle formula from Section 19.2.1
above:

1 1 6 sin(26)

g/COSQ(Q)dQZ —/%(1+COS(29))d9: — +

8 16 32 +C.

OK, we just have to get back to z-land. This is a little tricky, even using the
appropriate triangle:

xT

The problem is that we need to know what sin(26) is. To do this, we use the
identity
sin(260) = 2sin(6) cos(6).

Then we can use the above triangle to see that sin(f) = +xz2 —4/x and
cos(f) = 2/x, substitute everything in, and get

71(:1:) 1 2.\/m.

3) T3

32 T

1
— sec

/ dzr B
w3vVaZ—4 16
2 —4

1 /(7
- — A e e)
16 ¢ (2) Tt T

Z+cC
x
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Remember, this only applies when = > 0. We’ll revisit this example in Sec-
tion 19.3.6 to see how to take care of the case when z < 0.

19.3.4 Completing the square and trig substitutions

Now, one other important point before we summarize the situation. From
time to time, you might want to solve an integral involving an odd power
of vV+x? + ax +b. That is, you now have a linear term ax to complicate
matters. The technique is simple: complete the square first and substitute
to get it into one of the three types that we’ve investigated. For example, to
evaluate

/(:102 — 4z +19)7%/% da,

first complete the square (see Section 1.6 of Chapter 1 for a reminder of how
to do this):

2 —dr +19= (2 — 4z +4) —4+19 = (z — 2)* + 15.
So the integral we want is actually

/((z —2)24+15)752 da.

Now let t = x — 2, so dt = dx, and in t-land the integral becomes

/(t2 +15)7%/2 dt,

which we have already done earlier in Section 19.3.2! The answer was (replac-
ing the old z by )

Sy (R T — e
225 \Vi2+15  3(t> 4+ 15)3/2 ’

so replacing t now by x — 2, we see that

_ 1 x—2 (r —2)3
P —dw4+19) P de = — - c
/(x ERE > W e T Fo PR T )

The moral of the story, both here and when using partial fractions, is that
a quadratic with a linear term can be made into a quadratic without one by
completing the square and substituting.

19.3.5 Summary of trig substitutions

To summarize the three main types we’ve looked at, here’s a table that shows
the appropriate substitutions and triangles for each type:
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Type 1: /a2 — 22 Type 2: v/ 22 + a2 Type 3: V22 — a2
Set z = asin(f) Set x = atan(f) Set & = asec(f)
dx = acos(0) d dx = asec?() df dx = asec(f) tan(0) dd
a? — 2% = a? cos?(0) 2?2 + a® = a%sec?(0) 2?2 — a? = a% tan?(0)
2
7 x ¢
’ x \{ x ’ 2?2 —a?
0 0 0
a? — 22 a a

The next section discusses the technical point about when (and why) you can
drop the absolute value signs when you take square roots of quantities like
a? cos?(6) or a® tan?(#). It’s the sort of thing that you may want to skim over

first, then come back to later if you have time.

19.3.6 Technicalities of square roots and frig substitutions

You have been warned: this section gets a little messy. Still with me? Good.
Now, think back to Type 1 above. We simplified 4/a cos?(0) down to a cos(f),
completely ignoring the need to use absolute values around the cos(6). Actu-
ally, when we write = = asin(f), we really mean that § = sin™*(z/a).

So where is 7 Well, from Section 10.2.1 in Chapter 10, we know that
the range of sin™! is [—7/2,7/2]; this means that 6 is in the first or fourth
quadrant, so cos(f) is always nonnegative. We don’t need any absolute values!

The same goes for Type 2. In that case, we'd really like to simplify

a?sec?(f) as asec(f). Can we do this without using absolute value signs?
We have 2 = atan(f), so = tan~'(z/a). The range of tan~! is (—m/2,7/2),
so 6 is once again in the first or fourth quadrant. This means that sec(f) is
always positive, so again, we don’t need absolute values.

Everything goes wrong in Type 3, unfortunately. Here we need to deal
with y/a2tan®(#), but this isn’t always equal to atan(f). You see, since
x = asec(d), we have § = sec™1(x/a). If you look back at Section 10.2.4 in
Chapter 10, you’ll see that the range of sec™! is the interval [0, 7], except for
the point 7/2. So 6 is in the first or second quadrant, and tan(f) could be
positive or negative. At least it has the same sign as = does, as you can see
by looking at the graph of y = sec™!(x).

