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Abstract

Networks of ‘‘conscious agents” (CAs) as defined by Hoffman and Prakash (2014) are shown to provide a robust and intuitive rep-
resentation of perceptual and cognitive processes in the context of the Interface Theory of Perception (Hoffman, Singh and Prakash,
2015). The behavior of the simplest CA networks is analyzed exhaustively. The construction of short- and long-term memories and
the implementation of attention, categorization and case-based planning are demonstrated. These results show that robust perception
and cognition can be modelled independently of any ontological assumptions about the world in which an agent is embedded. Any
agent-world interaction can, in particular, also be represented as an agent-agent interaction.
� 2017 Elsevier B.V. All rights reserved.
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1. Introduction

It is a natural and near-universal assumption that the
world objectively has the properties and causal structure
that we perceive it to have; to paraphrase Einstein’s famous
remark (cf. Mermin, 1985), we naturally assume that the
moon is there whether anyone looks at it or not. Both the-
oretical and empirical considerations, however, increas-
ingly indicate that this assumption is not correct.
Beginning with the now-classic work of Aspect, Dalibard,
and Roger (1982), numerous experiments by physicists
have shown that neither photon polarization nor electron
spin obey local causal constraints; within the past year,
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all recognized loopholes in previous experiments along
these lines have been closed (Giustina et al., 2015; Shalm
et al., 2015; Hensen et al., 2015). The trajectories followed
by either light (Jacques et al., 2007) or Helium atoms
(Manning, Khakimov, Dall, & Truscott, 2015) through
an experimental apparatus have been shown to depend
on choices made by random-number generators after the
particle has fully completed its transit of the apparatus.
Optical experiments have been performed in which the cau-
sal order of events within the experimental apparatus is
demonstrably indeterminate (Rubino et al., 2016). As both
the positions and momenta of large organic molecules have
now been shown to exhibit quantum superposition
(Eibenberger, Gerlich, Arndt, Mayor, & Txen, 2013),
there is no longer any justification for believing that the
seemingly counter-intuitive behavior observed in these
experiments characterizes only atomic-scale phenomena.

https://doi.org/10.1016/j.cogsys.2017.10.003
mailto:fieldsres@gmail.com
mailto:ddhoff@uci.edu
mailto:cprakash@csusb.edu
mailto:manish@ruccs.rutgers.edu
mailto:manish@ruccs.rutgers.edu
https://doi.org/10.1016/j.cogsys.2017.10.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cogsys.2017.10.003&domain=pdf


C. Fields et al. / Cognitive Systems Research 47 (2018) 186–213 187
These and other results have increasingly led physicists to
conclude that the classical notion of an observer-
independent ‘‘objective” reality comprising spatially-
bounded, time-persistent ‘‘ordinary objects” and
well-defined local causal processes must simply be aban-
doned (e.g. Jennings & Leifer, 2016; Wiseman, 2015).

These results in physics are complemented within per-
ceptual psychology by computational experiments using
evolutionary game theory, which consistently show that
organisms that perceive and act in accord with the true
causal structure of their environments will be out-
competed by organisms that perceive and act only in
accord with arbitrarily-imposed, organism-specific fitness
functions (Mark, Marion, & Hoffman, 2010; reviewed by
Hoffman, Singh, & Prakash, 2015). These results, together
with theorems showing that an organism’s perceptions and
actions can display symmetries that the structure of the
environment does not respect (Hoffman et al., 2015;
Prakash & Hoffman, in preparation) and that organisms
responsive only to fitness will out-complete organisms that
perceive the true structure of the environment in all but a
measure-zero subset of environments (Prakash, Hoffman,
Stephens, Singh, & Fields, in preparation), motivate the
interface theory of perception (ITP), the claim that percep-
tual systems, in general, provide only an organism-specific
‘‘user interface” to the world, not a veridical representation
of its structure (Hoffman et al., 2015; Hoffman, 2016).
According to ITP, the perceived world, with its space-
time structure, objects and causal relations, is a virtual
machine implemented by the coupled dynamics of an
organism and its environment. Like any other virtual
machine, the perceived world is merely an interpretative
or semantic construct; its structure and dynamics bear no
law-like relation to the structure and dynamics of its imple-
mentation (e.g. Cummins, 1977). In software systems, the
absence of any requirement for a law-like relation between
the structure and dynamics of a virtual machine and the
structure and dynamics of its implementation allows hard-
ware and often operating system independence; essentially
all contemporary software systems are implemented by
hierarchies of virtual machines for this reason (e.g.
Goldberg, 1974; Smith & Nair, 2005; Tanenbaum, 1976).
The ontological neutrality with which ITP regards the true
structure of the environment is, therefore, analogous to the
ontological neutrality of a software application that can
run on any underlying hardware.

The evolutionary game simulations and theorems sup-
porting ITP directly challenge the widely-held belief that
perception, and particularly human perception is veridical,
i.e. that it reveals the observer-independent objects, proper-
ties and causal structure of the world. While this belief has
been challenged before in the literature (e.g. by
Koenderink, 2014), it remains the dominant view by far
among perceptual scientists. Marr (1982), for example,
held that humans ‘‘very definitely do compute explicit
properties of the real visible surfaces out there, and one
interesting aspect of the evolution of visual systems is the
gradual movement toward the difficult task of representing
progressively more objective aspects of the visual world”
(p. 340). Palmer (1999) similarly states, ‘‘vision is useful
precisely because it is so accurate . . .we have what is called
veridical perception . . .perception that is consistent with
the actual state of affairs in the environment” (p. 6).
Geisler and Diehl (2003) claim that ‘‘much of human per-
ception is veridical under natural conditions” (p. 397).
Trivers (2011) agrees that ‘‘our sensory systems are orga-
nized to give us a detailed and accurate view of reality,
exactly as we would expect if truth about the outside world
helps us to navigate it more effectively” (p. xxvi). Pizlo, Li,
Sawada, and Steinman (2014) emphasize that ‘‘veridicality
is an essential characteristic of perception and cognition. It
is absolutely essential. Perception and cognition without

veridicality would be like physics without the conservation

laws.” (p. 227; emphasis in original). The claim of ITP is,
in contrast, that objects, properties and causal structure
as normally conceived are observer-dependent representa-

tions that, like virtual-machine states in general, may bear
no straightforward or law-like relation to the actual struc-
ture or dynamics of the world. Evidence that specific
aspects of human perception are non-veridical, e.g. the nar-
rowing and flattening of the visual field observed by
Koenderink, van Doorn, and Todd (2009), the distortions
of perspective observed by Pont et al. (2012), or the infer-
ences of three-dimensional shapes from motion patterns
projectively inconsistent with such shapes observed by
He, Feldman, and Singh (2015) provide prima facie evi-
dence for ITP.

The implication of either ITP or quantum theory that
the objects, properties and causal relations that organisms
perceive do not objectively exist as such raises an obvious
challenge for models of perception as an information-
transfer process: the naı̈ve-realist assumption that percep-
tions of an object, property or causal process X are, in
ordinary circumstances, results of causal interactions with
X cannot be sustained. Hoffman and Prakash (2014) pro-
posed to meet this challenge by developing a minimal,
implementation-independent formal framework for mod-
elling perception and action analogous to Turing’s (1936)
formal model of computation. This ‘‘conscious agent”
(CA) framework posits entities or systems aware of their
environments and acting in accordance with that awareness
as its fundamental ontological assumption. The CA frame-
work is a minimal refinement of previous formal models of
perception and perception-action cycles (Bennett,
Hoffman, & Prakash, 1989). Following Turing’s lead, the
CA framework is intended not as a scientific or even philo-
sophical theory of conscious awareness, but rather as a
minimal, universally-applicable formal model of conscious
perception and action. The universality claim made by
Hoffman and Prakash (2014) is analogous to the Church-
Turing thesis of universality for the Turing machine.
Hoffman and Prakash (2014) showed that CAs may be
combined to form larger, more complex CAs and that
the CA framework is Turing-equivalent and therefore



Fig. 1. Representation of a CA as a labelled directed graph. W ;X and G

are measurable sets, P ;D, and A are Markovian kernels, and t is an integer
parameter.
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universal as a representation of computation; this result is
significantly elaborated upon in what follows.

The present paper extends the work of Hoffman and
Prakash (2014) by showing that the CA framework pro-
vides a robust and intuitive representation of perceptual
and cognitive processes in the context of ITP. Anticipation,
expectations and generative models of the environment, in
particular, emerge naturally in all but the simplest CA net-
works, providing support for the claimed universality of
the CA framework as a model of agent - world interac-
tions. We first define CAs and distinguish the extrinsic

(external or ‘‘3rd person”) perspective of a theorist describ-
ing a CA or network of CAs from the intrinsic (internal or
‘‘1st person”) perspective of a particular CA. Consistency
between these perspectives is required by ITP; a CA can-
not, in particular, be described as differentially responding
to structure in its environment that ITP forbids it from
detecting. Such consistency can be achieved by the ‘‘con-
scious realism” assumption (Hoffman & Prakash, 2014)
that the world in which CAs are embedded is composed
entirely of CAs. We show that the CA framework allows
the incorporation of Bayesian inference from ‘‘images” to
‘‘scene interpretations” as described by Hoffman and
Singh (2012) and show that a CA can be regarded as incor-
porating a ‘‘Markov blanket” as employed by Friston
(2013) when this is done. We analyze the behavior of the
simplest networks of CAs in detail from the extrinsic per-
spective, and discuss the formal structure and construction
of larger, more complex networks. We show that a concept
of ‘‘fitness” for CAs emerges naturally within the formal-
ism, and that this concept corresponds to concepts of ‘‘cen-
trality” already defined within social-network theory. We
then consider the fundamental question posed by ITP: that
of how non-veridical perception can be useful. We show
that CAs can be constructed that implement short- and
long-term memory, categorization, active inference, goal-
directed attention, and case-based planning. Such complex
CAs represent their world to themselves as composed of
‘‘objects” that recur in their experience, and are capable
of rational actions with respect to such objects. This con-
struction shows that specific ontological assumptions
about the world in which a cognitive agent is embedded,
including the imposition of a priori fitness functions, are
unnecessary for the theoretical modelling of useful cogni-
tion. The non-veridicality of perception implied by ITP
need not, therefore, be regarded as negatively impacting
the behavior of an intelligent system in a complex, chang-
ing environment.

2. Conscious agents: definition and interpretation

2.1. Definition of a CA

As noted, the CA framework is motivated by the
hypothesis that agents of interest to psychology are aware

of the environments in which they act, even if this
awareness is rudimentary by typical human standards
(Hoffman & Prakash, 2014). Our goal here is to develop
a minimal and fully-general formal model of perception,
decision and action that is applicable to any agent satisfy-
ing this hypothesis. Minimality and generality can be
achieved using a formalism based on measurable sets and
Markovian kernels as described below. This formalism
allows us to explore the dynamics of multi-agent interac-
tions (Section 3) and the internal structures and dynamics,
particularly of memory and attention systems, that enable
complex cognition (Section 4) constructively. We accord-
ingly impose no a priori assumptions regarding behavioral
reportability or other criteria for inferring, from the out-
side, that an agent is conscious per se or is aware of any
particular stimulus; nor do we impose any a priori distinc-
tion between conscious and unconscious states. Consider-
ing results such as those reviewed by Boly, Sanders,
Mashour, and Laureys (2013), we indeed regard such crite-
ria and distinctions, at least as applied to living humans, as
conceptually untrustworthy and possibly incoherent. We
thus treat awareness or consciousness as fundamental
and irreducible properties of agents, and ask, setting aside
more philosophical concerns (but see Hoffman & Prakash,
2014 for extensive discussion), what structural and
dynamic properties such agents can be expected to have.

We begin by defining the fundamental mathematical
notions on which the CA framework is based; we then
interpret these notions in terms of perception, decision
and action.

