Technical Writer Progress report
Writer - Rachitt Shah

Summary -
This report is a summary of the objectives identified by the writer upon
communication with the HPX team members. Broadly, this document has 2
core competencies -

1. Change the APl documentation.

2. Look for other platforms for documentation, as a start.

Changing the APl documentation

As per the needs of the project, the APIs have been identified as a structure needing change.
As per the call with Nikunj on Monday. We had the following agreements -

Parameters:
args The last element of this parameter pack is the function (object) to invoke, while the remaining elements of the parameter pack are instances of either induction or reduction objects. The function (or function object) which will be invoked
for each of the elements in the sequence specified by [first, last) should expose a signature equivalent to
® <ignored> pred(I const& a, ...);

The signature does not need to have consts. It will receive the current value of the iteration variable and ene argument for each of the induction or reduction objects passed to the algorithms, representing their current values.

first Refersto the beginning of the sequence of elements the algorithm will be applied to
policy The execution policy to use for the scheduling of the iterations
size Refers to the number of items the algorithm will be applied to.

Template

Parameters: Args A parameter pack, its last element s a function object to be invoked for each iteration, the others have to be either conforming to the induction or reduction concept.
ExPolicy The type of the execution policy to use (deduced). It describes the manner in which the execution of the algorithm may be parallelized and the manner in which it applies user-provided function objects.
H The type of the iteration variable. This could be an (input) iterator type or an integral type
Size The type of a non-negative integral value specifying the number of items to iterate over.

Returns: The for_loop_n algorithm returns a hox..future<void> if the execution policy is of type sequenced_task_policy or parallel_task_policy and retums void otherwise.

Function template for_loop_n

hpx::parallelv2:for_loop_n
Synopsis
// In header: <hpx/parallel/algorithms/for_loop.hpp>

template<typename ExPolicy, typename I, typename Size, typename... Args>
unspecified for_loop_n(ExPolicy & policy, I first, size size,
&... args);

Description
The for_loop_n implements loop functionality over a range specified by integral or iterator bounds. For the iterator case, these algorithms resemble for_each from the Parallelism TS, but leave to the programmer when and if to dereference the iterator.

Requires: / shall be an integral type or meet the: requirements of an input iterator type. The args parameter pack shall have at least ane element, comprising objects returned by invocations of reduction and/or induction function templates followed by exactly one element invocable
element-access function, £. fshall meet the requirements of MoveGonstructible.

Effects: Applies fto each element in the input sequence, with additional arguments corresponding to the reductions and inductions in the args parameter pack. The length of the input sequence is last - first.

The first element in the input sequence is specified by first. Each subsequent element is generated by incrementing the previous element

Note
As described in the C++ standard, arithmetic on non-random-access iterators is performed using advance and distance.

The order of the elements o the input sequence is important for determining ordinal position of an application of £, even though the applications themselves may be unordered

Along with an element from the input sequence, for each member of the args parameter pack excluding f, an additional argument is passed to each application of f s follows:

If the pack member is an object retured by a call to a reduction function listed in section, then the additional argument s a reference to a view of that reduction object. If the pack member is an object returned by a call to induction, then the additional argument is the induction value
for that induction object corresponding to the position of the application of fin the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

As per the old documentation, the API docs are well structured. The content for both the
documentation is similar, however, in the newer documentation, the docs for parameters, APls,
description and synopsis is scattered all across the page in a less readable format.

Solution - changing our Sphinx theme is a good way to make it more readable, or edit our
preexisting themes to create changes as per needed.

Proposed themes -
1. https://sphinx-themes.or mple-sit hinx-theme-

2. https://sphinx-themes.org/sample-sites/sphinx-pdj-theme/

Assumed changes would need to be made to the docs folder. However, | wasn'’t able to find a
config.py file which usually has the docs for templates.

Other possible platforms to use for documentation -

As our core documentation doesn’t need changes, | believe it's good to have the following

sections on docusaurous -_https://codesandbox.io/s/docusaurus , https://docusaurus.io/ ,
Example - https://docsearch.algolia.com/

https://sphinx-themes.org/sample-sites/sphinx-theme-pd/
https://sphinx-themes.org/sample-sites/sphinx-pdj-theme/
https://codesandbox.io/s/docusaurus
https://docusaurus.io/
https://docsearch.algolia.com/

Pros - skilled needed are really less, and can create beautiful modern websites with only the
knowledge of basic HTML.
Cons - our APl documentations is not covered.