So, it’s correct to write \/a? tan?(f) = atan() when z > 0. On the other
hand, if x < 0 then you have to write —atan(f) instead. In that case, the
triangle actually looks like this:

xT

2 _ g2

a

I agree that it’s freaky that this triangle has two negative sides (z and
—vax? —a?), but it works as a neat memory device, since all the signs of
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the trig functions are correct. In our example

/ dx

3vx?2 —4

from Section 19.3.3 above, we saw that the integral works out to be
1 /T x2—4
—sec” | = —— 4
16°°° (2) T T

when & > 0. (Actually, if z > 0, then x has to be greater than 2, or else the
V2 — 4 factor in the denominator really screws up the situation.) Now let’s
redo the problem for the case when = < 0. We still substitute = = 2sec(6),

but now we must replace /4 tan?(#) by —2tan(f). The only difference from
before is the minus sign:

/ dz B / 2 sec(f) tan(d)
3V —4 (2sec())3 /4 tan?(0)
B 2sec(f) tan(6)
N / 8sec3(6) x (—2tan(h))

1 5 60 2sin(0) cos(f)
= 8/COS (0)do = 16 39 +C.

Migrating back to z-land, we have to use a modified triangle:

T

So in fact sin(f) = —va? —4/x and cos(d) = 2/x. Notice that sin(f) is
actually greater than 0, since x < 0. Anyway, substituting back into the
above integral, we see that

/ dx 1 -1 (
—— = ——secC
vz —4 16 2
Va2 —4

1 /(7
ST (2) T T
So, that’s the answer when z < 0. It’s almost the same as the previous
answer, but the inverse secant term needs a minus sign out front. Also, the
constant C' is potentially different from the other C' which arises when = > 0.
Why? Because we are looking for a function whose derivative is 1/23v/22 — 4,
which itself has domain (—oo0, —2) U (2,00). So the antiderivative is also in
two pieces, either of which can be shifted up or down independently of the
other. All in all, the complete answer is

T 1 —Vz2 -4 2
.. VT TR 2.
) 32 T x+

1 Va2 —4
— sec™! (g) —I—%—I—C& when z > 2,
x

dx
/3\/2— ) 1 VaZ 14
TV 4 - ec_l(x)—l—ziz—i—(?g when x < —2.
T
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Here C7 and C5 are potentially different constants. Actually, we’ve already
encountered an integral where two constants should be involved: [ 1/xdz. See
Section 17.7 in Chapter 17 for more details. In practice, problems involving
Type 3 are often phrased (or intended to be phrased) with the condition that
x > 0. This allows one to avoid all the above mess and take square roots
without a care in the world. Just beware: if z < 0, then you need to be a lot
more careful.. ..

Overview of Technigues of Infegratfion

We've now built up quite a toolkit of techniques of integration. Now the
question is, given an integral, which technique do you use? Sometimes it’s
not easy, and you may have to try several different methods until you hit upon
the right one. Sometimes you even need to combine the methods. Here are
some general guidelines to help you out:

e If an “obvious” substitution comes to mind, try it. For example, if one
factor of the integrand is the derivative of another piece of the integrand,
try substituting ¢ for that other piece.

e If something like V/ax + b appears in the integrand, try substituting
t = Vax + b, as described in Section 18.1.2 of the previous chapter.

e To integrate a rational function (that is, a quotient of polynomials),
see if the top is a multiple of the derivative of the bottom. If so, you
can just substitute ¢ = denominator. Otherwise, use partial fractions
(Section 18.3 of the previous chapter).

e After checking that no obvious substitution looks as if it will work,
use the techniques from the beginning of this chapter to find integrals
involving;:

— functions containing \/1 + cos(z) or \/1 — cos(z): in this case, use
the double-angle formula;

— functions involving one of 1 — sin?(x), 1 — cos?(z), 1 + tan?(x),
sec?(z) — 1, esc?(z) — 1, or 1+ cot?(z): in this case, use one of the
Pythagorean identities sin?(z) 4 cos?(x) = 1, tan?(z) + 1 = sec?(x),
or 1+ cot?(x) = csc?(z);