Definition 1. Let hB;Bi and hC; Ci be measurable spaces.
Equip the unit interval ½0; 1� with its Borel r-algebra. We
say that a function K : B� C ! ½0; 1� is a Markovian kernel

from B to C if:

(i) For each measurable set E 2 C, the function
Kð�;EÞ : B ! ½0; 1� enacted by b # Kðb;EÞ is a mea-
surable function.

(ii) For each b 2 B, the function Kðb; �Þ enacted by
F # Kðb; F Þ; F 2 C is a probability measure on C.
In particular, if K is a Markovian kernel from B to C,
then for any measurable D � B, the function enacted by
x# Kðx;DÞ 2 ½0; 1� assigns to each x in B a probability
distribution on C. When the spaces involved are finite,



C. Fields et al. / Cognitive Systems Research 47 (2018) 186–213 189
the Markovian kernel can be represented as a matrix whose
rows sum to unity.

We represent a CA as a labelled directed graph as shown
in Fig. 1. This graph implies the development of a cyclic
process, in which we can think of, e.g. the kernel
D : X � G ! G as follows: for each instantiation g0 of G
in the immediately previous cycle, and the current instanti-
ation of x 2 X ;Dðx; g0; �Þ gives the probability distribution
of the g 2 G instantiated at the next step. The other kernels
A and P are interpreted similarly. Formally,

Definition 2. Let hW ;Wi; hX ;Xi and hG;Gi be measurable
spaces. Let P be a Markovian kernel P : W � X ! X ;D be
a Markovian kernel D : X � G ! G, and A be a Marko-
vian kernel A : G� W ! W . A conscious agent (CA) is a 7-
tuple ½ðX ;XÞ; ðG;GÞ; ðW ;WÞ; P ;D;A; t�, where t is a positive
integer parameter.

Hoffman and Prakash (2014) defined a CA, given the
measurable space hW ;Wi, as a 6-tuple
½ðX ;XÞ; ðG;GÞ; P ;D;A; t� where P : W � X ! [0, 1],
D : X � G ! [0, 1] and A : G�W ! [0, 1] are Markovian
kernels and t is a positive integer parameter. Here we
explicitly include hW ;Wi in the definition of a CA. Follow-
ing Hoffman et al. (2015) and Prakash and Hoffman (in
preparation), we also explicitly allow the P ;D, and A ker-
nels to depend on the elements of their respective target
sets. Informally, for x 2 X and g 2 G, for example, and
any measurable H � G, the function enacted by
ðx; gÞ # Kðx; g;HÞ is real-valued and can be considered to
be the regular conditional probability distribution
ProbðH jx; gÞ under appropriate conditions on the spaces
involved (Parthasarathy, 2005). The difference in represen-
tational power between the more general, target-set depen-
dent kernels specified here and the original, here termed
‘‘forgetful,” kernels of Hoffman and Prakash (2014) is dis-
cussed below.

We interpret elements of W as representing states of the
‘‘world,” making no particular ontological assumption
about the elements or states of this world. We interpret ele-
ments of X and G as representing possible conscious expe-
riences and actions (strictly speaking, they consist of
formal tokens of possible conscious experiences and
actions), respectively. The kernels P ; D and A represent
perception, decision and action operators, where ‘‘percep-
tion” includes any operation that changes the state of X,
‘‘decision” is any operation that changes the state of G

and ‘‘action” is any operation that changes the state of
W. The set X is, in particular, taken to represent all expe-
riences regardless of modality; hence P incorporates all per-
ceptual modalities. The set G and kernel A are similarly
regarded as multi-modal. With this interpretation, percep-
tion can be viewed as an action performed by the world;
how these ‘‘actions” can be unpacked into the familiar
bottom-up and top-down components of perceptual expe-
rience is explored in detail in Section 4 below. The kernels
P ; D and A are taken to act whenever the states of W ; X or
G, respectively, change. Both the decisions D and the
actions A of the CA are regarded as ‘‘freely chosen” in a
way consistent with the probabilities specified by D and
A, as are the actions ‘‘by the world” represented by P; these
operators are treated as stochastic in the general case to
capture this freedom from determination. The parameter
t is a CA-specific proper time; t is regarded as ‘‘ticking”
and hence incrementing concurrently with the action of
D, i.e. immediately following each change in the state of
X. No specific assumption is made about the contents of
X; in particular, it is not assumed that X includes tokens
representing the values of either t or any elements of G.
A CA need not, in other words, in general experience either
time or its own actions; explicitly enabling such experiences
for a CA is discussed in Section 4.1 below.

It will be assumed in what follows that the contents of X
and G can be considered to be representations encoded by
finite numbers of bits; for simplicity, all representations in
X or G will be assumed to be encoded, respectively, by the
same numbers of bits. Hence X and G can both be assigned
a ‘‘resolution” with which they encode, respectively, inputs
from and outputs to W. It is, in this case, natural to regard
D as operating in discrete steps; for each previous instanti-
ation of G, D maps one complete, fully-encoded element of
X to one complete, fully-encoded element of G. As the min-
imal size of a representation in either X or G is one bit, the
minimal action of D is a mapping of one bit to one bit.
While the CA framework as a whole is purely formal, we
envision finite CAs to be amenable to physical implementa-
tion. If any such physical implementation is assumed to be
constrained by currently accepted physics and the action of
D is regarded as physically (as opposed to logically) irre-
versible, the minimal energetic cost of executing D is given
by Landauer’s (1961, 1999) principle as ln 2kT , where k is
Boltzmann’s constant and T is temperature in degrees Kel-
vin. In this case, the minimal unit of t is given by
t ¼ h=ðln 2kT Þ, where h is Planck’s constant. At T � 310
K, physiological temperature, this value is t � 100fs,
roughly the response time of rhodopsin and other photore-
ceptors (Wang, Schoenlein, Peteanu, Mathies, & Shank,
1994). At even the 50 ms timescale of visual short-term
memory (Vogel, Woodman, & Luck, 2006), this minimal
discrete time would appear continuous. As elaborated fur-
ther below, however, no general assumption about the cod-
ing capacities in bits of X or G are built into the CA
framework. What is to count, in a specific model, as an exe-
cution of D and hence an incrementing of t is therefore left
open, as it is in other general information-processing para-
digms such as the Turing machine.

Hoffman and Prakash (2014) explicitly proposed the
‘‘Conscious agent thesis: Every property of consciousness
can be represented by some property of a dynamical system
of conscious agents” (p. 10), where the term ‘‘conscious
agent” here refers to a CA as defined above. As CAs are
explicitly formal models of real conscious agents such as
human beings, the ‘‘properties of consciousness” with
which this thesis is concerned are the formal or computa-
tional properties of consciousness, e.g. the formal or



Fig. 2. Representation of an interaction between two RCAs as a labelled
directed graph (cf. Hoffman and Prakash, 2014, Fig. 2). Note that
consistency requires that the actions A possible to the lower RCA must be
the same as the perceptions P possible for the upper RCA and vice versa.
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computational properties of recall or the control of atten-
tion, not their phenomenal properties. The conscious agent
thesis is intended as an empirical claim analogous to the
Church-Turing thesis. Just as the demonstration of a com-
putational process not representable as a Turing machine
computation would falsify the Church-Turing thesis, the
demonstration of a conscious process, e.g. a process of con-
scious recognition, inference or choice, not representable
by the action of a Markov kernel would falsify the con-
scious agent thesis. We offer in what follows both
theoretically-motivated reasons and empirical evidence to
support the conscious agent thesis as an hypothesis.
Whether the actual implementations of conscious processes
in human beings or other organisms can in fact be fully
captured by a representation based on Markov kernels
remains an open question.

2.2. Extrinsic and intrinsic perspectives

A central claim of ITP is that perceptual systems do not,
in general, provide a veridical representation of the struc-
ture of the world; in particular, ‘‘objects” and ‘‘causal rela-
tions” appearing as experiences in X are in general not in
any sense homomorphic to elements or relationships
between elements in W. This claim is, clearly, formulated
from the extrinsic perspective of a theorist able to examine
the behavior of a CA ‘‘from the outside” and to determine
whether the kernel P is a homomorphism of W or not. The
evolutionary game theory experiments reported by Mark
et al. (2010) were conducted from this perspective. As is
widely but not always explicitly recognized, the extrinsic
perspective is of necessity an ‘‘as if” conceit; a theorist
can at best construct a formal representation of a CA
and ask how the interaction represented by the P � D� A
cycle would unfold if it had particular formal properties
(e.g. Koenderink, 2014). The extrinsic perspective is, in
other words, a perspective of stipulation; it is not the per-
spective of any observer. For the present purposes, the
extrinsic perspective is simply the perspective from which
the kernels P ;D and A may be formally specified.

The extrinsic perspective of the stipulating theorist con-
trasts with another relevant perspective, the intrinsic per-
spective of the CA itself. That every CA has an intrinsic
perspective is a consequence of the intended interpretation
of CAs as conscious agents that experience their worlds.
Hence every CA is an observer, and the intrinsic perspec-
tive is the observer’s perspective. The intrinsic perspective
of a CA is most clearly formulated using the concept of a
‘‘reduced CA” (RCA), a 4-tuple ½ðX ;XÞ; ðG;GÞ;D; t�. The
RCA, together with a choice of extrinsic elements W ;A
and P, is then what we have defined above as a CA. An
RCA can be viewed as both embedded in and interacting

with the world represented by W. The RCA freely chooses
the action(s) to take - the element(s) of G to select - in
response to any experience x 2 X ; this choice is represented
by the kernel D. The action A on W that the RCA is
capable of taking is determined, in part, by the structure
of W. Similarly, the action P with which W can affect the
RCA is determined, in part, by the structure of the RCA.
With this terminology, the central claim of ITP is that an
RCA’s possible knowledge of W is completely specified
by X; the element(s) of X that are selected by P at any given
t constitute the RCA’s entire experience of W at t. The
structure and content of X completely specify, therefore,
the intrinsic perspective of the RCA. In particular, ITP
allows the RCA no independent access to the ontology of
W; consistency between intrinsic and extrinsic perspectives
requires that no such access is attributed to any RCA from
the latter perspective. An RCA does not, in particular,
have access to the definitions of its own P ; D or A kernels;
hence an RCA has no way to determine whether any of
them are homomorphisms. Similarly, an RCA has no
access to the definitions of any other RCA’s P ; D or A ker-
nels, or to any other RCA’s X or G. An RCA ‘‘knows”
what currently appears as an experience in its own X but
nothing else; as discussed in Section 4.1 below, for an
RCA even to know what actions it has available or what
actions it has taken in the past, these must be represented
explicitly in X. Any structure attributed to W from the
intrinsic perspective of an RCA is hypothetical in principle;
such attributions of structure to W can be disconfirmed by
continued observation, i.e. additional input to X, but can
never be confirmed. In this sense, any RCA is in the
epistemic position regarding W that Popper (1963) claims
characterizes all of science.

