
An end-to-end encrypted
ecosystem for open decentralised

communication
matthew@matrix.org

http://www.matrix.org

A non-profit open
standard for

defragmenting
communication

To create a global
encrypted communication
meta-network that bridges

all the existing silos &
liberates our

communication to be
controlled only by us.

4

PSTN

Skype

…

Hangouts

Github

5

PSTN

Skype

…

Hangouts

Github

No single party own your
conversations – they are

shared over all participants.

6

Matrix is for:
Group Chat (and 1:1)
WebRTC Signalling
Bridging Comms Silos
Internet of Things Data

…and anything else which needs to
pubsub persistent data to the world.

7

Why are you re-inventing
XMPP!?!?

8

WE ARE
NOT.

9

• Completely different philosophy & architecture:
– A single, monolithic, consistent, spec.
– Different primitives:

• Syncing decentralised conversation history
(not message passing / pubsub)

• Group conversation as a first class citizen
• E2E crypto as a first class citizen (beta)

– HTTP+JSON as the baseline API (but you can use
other transports too!)

– Core focus on defragmentation and bridging (hence
the name “matrix”).

10

Why not XMPP?

Matrix Architecture

Clients

Home
Servers

Identity
Servers

Application
Servers

The Matrix Ecosystem

The	Matrix	Specification	(Client/Server	API)

client-side
server-side

Other	Servers	and	
Services

Synapse
(Reference	Matrix	

Server)

Matrix	Application	
Services	and	Bridges

Other	
Clients

Matrix	
iOS

Console

MatrixKit (iOS)

matrix-ios-sdk

Matrix	
Web	

Console

matrix-
angular-
sdk

matrix-js-sdk

Android	
Console

matrix-android-sdk

matrix-
react-
sdk

What do you get in the spec?
• Decentralised conversation history

(timeline and key-value stores)
• Group Messaging
• End-to-end Encryption (new!)
• VoIP signalling for WebRTC
• Server-side push notification rules
• Server-side search
• Read receipts, Typing Notifs, Presence
• Synchronised read state and unread counts
• Decentralised content repository
• “Account data” for users per room

13

How does it work?
https://matrix.org/#about

14

Clients
• >30 matrix clients (that we know about)

– Ranging from text UIs (Weechat, Emacs(!))
– …to desktop apps (Quaternion, NaChat, Pidgin)
– …to glossy web and mobile clients (Riot)
– …to protocol proxies (matrix-ircd)

• Over 15 client-side SDKs:
– Official: JS, React, iOS, Android
– Semi-official: Python, Perl5, Go
– Community: Erlang, Ruby, Lisp, Elixir, Haskell, Rust…

15

Home servers
• Synapse: the original reference Matrix home

server implementation.
– 50K lines of Python/Twisted.
– Some perf and maintainability challenges…

• Ruma: Community project Rust implementation…
early but promising!

• Dendron: skeleton Golang reference impl
– Wraps synapses, incrementally migrating endpoints

• BulletTime (Go), Pallium (Go), jSynapse (Java)
experiments from the community

16

What does it look like?

https://riot.im

17

The client-server API
To send a message:

curl -XPOST -d '{"msgtype":"m.text", "body":"hello"}'
"https://alice.com:8448/_matrix/client/api/v1/rooms/ROOM_
ID/send/m.room.message?access_token=ACCESS_TOKEN"

{
"event_id": "YUwRidLecu"

}

18

The client-server API
To set up a WebRTC call:

curl -XPOST –d '{\
"version": 0, \
"call_id": "12345”, \
"offer": {
"type" : "offer”,
"sdp" : "v=0\r\no=- 658458 2 IN IP4 127.0.0.1…"

}
}'
"https://alice.com:8448/_matrix/client/api/v1/rooms/ROOM_
ID/send/m.call.invite?access_token=ACCESS_TOKEN"

{ "event_id": "ZruiCZBu” } 19

Basic 1:1 VoIP Matrix Signalling

Caller Callee
m.call.invite ----------->
m.call.candidate -------->
[more candidates events]

User answers call
<------ m.call.answer

[media flows]
<------ m.call.hangup

20

21

Bridges and Integrations

Existing App

Application
Service

3rd party
Server

3rd party
Clients

Latest Bridges!
• Official ones:
– IRC
– Slack
– Gitter
– Rocket.Chat
–MatterMost
– FreeSWITCH
– Asterisk (Respoke)
– libpurple

• Community ones
– Twitter
– Telegram
– Hangouts
– Slack webhooks
– Gitter (‘sidecar’)
– ~8 IRC ones…
– ~4 XMPP ones...