— functions with 1 & sin(z) (or similar) in the denominator: in this
case, multiply and divide by the conjugate expression and try to use
the Pythagorean identities;

— functions containing products like cos(ma) cos(nz), sin(ma) sin(nz),
or sin(ma) cos(nx): in this case, use the products-to-sums identities;
or

— powers of trig functions: you’ll just have to learn the individual
techniques in Sections 19.2.1 through 19.2.5 above.

e If the integrand involves vx2? — a2 or any odd power of this (for example
(x2 — a?)3/2, (2? — a?)®/?, and so on), or V22 + a2 or Va2 — z2 or an
odd power of any of these last two, then use a trig substitution (after
checking that there’s no obvious substitution). If the quadratic includes
a linear term, complete the square first. See Section 19.3 above for more
details.
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e If the integrand is a product and no obvious substitution comes to mind,
try integration by parts. (See Section 18.2 of the previous chapter for
more details.)

e If no substitution appeals, then a good rule of thumb is that functions
involving a power of In(z) or an inverse trig function should be integrated
by parts. In that case, let u be the power of In(z) or the inverse trig
function as appropriate. For example, how would you find

/ln(l + 22) da?

2

First check that no substitution appeals; since nothing springs to mind,
think of integration by parts. Wait a second, it’s not a product! Wait
another second, quotients are products too! Just rewrite the integral as

1
/ln(l + %) x = dx,

then integrate by parts with u = In(1 + 2?) and dv = (1/2%)dz. Try it
now—you should get the answer
In(1 2
_bd+a7) +2tan"!(z) + C.
x

Even if you memorize all the above techniques, you will be lost in a sea of
confusion unless you practice a whole load of problems. Make sure that at
some stage you tackle a mixed bag of integrals so that you can be confident
of which method to use on which integral. Then you will truly be a bad-ass
integrator.



CHAPTER 20

Improper Infegrals: Basic Concepts

20.1

This is a difficult topic, so I'm devoting two chapters to it. This chapter
serves as an introduction to improper integrals. The next chapter gets into
the details of how to solve problems involving improper integrals. If you are
reading this chapter for the first time, you should probably take care to try
to understand all the points in it. On the other hand, if you are reviewing
for a test, most likely you’ll want to skim over the chapter, noting the boxed
formulas and the sections marked as important, and concentrate on the next
chapter. Here’s what we’ll actually look at in this chapter:

e the definition of improper integrals, convergence, and divergence;
e improper integrals over unbounded regions; and

e the theoretical basis for the comparison test, the limit comparison test,
the p-test, and the absolute convergence test.

We'll revisit all four of these tests in the next chapter and see many examples
of how to apply them.

Convergence and Divergence

What is an improper integral, anyway? In Chapter 16, we saw that the

integral
b
[ f@ds

certainly makes sense if f is a bounded function on [a,b] which is continuous
except at a finite number of places. If f has infinitely many discontinuities,
the integral might still make sense, or it might be totally screwed up (see
Section 16.7 of Chapter 16 for an example). What if f isn’t bounded? This
means that the values of f(z) manage to get really large (positively or neg-
atively or both) while x is in the interval [a,b]. This sort of thing typically
happens when f has a vertical asymptote somewhere in this interval: the
function blows up there and can’t be bounded. This causes the above integral
to be improper.
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There’s a different type of unboundedness that can occur even if f is
bounded. The interval [a,b] can actually be infinite—something like [0, 00),
[-7,00), (—0,3] or even (—o0,00). This also makes the above integral im-
proper.

So, the integral f: f(x)dx is improper if any of the following conditions
apply:

1. fisn’t bounded in the closed interval [a, b];
2. b=o0; or

3. a = —o0.

For now, let’s concentrate on what happens if the first of these conditions
fails; we’ll return to the other two conditions in Section 20.2 below. As I said,
the typical way that a function fails to be unbounded is if it has a vertical
asymptote somewhere, although there can be more exotic types of behavior.
(An example is f(z) = Lsin(2), which oscillates really wildly as z approaches
0.) If f(z) is unbounded for x near some number ¢, we’ll say that f has a
blow-up point at x = c¢. Again, in most situations, this is the same thing as a
vertical asymptote.