From the intrinsic perspective, an immediate conse-
quence of the ontological neutrality of ITP is that an
RCA cannot determine, by observation, that the internal
dynamics of its associated W is non-Markovian; hence it
cannot distinguish W, as a source of experiences and a
recipient of actions, from a second RCA. The RCA
½ðX ;XÞ; ðG;GÞ;D; t�, in particular, cannot distinguish the
interaction with W shown in Fig. 1 from an interaction
with a second RCA ½ðX 0;X0Þ; ðG0;G0Þ;D0; t0� as shown in
Fig. 2. From the extrinsic perspective of a theorist, Fig. 2
can be obtained from Fig. 1 by interpreting the perception
kernel P as representing actions by W on the RCA
½ðX ;XÞ; ðG;GÞ;D; t� embedded within it. Each such action
Pðw; �Þ generates a probability distribution of experiences
x in X. If an agent’s perceptions are to be regarded as
actions on the agent by its world W, however, nothing
prevents similarly regarding the agent’s actions on W as



Fig. 3. Relation between the current CA framework and the ‘‘Markov
blanket” formalism of Friston (2013). (a) The canonical CA, cf. Fig. 1. (b)
The ‘‘Computational Evolutionary Perception” (CEP) extension of
Bayesian decision theory developed by Hoffman and Singh (2012). Here
the set Y is interpreted as a set of ‘‘images” and the set X is interpreted as a
set of ‘‘scene interpretations,” consistent with the interpretation of X in the
CA framework. The map P 2 : W # X is induced by the composition of the
‘‘raw” input map P 1 with the posterior-map - likelihood-map loop. (c)
Identifying P in the CA framework with P 2 in the CEP formalism replaces
the canonical CA with a four-node graph. Here the sets Y and G jointly
constitute a Markov blanket as defined by Friston (2013). (d) Both W and
X can be regarded as interacting bi-directionally with just their proximate
‘‘surfaces” of the Markov blanket comprising Y and G. The blanket thus
isolates them from interaction with each other, effectively acting as an
interface in the sense defined by ITP.
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‘‘perceptions” of W. If W both perceives and acts, it can
itself be regarded as an agent, i.e. an RCA
½ðX 0;X0Þ; ðG0;G0Þ;D0; t0�, where the kernel D0 represents
W’s internal dynamics. This symmetric interpretation of
action and perception from the extrinsic perspective, with
its concomitant interpretation of W as itself an RCA, is
consistent with the postulate of ‘‘conscious realism” intro-
duced by Hoffman and Prakash (2014), who employ RCAs
in their discussion of multi-agent combinations without
introducing this specific terminology. More explicitly, con-
scious realism is the ontological claim that the ‘‘world” is
composed entirely of reduced conscious agents, and hence
can be represented as a network of interacting RCAs as
discussed in more detail in Section 3.2 below. Conscious
realism is effectively, once again, a requirement that the
intrinsic and extrinsic perspectives be mutually consistent:
since no RCA can determine that the internal dynamics
of its associated W are non-Markovian from its own intrin-
sic perspective, no theoretical, extrinsic-perspective stipula-
tion that its W has non-Markovian dynamics is allowable.
Every occurrence of the symbol W can, therefore, be
replaced, as in Fig. 2, by an RCA. When this is done, all
actions - all kernels A - act directly on the experience spaces
X of other RCAs as shown in Fig. 2. If it is possible to con-
sider any arbitrary system - any directed subgraph compris-
ing sets and kernels - as composing a CA from the extrinsic
perspective, then it is also possible, from the intrinsic per-
spective of any one of the RCAs involved, to consider
the rest of the network as composing a single RCA with
which it interacts.

2.3. Bayesian inference and the Markov blanket

As emphasized above, the set X represents the set of pos-
sible experiences of a conscious agent within the CA frame-
work. In the case of human beings, including even neonates
(e.g. Rochat, 2012, see also Section 4 below), such experi-
ences invariably involve interpretation of raw sensory
input, e.g. of photoreceptor or hair-cell excitations. It is
standard to model interpretative inferences from raw sen-
sory input or ‘‘images” in some modality to experienced
‘‘scene interpretations” (to use visual language) using Baye-
sian Decision Theory (BDT; reviewed e.g. by Maloney &
Zhang, 2010). In recognition of the fact that such infer-
ences are executed by the perceiving organism and are
hence subject to the constraints of an evolutionary history,
Hoffman and Singh (2012) introduced the framework of
Computational Evolutionary Perception (CEP) shown in
Fig. 3b. This framework differs from many formulations
of BDT by emphasizing that both posterior probability dis-
tributions and likelihood functions are generated within the
organism. The posterior distributions, in particular, are not
generated directly by the world W (see also Hoffman et al.,
2015).

The CEP framework effectively decomposes the kernel P
of a CA (Fig. 3a) into the composition of a mapping P 1

from W to a space Y of ‘‘raw” perceptual images with a
map (labelled B in Hoffman et al., 2015, Fig. 4) correspond-
ing to the construction of a posterior probability distribu-
tion on X. The state of the image space Y depends, in
turn, on the state of X via the feedback of a Bayesian like-
lihood function; hence the embedded posterior - likelihood
loop provides the information exchange between prior and
posterior distributions needed to implement Bayesian infer-
ence. The Bayesian likelihood serves, in effect, as the per-
ceiving agent’s implicit ‘‘model” of the world as it is seen
via the image space Y.

As shown by Pearl (1988), any set of states that sepa-
rates two other sets of states from each other in a Bayesian
network can be considered a ‘‘Markov blanket” between
the separated sets of states (cf. Friston (2013)). The disjoint
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union Y t G of Y and G separates the sets W and X in
Fig. 3b in this way; hence Y t G constitutes a Markov blan-
ket between W and X (cf. Friston, 2013, Fig. 1). Each of W
and X can be regarded as interacting bidirectionally, via
Markov processes, with a ‘‘surface” of the Markov blan-
ket, as shown in Fig. 3d. The blanket therefore serves as
an ‘‘interface” in the sense required by ITP: it provides
an indirect representation of W to X that is constructed
by processes to which X has no independent access. Consis-
tent with the assumption of conscious realism above, this
situation is completely symmetrical: the blanket also pro-
vides an indirect representation of X to W that is con-
structed by processes to which W has no independent
access. The role of the Markov blanket in Fig. 3d is, there-
fore, exactly analogous to the role of the second agent in
Fig. 2. The composed Markov kernel D0A in Fig. 2 repre-
sents, in this case, the internal dynamics of the blanket.

Friston (2013) argues that any random ergodic system
comprising two subsystems separated by a Markov blanket
can be interpreted as minimizing a variational free energy
that can, in turn, be interpreted in Bayesian terms as a mea-
sure of expectation violation or ‘‘surprise.” This Bayesian
interpretation of ‘‘inference” through a Markov blanket
is fully consistent with the model of perceptual inference
provided by the CEP framework. Conscious agents as
described here can, therefore, be regarded as free-energy
minimizers as described by Friston (2010). This formal as
well as interpretational congruence between the CA frame-
work and the free-energy principle (FEP) framework of
Friston (2010) is explored further below, particularly in
Sections 3.3 and 4.3.

2.4. Effective propagator and master equation

From the intrinsic perspective of a particular CA, expe-
rience consists of a sequence of states of X, each of which is
followed by an action of D and a ‘‘tick” of the internal
counter t. The sequence of transitions between successive
states of X can be regarded as generated by an effective
propagator T eff : MX ðtÞ�!MX ðt þ 1Þ, where MX ðtÞ is
the collection of probability measures on X at each ‘‘time”
t defined by the internal counter. This propagator satisfies,
by definition, a master equation that, in the discrete t case,
is the Chapman-Kolmogorov equation: If lt is the proba-
bility distribution at time t, then ltþ1 ¼ T efflt.

The propagator T eff cannot, however, be characterized
from the intrinsic perspective: all that is available from
the intrinsic perspective is the current state X ðtÞ, including,
as discussed in Section 4 below, the current states of any
memories contained in X ðtÞ. From the extrinsic perspec-
tive, the structure of T eff depends on the structure of the
world W. Here again, the assumption of conscious realism
and hence the ability to represent any W as a second agent
as shown in Fig. 2 is critical. In this case, T eff ¼ PD0AD,
where in the general case the actions of each of these oper-
ators at each t depend on the initial, t ¼ 0 state of the
network. As discussed above, the P and D kernels within
this composition can be regarded as specifying the interac-
tion between X and a Markov blanket with internal
dynamics D0A. The claim that T eff is a Markov process
on X is then just the claim that the composed kernel
PD0AD is Markovian, as kernel composition guarantees it
must be. As Friston, Levin, Sengupta, and Pezzulo (2015)
point out, the Markov blanket framework ‘‘only make(s)
one assumption; namely, that the world can be described
as a random dynamical system” (p. 9). Both the above rep-
resentation of T eff and the Chapman-Kolmogorov equa-
tion ltþ1 ¼ T efflt are independent of the structure of the
Markov blanket, which as discussed in Section 3.2 below
can be expanded into an arbitrarily-complex network of
RCAs, provided this condition is met.

For simplicity, we adopt in what follows the assumption
that all relevant Markov kernels, and therefore the propa-
gator T eff , are homogeneous and hence independent of t for
any agent under consideration. As discussed further below,
this assumption imposes interpretations of both evolution
(Section 3.3) and learning (Section 4.3) as processes that
change the occupation probabilities of states of X and G

but do not change any of the kernels P ; D or A. This inter-
pretation can be contrasted with that of typical machine
learning methods, and in particular, typical artificial neural
network methods, in which the outcome of learning is an
altered mapping from input to output. The current inter-
pretation is, however, consistent with Friston’s (2010,
2013) characterization of free-energy minimization as a
process that maintains homeostasis. In the current frame-
work, the maintenance of homeostasis corresponds to the
maintenance of an experience of homeostasis, i.e. to contin-
ued high probabilities of occupation of particular compo-
nents of the state of X. Both evolution and learning act
to maintain homeostasis and hence maintain these high
state-occupation probabilities. This idea that maintenance
of homeostasis is signalled by maintaining an experience
of homeostasis is consistent with the conceptualization of
affective state as an experience-marker of a physiological,
and particularly homeostatic state (Damasio, 1999; Peil,
2015). As noted earlier, no assumption that such experi-
ences are reportable by any particular, e.g. verbal behavior
are made (see also Sections 3.3 and 4.4 below).

3. W from the extrinsic perspective: RCA networks and
dynamic symmetries

3.1. Symmetric interactions

From the extrinsic perspective, a CA is a syntactic con-
struct comprising three distinct sets of states and three
Markovian kernels between them as shown in Fig. 1. We
begin here to analyze the behavior of such constructs, start-
ing below with the simplest CA network and then general-
izing (Section 3.2) to networks of arbitrary complexity.
Familiar concepts from social-network theory emerge in
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this setting, and provide (Section 3.3) a natural characteri-
zation of ‘‘fitness” for CAs.

Here and in what follows, we assume that each of the
relevant r-algebras contains all singleton subsets of its
respective underlying set. We call a Markovian kernel
‘‘punctual,” i.e. non-dispersive, if the probability measures
it assigns are Dirac measures, i.e. measures concentrated on
a singleton subset. In this case, P can be regarded as select-
ing a single element x from X, and can therefore be identi-
fied with a function from W � X to X. The punctual kernels
between any pair of sets are the extremal elements of the set
of all kernels between those sets provided the relevant r-
algebras contain all of the singleton subsets as assumed
above; hence characterizing their behavior in the discrete
case implicitly characterizes the behavior of all kernels in
the set. The punctual kernels of a network of interacting
RCAs specify, in particular, the extremal dynamics of the
network. Conscious realism entails the purely syntactic
claim that the graphs shown in Figs. 1 and 2 are inter-
changable as discussed above; the world W can, therefore,
be regarded as an arbitrarily-complex network of interact-
ing RCAs, subject only to the constraint that the A and P
kernels of the interacting RCAs can be identified (Hoffman
& Prakash, 2014).

The simplest CA network is a dyad in which
W ¼ X t G, where as above the notation X t G indicates
the disjoint union of X with G, and A ¼ P ; it is shown in
Fig. 4. This dyad acts on its own X; its perceptions are
its actions. From a purely formal perspective, this dyad is
isomorphic to the X-Y dyad of the CEP framework
(Fig. 3b); it is also isomorphic to the interaction of X with
its proximal ‘‘surface” of a Markov blanket separating it
from W (Fig. 3d). Investigating the behavior of this net-
work over time requires specifying, from the extrinsic per-
spective, the state spaces and operators. The simplest case
is the symmetric interaction in which the two state spaces
are identical. If both X and G are taken to contain just
one bit, the four possible states of the network can be writ-
ten as j00i; j01i; j10i and j11i. Here we will represent these

states by the orthogonal (column) vectors ð1; 0; 0; 0ÞT ;
ð0; 1; 0; 0ÞT ; ð0; 0; 1; 0ÞT and ð0; 0; 0; 1ÞT , respectively. The
simplest kernels D : X � G ! G and A : G� X ! X are
punctual. Let xðtÞ and gðtÞ denote the state of X and G,
respectively, at time t. We slightly abuse the notation and
use the letter D to refer to the operator IX � D :
X ðtÞ � GðtÞ ! X ðt þ 1Þ � Gðt þ 1Þ, where IX is the Identity
operator on X. This D leaves the state x of X unchanged
but changes the state of G to gðt þ 1Þ ¼ DðxðtÞ; gðtÞÞ. Sim-
ilarly, we will use the letter A to refer to the operator
Fig. 4. The simplest possible CA network, the dyad in which W ¼ X t G.
A� IG : X ðtÞ � GðtÞ ! X ðt þ 1Þ � Gðt þ 1Þ, where IG is
the identity operator on G. This A leaves the state g of G
unchanged, but changes the state of X to
xðt þ 1Þ ¼ AðgðtÞ; xðtÞÞ. Note that in this representation, D
and A are both executed each time the ‘‘clock ticks.”