Typical Bridging Stack

23

matrix-
appservice-

irc

matrix-appservice-bridge

matrix-appservice-node

matrix-js-sdk

Node	JS

matrix-
appservice-

slack

matrix-
appservice-
purple …

24

Matrix to IOT…

Janus WebRTC Gateway
(from MeetEcho)

Parrot Bebop
Drone

https://www.youtube.com/watch?v=D7jZSYkXqt4&t=2649

Matrix and VR…

Community Status
• Started out in Sept 2014
• Currently in very late beta
• ~450K user accounts on the Matrix.org

homeserver (many of these are bridged)
• ~400K messages per day
• ~50K rooms that Matrix.org participates in
• ~1000 federated servers
• ~50 companies building on Matrix

26

27

28

End to End Crypto with Olm

29

https://matrix.org/git/olm

End to End Encryption
• 2 years in the making!
• Based on Open Whisper Systems’ “Double

Ratchet” alg as used in Signal etc.
• Audited by NCC Group
• Started final roll-out in Sept on Web
• Launching next week on iOS & Android (on

develop branches currently)
• Supports per-target-device encryption
• Supports flexible history privacy per-room.

30

Olm
• Apache License C++11 implementation of

Trevor Perrin / Moxie Marlinspike’s Double
Ratchet, exposing a C API.

• Supports encrypted asynchronous 1:1
communication.

• “Megolm” layer adds group
communication too.

• 130KB x86-64 .so, or 208KB of asm.js
31

32

Olm	+	Megolm C	API

Account
• Keys

Session
• Initial	Key	Exchange

Ratchet

• Encrypt
• Decrypt

Crypto

• Curve25519
• AES
• SHA256

Megolm Group	
Ratchet

Alice Bob
Alice and Bob both generate identity (I) &
ephemeral (E) elliptic curve key pairs

Initial Shared Secret (ISS) =
ECDH(Ea, Ib) +
ECDH(Ia, Eb) +
ECDH(Ea, Eb)

Discard Ea
Derive chain key from ISS (HMAC)
Derive message key (K0) from chain key
(HMAC)
Derive new chain key ß hash ratchet
M0 = Message plaintext
C0 = Authenticated Encryption of (M0, K0)
Ra0 = generate random ratchet key pair
Ja0 = incremental counter for each hash
ratchet advancement

Ia, Ea, Eb, Ra0, Ja0, C0

A Double ratchet.
Kinda sorta.

Alice Bob
Compute same Initial Shared Secret =

ECDH(Ea, Ib) +
ECDH(Ia, Eb) +
ECDH(Ea, Eb)

Compute same K0
M0 = Authenticated decryption of (C0, K0)

To respond, B starts new ratchet chain:
Rb1 = generate random ratchet key pair
New Initial Shared Secret =

ECDH(Ra0, Rb1) ß ECDH Ratchet

C0 = Authenticated Encryption of (M, K0)
Ra0 = generate random ratchet key
Ja0 = incremental counter for each hash
ratchet advancement

Rb1, Jb1, C1

A Double ratchet.
Kinda sorta.

35

Alice

Sending | Receiving

MK CK RK CK MK
-- -- -- -- --

ECDH(A0,B0)
|
|

ECDH(A1,B0) +
/|

/ |
/ + ECDH(A1,B1)

CK-A1-B0 |\
| | \

MK-0 ----+ | \
| | CK-A1-B1

MK-1 ----+ | |
| | +---- MK-0

MK-2 ----+ | |
| +---- MK-1

ECDH(A2,B1) +
/|

/ |
/ |

CK-A2-B1 |
| + ECDH(A2,B2)

MK-0 ----+ \
\
\
CK-A2-B2

|
+---- MK-0
|
+---- MK-1

Group chat
• Adds a 3rd type of ratchet: “Megolm”,

used to encrypt group messages.

• Establish 'normal' 1:1 ratchets between all
participants in order to exchange the
initial secret for the group ratchet.

• All receivers share the same group ratchet
state to decrypt the room.

36

Flexible privacy with Olm
• Users can configure rooms to have:
– No ratchet (i.e. no crypto)
– Full PFS ratchet
– Selective ratchet

• Deliberately re-use ratchet keys to support
paginating partial eras of history.

• Up to participants to trigger the ratchet (e.g. when
a member joins or leaves the room)

– Per-message type ratchets?
37

• More hosted bridges, bots, services etc
• Threading
• Message tagging (e.g. “Like” support)
• Group ACLs
• File tagging and management
• Decentralised identity
• “Fixing spam”

38

Matrix: What’s coming up?

We need help!!

39

• We need people to try running their own
servers and join the federation.

• We need people to run gateways to their
existing services

• We need feedback on the APIs.
• Consider native Matrix support for new

apps
• Follow @matrixdotorg and spread the

word!

40

Thank you!
matthew@matrix.org

http://matrix.org
@matrixdotorg

41