So let’s look at the simple case of when our function f has a vertical
asymptote at © = a. The situation looks something like this:

I’d be lying through my teeth if I claimed that f: f(x) dz is the area (in square
units) of the shaded region. The problem is that the region actually extends
up the page, then past the top of the page, going on and on forever, as the
arrow is trying to indicate. The region does get skinnier as it goes up, though,
because of the vertical asymptote.

Since the region never stops going up, surely its area should be infinite,
right? Not necessarily. A mathematical miracle can occur if the region is
skinny enough, and the area can actually be finite. To see how a region can
be unbounded yet have a finite area, we’ll use limits once again. Here’s the
idea: let € be a small positive number; then you can integrate f over the
region [a+ ¢, b], since f is bounded there. You’ll get some nice finite number.
Now, replay the situation but with an even smaller €. You get a new finite
number. The situation now looks something like this:
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2011

a a+e b at b

a—+¢€

small even smaller e

The smaller € is, the closer our (bounded) approximating region is to the
actual unbounded region. This suggests that we should continue the process
with smaller and smaller €, and see if the numbers we get have a limit L as
e — 0T. If so, then we interpret L square units to be the value of the area
we’re looking for. In that case, we say that the integral f: f(z) dx converges
to L. If there’s no limit, then we can’t find a meaningful answer for the area,
so we give up and say that the above integral diverges. Note that if the
integral isn’t improper, it automatically converges! In practice, this
means that if your function is bounded and the region of integration [a, ]
is bounded, then there’s no issue: the integral converges since it’s not even
improper. It’s just some nice finite number, no sweat.

Now, here’s a summary of the situation when you have a blow-up point at
T =a:

if f(z) is unbounded for x near a only, then set

/ f(z)dz = lim f(z)dz

e—=0% Jote

provided that the limit exists. If it does, then the integral converges; if not,
the integral diverges. Just like any limit, the above one may fail to exist
because it might be oo or —oo, or things might oscillate around too much as
g tends to 0.

This brings us to an important point. When we look at an improper
integral, the most important thing we need to find out is whether it converges
or diverges. It’s much less important to know what the integral converges to
(assuming it converges). In practice, you can use computational techniques
to estimate the value, but only if you know that the integral converges. If the
integral diverges, you can get some whacked-out results if you try to use a
computer to approximate your integral. Computers don’t really understand
infinities or crazy oscillations (yet!).

Some examples of improper integrals

Consider the integrals

11 1
/—dx and /—dm
0oz 0o VT
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These are both improper because their integrands have vertical asymptotes
at £ = 0. So we’ll use the formula in the box above. In the first case, we have

= lim (In(1) —In(g)) = 0.

e—0+t

1 1
1 1
/ —dz = lim —dz = lim In|z|
0

x e—=0t J. @ e—0*t

(We have used the facts that In(1) = 0 and that In(e) — —oo as e — 01.)
Since we got oo, the improper integral fol 1/x dz must diverge. How about
the other integral? Using the formula again, we have

1 ! !

1
. . 1 . . 1/2 - . -
[ gate =t || o= i 27| = i 2v1-208) =2

We got a nice finite number, so the integral fol 1/\/x dx converges. As it
happens, we’ve shown that the integral converges to 2, but as I said at the
end of the last section, we don’t care that much. Our main focus is to decide
whether an improper integral converges, without worrying what it actually
converges to.

What'’s really going on here? Why should the improper integral fol 1/zdz

diverge but fol 1/y/x dx converge? After all, when you think about it, the
graphs of y = 1/z and y = 1/+/x look roughly the same—something like this:

_-——

Of course, the integrands are not the same. Indeed, 1/z is greater than 1//x
when 0 < z < 1. Geometrically, the graph of y = 1/4/z is actually a little
closer to the y-axis than y = 1/x is. It turns out that y = 1/4/x is close enough
to the y-axis to make the corresponding integral converge; while y = 1/x isn’t
close enough to the y-axis and its integral diverges. Unfortunately, there’s no
surefire way to classify all