To reiterate, the decision operator D acts on the state of
G but leaves the state of X unchanged, i.e. X ðt þ 1Þ ¼ X ðtÞ.
Only four Markovian operators with this behavior exist.
These are the identity operator,

I ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775;

the NOT operator,

ND ¼

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

2
6664

3
7775;

the controlled-NOT (cNOT) operator that flips the G bit
when the X bit is 0,

CD0 ¼

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775;

and the cNOT operator that flips the G bit when the X bit
is 1,

CD1 ¼

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

2
6664

3
7775:

The action operator A acts on the state of X but leaves
the state of G unchanged, i.e. Gðt þ 1Þ ¼ GðtÞ. Again, only
four Markovian operators with this behavior exist. These
are the identity operator I defined above, the NOT
operator,

NA ¼

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

2
6664

3
7775;

the cNOT operator that flips the X bit when the G bit is 0,

CA0 ¼

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

2
6664

3
7775;

and the cNOT operator that flips the X bit when the G bit
is 1,



194 C. Fields et al. / Cognitive Systems Research 47 (2018) 186–213
CA1 ¼

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

2
6664

3
7775:

In principle, distinct CAs with single-bit X and G could
be constructed with any one of the four possible D opera-
tors and any one of the four possible A operators. The CA
in which both operators are identities is trivial: it never
changes state. The CA in which both operators are NOT
operators is the familiar bistable multivibrator or ‘‘flip-
flop” circuit. It is also interesting, however, to consider
the abstract entity – referred to as a ‘‘participator” in
Bennett et al. (1989) – in which X and G are fixed at one
bit and all possible D and A operators can be employed.
The dynamics of this entity are generated by the operator
compositions DA and AD. There are 24 distinct composi-
tions of the above 7 operators, which form the Symmetric
Group on 4 objects, S4. This group appears in a number of
geometric contexts and is well characterized; the CA
dynamics with this group of transition operators include
limit cycles, i.e. cycles that repeatedly revisit the same
states, of lengths 1 (the identity operator I), 2, 3 and 4.
Hence there are 24 distinct CAs having the form of
Fig. 3 but with different choices for D and A, with behavior
ranging from constant (D = A = I) to limit cycles of
length 4.

It is important to emphasize that there is no sense in
which the 1-bit dyad experiences the potential complexity
of its dynamics, or in which the experience of a 1-bit dyad
with one choice of D and A operators is any different from
the experience of a 1-bit dyad with another choice of oper-
ators. Any 1-bit dyad has only two possible experiences,
those tokened by j0i and j1i. The addition of memory to
a CA in order to enable it to experience a history of states
and hence relations between states from its own intrinsic
perspective is discussed in Section 4 below.

The Identity and NOT operators can be expressed as
‘‘forgetful” kernels, i.e. kernels that do not depend on the
state at t of their target spaces, D : X ðtÞ ! Gðt þ 1Þ and
A : GðtÞ ! X ðt þ 1Þ but the cNOT operators cannot be;
hence the forgetful kernels introduced by Hoffman and
Prakash (2014) have less representational power than the
state-dependent kernels employed in the current definition
of a CA. It is also worth noting that the standard AND
operator taking xðtÞ and gðtÞ to xðt þ 1Þ ¼ xðtÞ and
gðt þ 1Þ ¼ xðtÞ AND gðtÞ may be represented as:

ANDG ¼

1 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775

and the corresponding OR operator taking xðtÞ and gðtÞ to
xðt þ 1Þ ¼ xðtÞ and gðt þ 1Þ ¼ xðtÞ OR gðtÞ may be repre-
sented as:
ORG ¼

1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 1

2
6664

3
7775:

The value of GðtÞ cannot be recovered following the
action of either of these operators; they are therefore logi-
cally irreversible. As each of the matrix representations of
these operators has a row of all zeros, they are not Marko-
vian. The logically irreversible, non-Markovian nature of
these operators has, indeed, been a primary basis of criti-
cisms of artificial neural network and dynamical-system
models of cognition; Fodor and Pylyshyn (1988), for exam-
ple, criticize such models as unable, in principle, to repli-
cate the compositionality of Boolean operations in
domains such as natural language. The standard AND
operator can, however, be implemented reversibly by add-
ing a single ancillary z bit to X, fixing its value at 0, and
employing the Toffoli gate that maps [x, y, z] to [x, y, (x
AND y) XOR z], where XOR is the standard exclusive
OR (Toffoli, 1980). The Toffoli gate preserves the values
of x and y and allows the value of z to be computed from
the values of x and y; hence it is reversible and can, there-
fore, be represented as a punctual Markovian kernel. The
standard XOR operator employed in the Toffoli gate is
equivalent to a cNOT. As any universal computing formal-
ism must be able to compute AND, the 1-bit dynamics of
Fig. 4 is not computationally universal. The Toffoli gate
is, however, computationally universal, so adding a single
ancillary bit set to 0 to each space in Fig. 4 is sufficient
to achieve universality.

Two distinct graphs representing symmetric, punctual
CA interactions have 4 bits in total and hence 16 states:
the graph shown in Fig. 2 where each of X ; G; X 0 and
G0 contains one bit and the graph shown in Fig. 4 in which
each of X and G contains 2 bits. These graphs differ from
the intrinsic as well as the extrinsic perspectives: in the for-
mer case each agent experiences only j0i or j1i – i.e. has the
same experience as the 1-bit dyad – while in the latter case
the agent has the richer experience j00i; j01i; j10i or j11i.
The dynamics of the participator with the first of these
structures has been exhaustively analyzed; it has the struc-
ture of the affine group AGL(4,2). Further analyses of the
dynamics of these simple systems, including explicit consid-
eration of the behavior of the t counters, is currently under-
way and will be reported elsewhere.

While the restriction to punctual kernels simplifies anal-
ysis, systems in which perception, decision and action are
characterized by dispersion will have non-punctual kernels
P ; D and A. It is worth noting that from the extrinsic, the-
orist’s perspective, such dispersion exists by stipulation: the
kernels P ; D and A characterizing a particular CA within a
particular situation being modelled are stipulated to be
stochastic. The probability distributions on states of X ;G
and W that they generate are, from the theorist’s perspec-
tive, distributions of objective probabilities: they are
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stipulated ‘‘from the outside” as fixed components of the
theoretical model. As will be discussed in Section 4 below,
these become subjective probabilities when viewed from the
intrinsic perspective of any observer represented within
such a model. However as noted earlier, ITP forbids any
CA from having observational access to its own P ; D, or
A kernels; hence no CA can determine by observation that
its kernels are non-punctual.

3.2. Asymmetric interactions and RCA combinations

While symmetric interactions are of formal interest, a
‘‘world” containing only two subsystems of equal size has
little relevance to either biology or psychology. Real organ-
isms inhabit environments much larger and richer than
they are, and are surrounded by other organisms of compa-
rable size and complexity. The realistic case, and the one of
interest from the standpoint of ITP, is that in which the r-
algebra W is much finer than either X or G. This asymmet-
rical interaction can be considered effectively bandwidth-
limited by the relatively small encoding capacities of X
and G. Representing the two-RCA interaction shown in
Fig. 2 by the shorthand notation RCA1 ¡ RCA2, this
more realistic situation can be represented as in Fig. 5, in
which no assumptions are made about the relative ‘‘sizes”
of the RCAs or the dimensionality of the Markovian ker-
nels involved.

When applied to the multi-RCA interaction in Fig. 5,
consistency between intrinsic and extrinsic perspectives
requires that when a theorist’s attention is focussed on
any single RCA, the other RCAs together can be consid-
ered to be the ‘‘world.” If attention is focussed on RCA1,
for example, it must be possible to regard the subgraph
comprising RCA2 - RCA9 as the ‘‘world” W (Fig. 5a)
and the entire network as specifying a single CA in the
Fig. 5. (a) Nine bidirectionally interacting RCAs, equivalent to a single RCA
similar to that in (a), except that some interactions are not bidirectional. Here
structurally distinct ‘‘world” W’ and hence to a distinct single CA. In general
canonical form of Fig. 1. As every RCA interacts bidirec-
tionally with its ‘‘world,” any directed path within an
RCA network must be contained within a closed directed
path. These paths do not, however, all have to be bidirec-
tional; the RCA network in Fig. 5b can equally well be rep-
resented in the canonical form of Fig. 1. The ‘‘worlds” of
Fig. 5a and b have distinct structures from the extrinsic
perspective. However, ITP requires that the interaction
between RCA1 and its ‘‘world” does not determine the
internal structure of the ‘‘world”; indeed an arbitrarily
large number of alternative structures could produce the
same inputs to RCA1 and hence the same sequence of
experiences for RCA1. RCA1 cannot, in particular, deter-
mine what other RCA(s) it is interacting with at any partic-
ular ‘‘time” t as measured by its counter, or determine
whether the structure or composition of the network of
RCAs with which it is interacting changes from one value
of t to the next. This lack of transparency renders the
‘‘world” of any RCA a ‘‘black box” as defined by classical
cybernetics (Ashby, 1956): a system with an internal struc-
ture under-determined, in principle, by finite observations.
Even a ‘‘good regulator” (Conant & Ashby, 1970) can only
regulate a black box to the extent that the behavior of the
box remains within the bounds for which the regulator was
designed; whether a given black box will do so is always
unpredictable even in principle. From the intrinsic perspec-
tive of the ‘‘world,” the same reasoning renders RCA1 a
black box; hence consistency between perspectives requires
that any RCA - and hence any CA - for which the sets X
and G are not explicitly specified be regarded as potentially
having an arbitrarily rich internal structure.

In general, consistency between intrinsic and extrinsic
perspectives requires that any arbitrary connected network
of RCAs can be considered to be a single canonical-form
CA; for each RCA in the network, all of the other RCAs
interacting with its ‘‘world” W and hence to a single CA. (b) A network
again, the RCA network is equivalent to a single RCA interacting with a
, RCA networks of either kind are asymmetric for every RCA involved.
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in the network, regardless of how they are connected,
together form of ‘‘world” of that RCA. Non-overlapping
boundaries can, therefore, be drawn arbitrarily in a net-
work of interacting RCAs and the RCAs within each of
the boundaries ‘‘combined” to form a smaller network of
interacting RCAs, with a single canonical-form CA or
X � G dyad as the limiting case in which all RCAs in the
network have been combined. Connected networks that
characterize gene regulation (Agrawal, 2002), protein inter-
actions (Barabási & Oltvai, 2004), neurocognitive architec-
ture (Bassett & Bullmore, 2006), academic collaborations
(Newman, 2001) and many other phenomena exhibit
dynamic patterns including preferential attachment (new
connections are preferentially added to already well-
connected nodes; Barabási & Albert, 1999) and the emer-
gence of small-world structure (short minimal path lengths
between nodes and high clustering; Watts & Strogatz,
1998). Such networks typically exhibit ‘‘rich club” connec-
tivity, in which the most well-connected nodes at one scale
form a small-world network at the next-larger scale
(Colizza, Flammini, Serrano, & Vespignani, 2006); the
human connectome provides a well-characterized example
(van den Heuvel & Sporns, 2011). Networks in which con-
nectivity structure is, on average, independent of scale are
called ‘‘scale-free” (Barabási, 2009); such networks have
the same structure, on average, ‘‘all the way down.” As
illustrated in Fig. 6, scale-free structures approximate hier-
archies; ‘‘zooming in” to a node in a small-world or rich-
club network typically reveals small-world or rich-club
structure within the node. However, these networks allow
the ‘‘horizontal” within-scale connections that a strict hier-
archical organization would forbid. Given the prominence
of scale-free small-world or rich-club organization in Nat-
ure, it is reasonable to ask whether RCA networks can
exhibit such structure. In particular, it is reasonable to
ask whether interactions between ‘‘simple” RCAs can lead
to the emergence of more complex RCAs that interact
among themselves in an approximately-hierarchical, rich-
club network. We consider this question in one particular
case in Section 4 below.

Replication followed by functional diversification ubiq-
uitously increases local complexity in biological and social
systems; processes ranging from gene duplication through
Fig. 6. ‘‘Zooming in” to a node in a rich-club network typically reveals
additional small-world structure at smaller scales. Here the notation has
been further simplified by eliding nodes altogether and only showing their
connections.
organismal reproduction to the proliferation of divisions
in corporate organizations exhibit this process. The sim-
plest case, for an RCA, is to replicate part or all of the
experience set X; as will be shown below (Section 4.2), this
operation is the key to building RCAs with memory. Let
½ðX 1;X 1Þ; ðG1;G1Þ;D1; t1� be an RCA interacting with W

via A1 and P 1 kernels. Let ½ðX 2;X 2Þ; ðG2;G2Þ;D2;A2; t2� be
a dyad as shown in Fig. 4. Setting t1 ¼ t2 ¼ t, a new
RCA whose ‘‘world” is the Cartesian product W � X 2

can be constructed by taking the Cartesian products of
the sets X 1 and X 2 and G1 and G2 respectively, as illustrated
in Fig. 7, and defining product r-algebras of X 1 and X 2 and
G1 and G2 respectively. If all the kernels are left fixed, these
product operations change nothing; they merely put the
original RCA and the dyad ‘‘side by side” in the new, com-
bined RCA. We can, however, create an RCA with quali-
tatively new behavior by redefining one or more of the
kernels; the ‘‘combination” process in this case significantly
Fig. 7. A CA as shown in Fig. 1 and a dyad as shown in Fig. 3 can be
‘‘combined” to form a composite CA with a simple, one time-step short-
term memory by replacing the decision kernel D2 of the dyad with a kernel
DC that ‘‘copies” the state x1ðtÞ to g2ðt þ 1Þ and setting the action kernel A2

of the dyad to the Identity I. The notation can be simplified by eliding the
explicit W � X 2 to W and treating the I2 operation on G2 as a feedback
operation ‘‘internal to” the RCA, as shown in the lower part of the figure.
Note that the composite CA produced by this ‘‘combination” process has
qualitatively different behavior than either of the CAs that were combined
to produce it.
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alters the behavior of one or both of the RCAs being
‘‘combined.” For example, we can specify a new punctual
kernel D0

2 that acts on the X 1 component instead of the
X 2 component of X 1 � X 2, i.e. D0

2 : X 1 ! G2. Consider,
for example, the RCA that results if D2 is replaced by a ker-
nel D0

2 ¼ DC that simply copies, at each t, the current value
x1 of X 1 to G2. If the kernel A2 is set to the Identity I, the
value x1 will be copied, by A2, back to X 2 on each cycle,
as shown in Fig. 7. In this case, the experience of the ‘‘com-
bined” CA at each t has two components: the current value
of x1 and the previous value of x1, now ‘‘stored” as the
value x2. This ‘‘copying” construction will be used repeat-
edly in Section 4 below to construct agents with progres-
sively more complex memories. Note that for these
memories to be useful in the sense of affecting choices of
action, the kernel D1 must be replaced by one that also
depends on the ‘‘memory” X 2.

The construction shown in Fig. 7 suggests a general fea-
ture of RCA networks: asymmetric kernels characterize the
interactions between typical RCAs and W, but also charac-
terize ‘‘internal” interactions that give RCAs additional
structure. Such kernels may lose information and hence
‘‘coarse-grain” experience. If RCA networks are indeed
scale-free, one would expect asymmetric interactions to
be the norm: wherever the RCA-of-interest to W boundary
is drawn, the networks on both sides of the boundary
would have asymmetric kernels and complex internal orga-
nization. If this is the case, the notion of combining expe-
rienced qualia underlying classic statements of the
‘‘combination problem” by William James, Thomas Nagel
and many others (for review, see Hoffman & Prakash,
2014) appears too limited. There is no reason, in general,
to expect ‘‘lower-level” experiences to combine into
‘‘higher-level” experiences by Cartesian products. An ini-
tially diffuse, geometry-less experience of ‘‘red” and an ini-
tially color-less experience of ‘‘circle,” for example, can be
combined to an experience of ‘‘red circle” only if the com-
bination process forces the diffuse redness into the bound-
ary defined by the circle. This is not a mere Cartesian
product; the redness and the circularity are not merely
overlaid or placed next to each other. While Cartesian
products of experiences allow recovery of the individual
component experiences intact; arbitrary operations on
experiences do not. The ‘‘combination” operations of inter-
est here instead introduce scale-dependent constraints of
the type Polanyi (1968) shows are ubiquitous in biological
systems (cf. Rosen, 1986; Pattee, 2001). Such constraints
introduce qualitative novelty. Once the redness has been
forced into the circular boundary, for example, its original
diffuseness is not recoverable: the red circle is a qualita-
tively new construct. Asymmetric kernels, in general, ren-
der higher-level agents and their higher-level experiences
irreducible. Human beings, for example, experience edges
and faces, but early-visual edge detectors do not experience
edges and ‘‘face detectors” in the Fusiform Face Area do
not experience faces. von Uexküll (1957); Gibson (1979)
and the embodied cognition movement have made this
point previously; the present considerations provide a for-
mal basis for it within the theoretical framework of ITP.

3.3. Connectivity and fitness

As noted in the Introduction, ITP was originally moti-
vated by evolutionary game simulations showing that
model organisms with perceptual systems sensitive only
to fitness drove model organisms with veridical perceptual
systems to extinction (Mark et al., 2010). In these simula-
tions, ‘‘fitness” was an arbitrarily-imposed function depen-
dent on the states of both the model environment and the
model organism. The assumption of conscious realism,
however, requires that it be possible to regard the environ-
ment of any organism, i.e. of any agent, as itself an agent
and hence itself subject to a fitness function. From a bio-
logical perspective, this is not an unreasonable require-
ment: the environments of all organisms are populated by
other organisms, and organism - organism interactions,
e.g. predator - prey or host - pathogen interactions, are
key determiners of fitness. In the case of human beings,
the hypothesis that interactions with conspecifics are the
primary determinant of fitness motivates the broadly-
explanatory ‘‘social brain hypothesis” (Adolphs, 2003,
2009; Dunbar, 2003; Dunbar & Shultz, 2007) and much
of the field of evolutionary psychology. If interactions
between agents determine fitness, however, it should be
possible to derive a representation of fitness entirely within

the CA formalism. As the minimization of variational free
energy or Bayesian surprise has a natural interpretation in
terms of maintenance of homeostasis (Friston, 2013;
Friston et al., 2015), the congruence between the CA and
FEP frameworks discussed above also suggests that a
fully-internal definition of fitness should be possible. Here
we show that an intuitively-reasonable definition of fitness
not only emerges naturally within the CA framework, but
also corresponds to well-established notions of centrality
in complex networks.

The time parameter t characterizing a CA is, as noted
earlier, not an ‘‘objective” time but rather an observer-
specific, i.e. CA-specific time. The value of t is, therefore,
intimately related to the fitness of the CA that it character-
izes: a CA with a small value of t has not survived, i.e. not
maintained homeostasis for very long by its own internal
measure, while a CA with a large value of t has survived
a long time. Hence it is reasonable to regard the value of
t as a prima facie measure of fitness. As t is internal to
the CA, this measure is internal to the CA framework. It
is, however, not in general an intrinsic measure of fitness,
as CAs in general do not include an explicit representation
of the value of t within the experience space X. From a for-
mal standpoint, t measures the number of executions of D.
As D by definition executes whenever a new experience is
received into X, the value of t effectively measures the num-

ber of inputs that a CA has received. To the extent that D
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selects non-null actions, the value of t also measures the
number of outputs that a CA generates.

From the intrinsic perspective, a particular RCA cannot
identify the source of any particular input as discussed
above; inputs can equivalently be attributed to one single
W or to a collection of distinct other RCAs, one for each
input. The value of t can, therefore, without loss of gener-
ality be regarded as measuring the number of input connec-

tions to other RCAs that an given RCA has. The same is
clearly true for outputs: from the intrinsic perspective, each
output may be passed to a distinct RCA, so t provides an
upper bound on output connectivity. From the extrinsic
perspective, the connectivity of any RCA network can be
characterized; in this case the number of inputs or outputs
passed along a directed connection can be considered a
‘‘connection strength” label. The value of t then corre-
sponds to the sum of input connection strengths and
bounds the sum of output connection strengths.

We propose, therefore, that the ‘‘fitness” of an RCA
within a fixed RCA network can simply be identified with
its input connectivity viewed quantitatively, i.e. as a sum
of connection-strength labels, from the extrinsic perspec-
tive. In this case, a new connection preserves homeostasis
to the extent that it enables or facilitates future connec-
tions. A new connection that inhibits future connectivity,
in contrast, disrupts homeostasis. In the limit, an RCA that
ceases to interact altogether is ‘‘dead.” If the behavior of
the network is monitored over an extrinsic time parameter
(e.g. a parameter that counts the total number of messages
passed in the network), an RCA that stops sending or
receiving messages is dead. The ‘‘fittest” RCAs are, in con-
trast, those that continue to send and receive messages, i.e.
those that continue to interact with their neighbors, over
the longest extrinsically-measured times. Among these,
those RCAs that exchange messages at the highest frequen-
cies for the longest are the most fit.

For simple graphs, i.e. graphs with at most one edge
between each pair of nodes, the ‘‘degree” of a node is the
number of incident edges; the input and output degrees
are the number of incoming and outgoing edges in a
digraph (e.g. Diestel, 2010 or for specific applications to
network theory, Börner, Sanyal, & Vespignani, 2007). A
node is ‘‘degree central” or has maximal ‘‘degree centrality”
within a graph if it has the largest degree; nodes of lower
degree have lower degree centrality. These notions can
clearly be extended to labelled digraphs in which the labels
indicate connection strength; here ‘‘degree” becomes the
sum of connection strengths and a node is ‘‘degree central”
if it has the highest total connection strength. Applying
these notions to RCA networks with the above definition
of fitness, the fitness of an RCA scales with its input degree,
and hence with its input degree centrality. Note that a small
number of high-strength connections can confer higher
degree centrality and hence higher fitness than a large num-
ber of low-strength connections with these definitions.

In an initially-random network that evolves subject to
preferential attachment (Barabási & Albert, 1999), the
connectivity of a node tends to increase in proportion to
its existing connectivity; hence ‘‘the rich get richer” (the
‘‘Matthew Effect”; see Merton, 1968). As noted above, this
drives the emergence of small-world structure, with the
nodes with highest total connectivity forming a ‘‘rich club”
with high mutual connectivity. Nodes within the rich club
clearly have high degree centrality; they also have high
betweenness centrality, i.e. paths between non-rich nodes
tend to traverse them (Colizza et al., 2006). The identifica-
tion of connectivity with fitness is obviously quite natural
in this setting; the negative fitness consequences of isolation
are correspondingly well documented (e.g. Steptoe,
Shankar, Demakakos, & Wardle, 2013).

The identification of fitness with connectivity provides a
straightforward solution to the ‘‘dark room” problem
faced by uncertainty-minimization systems (e.g. Friston,
Thornton, & Clark, 2012). Dark rooms do not contain
opportunities to create or maintain connections; therefore
fitness-optimizing systems can be expected to avoid them.
This solution complements that of Friston et al. (2012),
who emphasize the costs to homeostasis of remaining in
a dark room. Here again, interactivity and maintenance
of homeostasis are closely coupled.

4. W from the intrinsic perspective: Prediction and effective

action

4.1. How can non-veridical perceptions be useful?

The fundamental question posed by ITP is that of how
non-veridical perceptions can be informative and hence
useful to an organism. As noted in the Introduction, veridi-
cal perception is commonly regarded as ‘‘absolutely essen-
tial” for utility; non-veridical perceptions are considered to
be illusions or errors (e.g. Pizlo et al., 2014). We show in
this section that CAs that altogether lack veridical percep-
tion can nonetheless exhibit complex adaptive behavior, an
outcome that is once again consonant with that obtained
within the free-energy framework (Friston, 2010, 2013).
We show, moreover, that constructing a CA capable of
useful perception and action in a complex environment
leads to predictions about both the organization of long-
term memory and the structure of object representations
that accord well with observations.

For any particular RCA, the dynamical symmetries
described in Section 3.1 are manifested by repeating pat-
terns of states of X. The question of utility can, therefore,
be formulated from the intrinsic perspective as the question
of how an RCA can detect, and make decisions based on,
repeating patterns of states of its own X. As the complexi-
ties of both the agent and the world increase, moreover, the
probability of a complete experience - a full state of
X - being repeated rapidly approaches zero. For agents
such as human beings living in a human-like world, only
particular aspects of experience are repeated. Such agents
are faced with familiar problems, including perceptual
figure-ground distinction, the inference of object persistence
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and hence object identity over time, correct categorization of
objects and events, and context dependence (‘‘contextuality”
in the quantum theory and general systems literature; see
e.g. Kitto, 2014). Our goal in this section is to show that
the CA formalism provides a useful representation for
investigating these and related questions. We show, in par-
ticular, that the limited syntax of the CA formalism is suf-
ficient to implement memory, predictive coding, active
inference, attention, categorization and planning. These
functions emerge naturally, moreover, from asking what
structure an RCA must have in order for its perceptions
to be useful for guiding action within the constraints
imposed by ITP. We emphasize that by ‘‘useful” we mean
useful to the RCA from its own intrinsic perspective, e.g.
useful as a guide to actions that lead to experiences that
match its prior expectations (cf. Friston, 2010).

We explicitly assume that the experiences of any RCA
are determinate or ‘‘classical”: an RCA experiences just
one state of X at each t. From the intrinsic perspective
of the RCA, therefore, P is always apparently punctual
regardless of its extrinsic-perspective statistical structure;
from the intrinsic perspective, P specifies what the RCA
does experience, not just what it could experience. The
RCA selects, moreover, just one action to take at each t;
hence D is effectively punctual, specifying what the RCA
does do as opposed to merely what it could do, from the
intrinsic perspective. This effective or apparent resolution
of a probability distribution into a single chosen or expe-
rienced outcome is referred to as the ‘‘collapse of the wave-
function” in quantum theory (for an accessible and
thorough review, see Landsman, 2007) and is often associ-
ated with the operation of free will (reviewed by Fields,
2013a). We adopt this association of ‘‘collapse” with free
will here: the RCA renders P punctual by choosing which
of the possibilities offered by W to experience, and renders
D punctual by choosing what to do in response. As is the
case in quantum theory (Conway & Kochen, 2006), consis-
tency between intrinsic and extrinsic perspectives requires
that free will also be attributed to W; hence we regard
W, as an RCA, choosing how to respond to each action
A taken by any RCA embedded in or interacting with it.
All such choices are regarded as instantaneous. Consis-
tency between internal and external perspectives requires,
moreover, that all such choices are unpredictable in princi-
ple. An RCA with sufficient cognitive capabilities can, in
particular, predict what it would choose, given its current
state, to do in a particular circumstance, but cannot pre-
dict what it will do, i.e. what choice it will actually make,
when that circumstance actually arises. This restriction on
predictions is consonant with a recent demonstration that
predicting an action requires, in general, greater computa-
tional resources than taking the action (Lloyd, 2012).

4.2. Memory

Repeating patterns of perceptions are only useful if they
can be detected, learned from, and employed to influence
action. Within the CA framework, ‘‘detecting” something
involves awareness of that something; detecting something
is therefore a state change in X. Noticing that a current per-
ception repeats a past one, either wholly or in part, requires
a memory of past perceptions and a means of comparing
the current perception to remembered past perceptions.
Both current and past perceptions are states in X, so it is
natural to view their comparison as an operation on X.
Using patterns of repeated perceptions to influence action
requires, in turn, a representation of how perception affects
action: an accessible, internal ‘‘model” of the D kernel.
Consider, for example, an agent with a 1-bit X that experi-
ences only ‘‘hungry” and ‘‘not hungry” and implements the
simple operator, ‘‘eat if but only if hungry” as D. This
agent has no representation, in X, of the action ‘‘eat”;
hence it cannot associate hunger with eating, or eating with
the relief of hunger. It has, in fact, no representation of any
action at all, and therefore no knowledge that it has ever
acted. There is no sense in which this agent can learn any-
thing, from its own intrinsic perspective, about W or about
its relationship to W. Learning about its relationship to the
world requires, at minimum, an ability to experience its
own actions, i.e. a representation of those actions in X.
This is not possible if X has only one bit.

The construction of a memory associating actions with
their immediately-following perceptions is shown in
Fig. 8a. Here as before, t increments when D executes.
Note that while each within-row pairing (gðtÞ; xðtÞ) pro-
vides a sample and hence a partial model of W’s response
to the choice of gðtÞ, i.e. of the action of the composite ker-
nel PA, each cross-row pairing (gðtÞ; xðt � 1Þ) provides a
sample and hence a partial model of the action of D. As
noted earlier, no specific assumption about the units of t
is made within the CA framework; hence the scope and
complexity of the action - perception associations recorded
by this memory is determined entirely by the definition,
within a particular model, of the decision kernel D.

For the contents of memory to influence action, they
must be accessible to D. They must, therefore, be encoded
within X. Meeting this requirement within the constraints
of the CA formalism requires regarding X as comprising
three components, X ¼ XP � XR � XM , where XP contains
percepts, XR contains a copy of the most recent percept,
and XM contains long-term memories of percept-action
and action-percept associations. In this case, P becomes a
Markovian kernel from W � XP ! XP and a punctual, for-
getful Markovian kernel Copy is defined to map XP ! XR

as discussed above. The short-term memory XR allows the
cross-row pairs in Fig. 8a, here written as ðxP ðt � 1Þ; gðtÞÞ
to emphasize that xP ðt � 1Þ is a percept generated by P,
to each be represented as a pair ðxRðtÞ; gðtÞÞ at a single time
t. To be accessible to D, both these cross-row pairs and the
within-row pairs ðxP ðtÞ; gðtÞÞ, together with their occur-
rence counts as accumulated over multiple observations
(Fig. 8c), must be represented completely within X. Con-
structing these representations requires copying the gðtÞ
components of these pairs from G to X at each t, associating



Fig. 8. Constructing a memory in X for action - perception associations. (a) The values xðtÞ and gðtÞ are recorded at each t into a linked list of ordered
pairs ðgðtÞ; xðtÞÞ, in which the links associate values xðt � 1Þ to gðtÞ (diagonal arrows) and gðtÞ to xðtÞ (within rows). Each horizontal ordered pair is an
instance of the action of the composed kernel PA, during which t is constant. Each diagonally-linked pair is an instance of the action of D, concurrent with
which t increments. (b) The linked list in (a) can also be represented as two simple lists of ordered pairs, one representing instances of actions of D and the
other representing instances of actions of PA. (c) The instance data in either list from (b) can also be represented as a matrix in which each element counts
the number of occurrences of an ðx; gÞ pair. Here we illustrate just four possible values of x and four possible values of g. The pair ðx1; g1Þ has occurred
once, the pair ðx2; g2Þ has occurred four times, etc. (d) An RCA network that constructs memories XMD and XMPA that count instances of actions of D and
PA respectively. Here XP is the space of possible percepts and its state xP is the current percept. The space XR is a short-term memory; its state xR is the
immediately-preceding percept. The simplified notation introduced in Fig. 7 is used to represent the ‘‘feedback” kernels Copy;MD and MPA as internal to
the composite RCA. The decision kernel D acts on the entire space X. The MD and MPA kernels are defined in the text.
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the copies with either xRðtÞ or xP ðtÞ respectively, and
accumulating the occurrence counts of the associated
pairs as a function of t. We define components XMD and
XMPA of the long-term memory XM to store triples
ðxR; gC; nDðxR; gC; T ÞÞ and ðxP ; gC; nPAðxP ; gC; T ÞÞ respec-
tively, where gCðtÞ is a copy of gðtÞ and nDðxR; gC; T Þ and
nPAðxP ; gC; T Þ are the accumulated occurrence counts of
ðxR; gCÞ and ðxP ; gCÞ, respectively, as of the accumulation
time T. This T is the sum of the counts stored in XMD

and XMPA, which must be identical; the memory compo-
nents XMD and XMPA capture, in other words, the data struc-
ture of Fig. 8c completely within X. To construct these
memory components, we define punctual Markovian
kernels MD : G� XR � XMD ! XMD and MPA : G� XP�
XMPA ! XMPA (Fig. 8d) that, at each t, increment
nDðxR; gC; T Þ by one if xR and g co-occur at t and increment
nPAðxP ; gC; T Þ by one if xP and g co-occur at t, respectively.
A similar procedure for updating ‘‘internal” states on each
cycle of interaction with a Markov blanket is employed in
Friston (2013). While we represent these memory-updating
kernels as ‘‘feedback” operations in Fig. 8d and in figures
to follow, they can equivalently be represented as acting
from G to W � X as in the middle part of Fig. 7.

The ratios nDðxR; gC; T Þ=T and nPAðxP ; gC; T Þ=T are natu-
rally interpreted as the frequencies with which the pairs
ðx; gÞ have occurred as either percept-action or action-
percept associations, respectively, during the time of obser-
vation, i.e. between t ¼ 0 and t ¼ T . As these values appear
as components of X, they can be considered to generate,
through the action of some further operation depending
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only on X, ‘‘subjective” probabilities at t ¼ T of percept-
action or action-percept associations, respectively. We will
abuse notation and consider the memories XMD and XMPA to
contain not just the occurrence counts nDðxR; gC; T Þ and
nPAðxP ; gC; T Þ but also the derived subjective probability
distributions ProbDðx; gÞjt¼T and ProbPAðx; gÞjt¼T respec-
tively. We note that these distributions ProbDðx; gÞjt¼T

and ProbPAðx; gÞjt¼T are subjective probabilities for the
RCA encoding them, from its own intrinsic perspective.
We have assumed that the kernels MD and MPA are punc-
tual; to the extent that they are not, these subjective prob-
ability distributions are likely to be inaccurate as
representations of the agent’s actual past actions and per-
ceptions, respectively.

It is important to emphasize that the memory data struc-
ture shown in Fig. 8c does not represent the value of the
time counter t explicitly. A CA implementing this memory
does not, therefore, directly experience the passage of time;
such a CA only experiences the current values of accumu-
lated frequencies of ðx; gÞ pairs. However, because the cur-
rent value T of t appears as the denominator in calculating
the subjective probabilities ProbDðx; gÞjt¼T and
ProbPAðx; gÞjt¼T , the extent to which these distributions
approximate smoothness provides an implicit, approximate
representation of elapsed time. As we discuss in Section 4.4
below, this approximate representation of elapsed time has
a natural interpretation in terms of the ‘‘precision” of the
memories MD and MPA, as this term is employed by
Friston (2010, 2013). The construction of a data structure
explicitly representing goal-directed action sequences, and
hence the relative temporal ordering of events within such
sequences, within the CA framework is discussed in Sec-
tion 4.5 below. Such a data structure is a minimal require-
ment for directly experienced duration in the CA
framework.

4.3. Predictive coding, goals and active inference

Merely writing memories is, clearly, not enough: if mem-
ories are to be useful, it must also be possible to read them.
Remembering previous percepts is, moreover, only useful if
it is possible to compare them to the current percept. As
noted earlier, exact replication of a previous percept is unli-
kely; hence utility in most circumstances requires quantita-
tive comparisons, even if these are low-resolution or
approximate. These can be accomplished by, for example,
imposing a metric structure on XP and all memory compo-
nents computed from XP . This allows asking not just how
much but in what way a current percept differs from a
remembered one. For now, we do this by assuming a vector
space structure with a norm jj � jj (and therefore a metric
dðx; x0Þ ¼ jjx� x0jj) on XP . It is also convenient to assume
a metric vector-space structure on G so that ‘‘similarity”
between actions can be discussed.

A vector-space structure on XP enables talking about
components of experience, which are naturally interpreted
as basis vectors. Given a complete basis fnig for XP , which
for simplicity is taken to be orthonormal, any percept xP
can be written as

P
iaini, where the coefficients ai are lim-

ited to some finite resolution, and hence the vectors are lim-
ited to approximate normalization, to preserve a finite
representation. The distance between two percepts
xP ¼ P

iaini and yP ¼ P
ibini can be defined as the distance

dðxP ; yP Þ.
To construct this vector space structure, it is useful to

think of experiences in terms of ‘‘degrees of freedom” in
the physicist’s sense (‘‘macroscopic variables” or ‘‘order
parameters” in other literatures), i.e. in terms of properties
of experience that can change in some detectable way along
some one or more particular dimensions. A stationary
point of light in the visual field, for example, may have
degrees of freedom including apparent position, color
and brightness. Describing a particular experienced state
requires specifying a particular value for each of these
degrees of freedom; in the case of a stationary point of
light, these may include x; y and z values in some spatial
coordinate system and intensities Ired ; Igreen and Iblue in a
red-green-blue color space. Describing a sample of experi-
ences requires specifying the probabilities of each value of
each degree of freedom within the sample, e.g. the proba-
bilities for each possible value of x; y; z; Ired ; Igreen and Iblue
in a sample of stationary point-of-light experiences. A vec-
tor in the space XP is then a particular combination of val-
ues of the degrees of freedom that characterize the
experiences in X. A basis vector ni of XP corresponds,
therefore, to a particular value of one degree of freedom,
e.g. a particular value x ¼ 1 m or Ired ¼ 0:1 lux. The coeffi-
cient ai of a basis vector ni is naturally interpreted as the
‘‘amount” or ‘‘extent” to which ni is present in the percept;
again borrowing terminology from physics, we refer to
these coefficients as amplitudes. If ai is the amplitude of
the basis vector ni representing a length of 1 m, for exam-
ple, then the value of ai represents the extent to which a
percept indicates an object having a length of 1 m. It is,
moreover, natural to restrict the values of the amplitudes
to ½0; 1� and to interpret the amplitude ai of the basis vector
ni in the vector representation of a percept xP as the prob-
ability that the component ni contributes to xP . This inter-
pretation of basis vectors as representing values of degrees
of freedom and amplitudes as representing probabilities is
the usual interpretation for real Hilbert spaces in physics
(the probability is the amplitude squared in the more typi-
cal complex Hilbert spaces).

The basis chosen for XP determines the bases for
XR;XMD and XMPA. It must, moreover, be assumed that ele-
ments of these latter components of X are experientially
tagged as such. An element xR in XR must, for example,
be experienced differently from the element xP in XP of
which it is a copy; without such an experiential difference,
previous, i.e. remembered and current percepts cannot be
distinguished as such from the intrinsic perspective. The
existence of such experiential ‘‘tags” distinguishing
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memory components is a prediction of the current
approach, which places all memory components on which
decisions implemented by D can depend within the space
X of experiences. Models in which some or all components
of memory are implicit, e.g. encoded in the structure of a
decision operator, require no such experiential tags for
the implicit components. It is interesting in this regard that
humans experientially distinguish between perception and
imagination (a memory-driven function), that this ‘‘reality
monitoring” capability appears to be highly but not exclu-
sively localized to rostral prefrontal cortex, and that dis-
ruption of this capability correlates with psychosis
(Burgess & Wu, 2013; Cannon, 2015; Simons, Henson,
Gilbert, & Fletcher, 2008). Humans also experientially dis-
tinguish short-term ‘‘working” memories from long-term
memories. We predict that specific monitoring capabilities
provide the experiential distinctions between short- (e.g.
XR) and long-term (e.g. XMD and XMPA) memories and dis-
tinguish functionally-distinct long-term memory compo-
nents from each other. From a formal standpoint, such
distinguishing tags can be considered to be additional ele-
ments in each vector in each of the derived vector spaces;
while such tags play no explicit role in the processing
described below, their existence will be assumed.

As thememories XMD and XMPA and hence the conditional
probability distributions ProbDðxðtÞ; gðtÞjxðt � 1Þ; gðt � 1ÞÞ
and ProbPAðxðtÞ; gðtÞjxðt � 1Þ; gðt � 1ÞÞ contain information
about the observer’s entire experience of the world, they
enable differential responses to xR � g or g � xP pairings that
evoke different degrees of ‘‘surprise” by either confirming or
disconfirming previous associations to different extents. We
note that the term ‘surprise’ is being used here in its informal
sense of an experienced departure from expectations, not in
the technical sense employed by Friston (2010, 2013); see
also Friston et al. (2015, 2016) to refer to an event that
causes or threatens to cause a departure from homeostasis
and hence has negative consequences for fitness. To imple-
ment such differential responses to surprise, it is natural to
choose functions for updating these conditional probability
distributions that depend on the vector distance(s) between
the percept xR (for ProbDðxðtÞ; gðtÞjxðt � 1Þ; gðt � 1ÞÞ) or xP
(for ProbPAðxðtÞ; gðtÞjxðt � 1Þ; gðt � 1ÞÞ) and the percept(s)
previously associated, within XMD and XMPA respectively,
with g. Functions can clearly be chosen that either enhance
or suppress memories of surprising events. This generaliza-
tion requires no additional components or elements within
X; hence it enhances function without altering the
architecture.

The simplest possible action is no action: the agent
merely observes the world. The extremal outcomes of such
observation are on the one hand James’ ‘‘blooming, buzz-
ing confusion,” i.e. a completely random xP ðtÞ, and on the
other stasis, a fixed and invariant xP ðtÞ. Memory is obvi-
ously useless in either case; indeed, the latter corresponds
to the ‘‘dark room” situation discussed above. Memory
becomes useful if a world on which no action is taken gen-
erates some number of the possible percepts significantly
more often than the others. The same is true in the case
of any other constantly-repeated action. It is equivalent
to say: any action which, when repeated indefinitely, is fol-
lowed by either random or static percepts is a useless action
to take. Such an action has no ‘‘epistemic value” in the
sense used by Friston et al. (2015). Randomness and stasis
may be useful as components of experience - indeed as dis-
cussed below, stasis is a necessary component of useful
experience - but only when embedded in non-random,
non-static contexts. Let us assume, therefore, that RCAs
of interest are embedded in Ws that generate non-
random, non-static percepts in response to all actions.
Note that this assumption is consistent with ITP: it does
not require either P or A to respect the causal structure
of W.

In a non-random, non-static world, the memories XMD

and XMPA provide a basis for predictive coding: the proba-
bility assigned to an action g at t þ 1 can depend on the
vector difference between the current percept xP ðtÞ and pre-
vious percepts either immediately-antecedent or
immediately-consequence to actions like g. A percept
xP ðtÞ can, in this case, ‘‘predict” an action gðt þ 1Þ that is
‘‘expected,” on the basis of the probabilities stored in
XMPA, to result in a subsequent percept xP ðt þ 1Þ that is
either similar or dissimilar to xP ðtÞ. Assigning high proba-
bilities to actions at t þ 1 expected to result in percepts sim-
ilar to xP ðtÞ is implicitly ‘‘evaluating” xP ðtÞ as in some sense
‘‘good” or ‘‘desirable,” while assigning low probabilities to
actions at t þ 1 expected to result in percepts similar to
xP ðtÞ is implicitly evaluating xP ðtÞ as in some sense bad or
undesirable. These operational senses of ‘‘good” and ‘‘bad”
percepts are consistent with the senses of ‘‘good” and
‘‘bad” percepts as enhancing or threatening the mainte-
nance of homeostasis employed by Friston (2010, 2013).
A ‘‘bad” experience in this operational sense is an outcome
that an agent did not expect to experience, i.e. a stressor
such as being hungry or poor, on the basis of the implicit
‘‘model” of W encoded by the probability distributions
contained in the memories XMD and XMPA. In the limit, a
maximally ‘‘bad” experience is one that violates the
fundamental expectation that experiences will continue
that is encoded by all non-zero values of the subjective
probabilities ProbDðx; gÞjt¼T and ProbPAðx; gÞjt¼T ; such an
experience destroys connectivity between the agent in
question and the surrounding RCA network (i.e. the
agent’s W), setting the agent’s fitness to zero and
corresponding to the ‘‘death” of the agent as discussed in
Section 3.3 above.

This evaluative function can be made explicit by repre-
senting it as a distinct operation. To do this, we add a fur-
ther memory component XE to X. To allow for the
possibility that an observer has ‘‘innate” biases toward or
against particular percepts, we consider XE to comprise
two probability distributions, ProbgoodðxP Þ and
ProbbadðxP Þ, with a priori values fixed at t ¼ 0. Such
innate evaluation biases can be considered to be innate
‘‘preferences” or ‘‘beliefs” as they often are in the
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infant-cognition literature (e.g. Baillargeon, 2008; Watson,
Robbins, & Best, 2014). We represent the evaluation oper-
ation E as having two components E ¼ ðEgood ;EbadÞ, where
Egood is a punctual kernel XP � XR � E ! E that updates
ProbgoodðxP Þ at each t and Ebad is a punctual kernel
XP � XR � XE ! XE that updates ProbbadðxP Þ at each t.
For simplicity, we assume that Egood increases
ProbgoodðxP Þ by a factor P 1 that approaches unity
as ProbgoodðxP Þ ! 1 whenever both ProbgoodðxP ðtÞÞ > 0
and ProbgoodðxRðtÞÞ > 0 and that Ebad increases
ProbbadðxP Þ by a factor with similar behavior whenever
both ProbbadðxP ðtÞÞ > 0 and ProbbadðxRðtÞÞ > 0. This E

effectively implements the heuristic: an experience is
remembered as better if it is followed by a good experience,
and remembered as worse if it is followed by a bad experi-
ence. Note that while this heuristic is consistent with the
association of ‘‘good” and ‘‘bad” with maintaining or not
maintaining either homeostasis or connectivity as discussed
above, it also allows a given xP to be both probably good
and probably bad, a not-unrealistic situation. This addi-
tional structure on X is summarized in Fig. 9. Extending
the evaluative process from the scalar representation pro-
vided by these probabilities to a multidimensional, i.e. vec-
tor, representation costs memory and kernel complexity
but does not change the architecture.

Evaluating percepts implicitly evaluates the actions that
are followed by those percepts; this implicit transfer of esti-
mated ‘‘good” or ‘‘bad” value from percepts to actions is
now implemented by D. A ‘‘rational” D, for example,
would assign high probabilities to actions g that are associ-
ated in XMPA with subsequent percepts that have high valu-
ations in XE. If W is such that the relative ranking of
percepts by value changes only slowly with t, relatively
highly- and lowly-ranked percepts can be considered to
be positive and negative ‘‘goals” respectively. As Friston
(2010, 2013) has emphasized, goals are effectively long-
term expectations to which an uncertainty-minimizing
agent attempts to match perceptions; Friston and col-
leagues call acting so as to match perceptions to goals ‘‘ac-
tive inference.” Within the CA framework, the minimal
functional architecture required for active inference is that
shown in Fig. 9. Here a memory component XG holds the
Fig. 9. Adding memories for evaluations of percepts (XE) and for a
current goal (XG) to Fig. 7d. Connections to W have been elided for
clarity.
current goal; it is populated by a punctual, forgetful kernel
SG acting on XE. While SG can be taken to choose percepts
of high value as goals, its specific action can be left open.
Note than in this architecture, incremental adjustments of
the ‘‘world model” XMPA and ‘‘self model” XD are made
in parallel with active inference: expectations are modified
to fit perceptions even when actions are taken to modify
perceptions to fit expectations. Note also that placing the
evaluation and goal memories XE and XG within the expe-
rience space X is predicting that the contents of these mem-
ories are both experienced and experienced as distinct, as
they indeed are in neurotypical humans. While the specific
mechanisms implementing the experiential distinction
between these memory components remains uncharacter-
ized, the present framework predicts that such mechanisms
exist.

By iteratively constructing representations of the antece-
dents and consequences of actions, the kernels MD and MPA

implement a simple kind of learning. The operator E simi-
larly implements a simple form of evaluative feedback. The
action choices made by D can, therefore, progressively
improve with experience. It is important to emphasize that
MD;MPA;E; SG and D are all by assumption homogeneous
kernels. What changes as the system learns is not the choice
function D, but the contents of the data structures – the
memories XMD;XMPA;XE and XG – that serve as ancillary
inputs to D. The ‘‘knowledge” of an RCA with this archi-
tecture is, therefore, entirely explicit. This is in marked con-
trast to typical neural-network models, including recent
‘‘deep learning” models (for a recent review, see
Schmidhuber, 2015), in which learning is entirely implicit
and the decision rules learned are notoriously hard to
reverse engineer. It is worth noting that standard neural-
network models have no intrinsic perspective; as empha-
sized earlier, it is the requirement that an RCA learns
about W from its own intrinsic perspective that forces what
is learned to be made explicit in a memory located in X, i.e.
in a memory encoding contents that are experienced - but
are not necessarily reportable - by the RCA. While the ker-
nels MD;MPA;E; SG, as well as others to be introduced
below, that populate explicit memories can, together with
the decision kernel D be considered to encode implicit
memories in the current model, the assumption that all
such kernels are homogeneous implies that these implicit
memories are not loci of learning. The kinds of ‘‘practised
skill” memories that are canonically regarded as implicit
are most naturally modelled as structures, e.g. fixed or
fully-automatized learned action patterns, within the action
space G in the current framework; an exploration of how
such structures are developed within G is beyond the pre-
sent scope.

It is important to note that whether D is ‘‘rational” in
the sense of favoring actions that result in ‘‘good” out-
comes, and hence the extent to which the choices favored
by D ‘‘improve” with experience, is left open within the
architecture. If W is such that ‘‘good” choices correlate
with the acquisition of resources required for survival, a
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basic orientation or ‘‘drive” toward increasing the average
subjective valuation of ‘‘good” percepts can be expected to
emerge in a population of agents whenever the required
resources are scarce. Friston has argued that predictability
of experience is itself the primary resource that organisms
seek to maximize, and that the drive to pursue and acquire
external resources can be understood in terms of maintain-
ing the predictability of experiences that facilitate or
enhance the maintenance of physiological homeostasis
(Friston, 2010, 2013; Friston et al., 2012). Reducing the
uncertainty of experiences from a large environment
requires extensive sampling of the environment’s behaviors
and hence active exploration; effective agents in a large W

can, therefore, be expected to display a ‘‘curious rational-
ity” that maintains homeostasis while devoting significant
energy to active exploration and learning (reviewed by
Gottlieb, Oudeyer, Lopes, & Baranes, 2013). Friston
et al. (2015, 2016) make a similar point: the minimization
of expected surprise in the strict sense of departure from
homeostasis (i.e. the minimization of variational free
energy) contingent upon remembered action-perception
associations can always be expressed as a mixture of ‘‘epis-
temic” and ‘‘pragmatic” value. The pragmatic value is the
expected outcome according to prior preferences, i.e.
‘‘good” or ‘‘bad” evaluations, while the epistemic value is
the utility of the action for learning, i.e. reducing the poten-
tial for uncertainty or surprise in the future. This resolution
of uncertainty through active sampling is at the heart of
many active inference schemes and arises naturally in any
model in which the agent expects to occupy the states it
prefers.

4.4. Reference frames and attention

While defining expectations over percepts can be
expected to be useful in some circumstances, many aspects
of realistic behavior require defining and acting on expecta-
tions defined over individual or small subsets of compo-
nents of percepts. The memories XMD and XMPA together
provide the data needed to allow individual component -
action associations to be computed; the memory XE simi-
larly provides the data needed to allow individual compo-
nent valuations to be computed. Let XC and XEC be
memories that store conditional probability distributions
and evaluations, respectively, of individual components
of percepts. To define XC, note that the xR � g and g � xP
associations stored in XMD and XMPA respectively allow each
action g to be viewed as a relation fðxR; xP Þg implemented
by PA. Expressing these percepts as vectors
xRðtÞ ¼

P
iaiðtÞni and xP ðtÞ ¼

P
ibiðtÞni, we can view the

action of g on the component ni at t as
gniðtÞ : aiðtÞ # biðtÞ. Each g can, in other words, be viewed

as increasing or decreasing the amplitude of each percep-
tual component ni from one percept to the next. As it is
natural to view amplitudes as probabilities of occurrence
as discussed above, each g can be viewed as increasing or
decreasing the probability of each perceptual component
ni from one percept (i.e. value of t) to the next. The mem-
ory XC can, therefore, be viewed as storing t-indexed con-
ditional probabilities Probtðnijg, Probt�1ðniÞÞ of perceptual
components given actions. To update the distribution of
Probtðnijg, Probt�1ðniÞÞ as a function of t, we define a punc-
tual kernel C as a map XMD � XMPA � XC ! XC. Subject to
the constraint that all probabilities remain normalized, this
map can in principle implement any arbitrary updating
function.

The memory XEC containing component valuations may
be constructed from XE in a similar fashion, by defining
punctual, forgetful kernels ECgood and ECbad that map
XE ! XEC. The kernels ECgood and ECbad assign, respec-
tively, ‘‘good” valuations to components strongly repre-
sented in ‘‘good” percepts and ‘‘bad” valuations to
components strongly represented in ‘‘bad” percepts. A suit-
able function for each would assign to each component ni
the average valuation of percepts xP in which the coefficient
ai of ni is greater than some specified threshold. With addi-
tional memory, this mechanism can be extended to assign
values to (finite ranges of) amplitude values of components.
Note that component valuations constructed in this way
are in an important sense context-free; representing com-
ponent valuations conditioned on the valuations of other
components requires both more memory and more com-
plex kernels.

The memory components XC and XEC provide the
‘‘background knowledge” required for component-
directed as opposed to entire-percept directed actions.
What remains to be constructed is a process of selecting
a component on which to act, and a second component
with respect to which the action is taken. Consonant with
current usage in physics (e.g. Bartlett, Rudolph, &
Spekkens, 2007), we refer to this second, context-setting
component as a reference frame for the action. Specifying
a reference frame is specifying what does not change when
an action is taken; hence reference frames provide the basis
for specifying what does change. Reference frames provide,
in other words, the necessary stasis with respect to which
change is perceptible. Measurement devices such as meter
sticks provide the canonical example: a measurement made
with a meter stick is only meaningful if one assumes that
the actions involved in making the measurement do not
change the length of a meter stick. More broadly, any con-
text in which observations are made, whether a particular
laboratory set-up or an everyday scene, is meaningful as
a context only if it itself does change as a result of making
the observation. A reference frame is, therefore, a stipu-

lated solution to the frame problem, the problem of speci-
fying what does not change as a result of an action
(McCarthy & Hayes, 1969; reviewed by Fields, 2013b).
Such stipulations are inherently fragile and defeasible: a
context that does observably change, like a ‘‘meter stick”
with an observably context-dependent length, ceases to
be a reference frame as soon as its variation is detected.
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Stipulated reference frames are, nonetheless, useful solu-
tions to the frame problem to the extent that they enable
successful behavior in the niche of the agent employing
them. Absent a level of control over the environment that
ITP forbids, they are the only kinds of reference frames
available.

While the frame problem has a long history in AI, its
impact on cognitive science more generally has been pri-
marily philosophical (see, e.g. the contributions to
Pylyshyn (1987) and Ford & Pylyshyn (1996)). The ques-
tion of how human perceivers identify contexts as opposed
to objects or events and how they detect changes in context
have received little direct investigation. The current model
predicts that contexts are defined constructively by the acti-
vation of discrete reference frames that impose expecta-
tions of constancy and limit attention to features
expected to remain constant. Experimental demonstrations
of change-blindness (reviewed by Simons & Ambinder,
2005) show that such limitations of attention exist. Virtual
reality methods provide opportunities to experimentally
manipulate context identification, and hence to probe the
specific reference frames employed to identify contexts, in
ways that remain largely unexplored.

For complex organisms, the most important reference
frame is arguably the experienced self, generally including
one or more distinguishable components of the body. This
experienced self reference frame comprises a collection of
components of experience that do not change during some,
most or even all actions. The experienced self as a reference
frame appears to be innate in humans (e.g. Rochat, 2012)
and may be innate in higher animals generally. It is with
respect to the experienced self as a reference frame that
infants learn their capabilities for actions as bodily motions
and for social interactions as communications with others
(e.g. von Hofsten, 2007). Actions of or on the body, e.g.
moving a limb, require that other parts of the experienced
self, e.g. the mass and shape of the limb and its point of
connection to the rest of the body, remain fixed to serve
as the reference frame for the action. As the body grows
and develops, its representation must be updated to com-
pensate for these changes if its function as a reference
frame is to be preserved. The experienced self reference
Fig. 10. (a) Kernels that maintain or switch attentional focus. (b) Additions to
clarity.
frame is readily extensible to tools, vehicles, and fully-
virtual avatars in telepresence and virtual-reality applica-
tions, and is readily manipulated in the laboratory.
Disruptions of the experienced self as a reference frame
present as pathologies ranging from schizophrenia to
anosognosia. These latter provide a clinical window into
the human implementation of the bodily and emotive self
as a fusion of interoceptive and perceptual inputs (e.g.
Craig, 2010; Seth, 2013) and of the cognitive self as a fusion
of memory-access and executive functions that develops
gradually from infancy to early adulthood (e.g. Simons
et al., 2008; Metzinger, 2011; Hohwy, 2016).

Selecting a particular component of a percept on which
to act and another component or components, such as the
experienced self or the experienced self in some perceived
surroundings, to serve as a fixed context for an action is
an act of attention. The selected components must, more-
over, remain subjects of attention throughout the action.
Any agent capable of attending to some component of an
ongoing scene must also, however, be capable of switching
attention to a different component if something unexpected
and important happens. Attention requires, therefore, not
just a decision about what to attend to, but also a decision
about whether to maintain or switch attentional focus. To
meet these requirements, we introduce an ‘‘attentional
workspace” XF , a memory that contains a goal-
dependent focus of attention ni, a focus-dependent refer-
ence frame nj and a time counter tF that measures the
duration of an attentional episode. We also define an atten-
tional action space GF containing two actions, ‘switch’ and
‘maintain’ that alter or preserve the attentional focus,
respectively, and a forgetful punctual kernel DF : XP�
XR � XE � XG ! GF that selects gF = ‘switch’ at t if the
valuation of xP ðtÞ differs from that of xRðtÞ by some speci-
fied threshold and selects gF = ‘maintain’ otherwise. These
elements of GF correspond to actions AF on the workspace
XF , as shown in Fig. 10a. The action AFm selected by
gF = ‘maintain’ only increments tF . The action AFs selected
by gF = ‘switch’ selects a new focus of attention nk, a new
reference frame nl and resets tF to zero. We represent this
action as a forgetful punctual kernel AFs : XP � XG�
XC � XCE ! XF . How this attention-switching kernel is
Fig. 9 required to support attention. Connections toW are again elided for
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defined has a potentially large impact on the behavior of
the RCA whose attentional workspace XF it affects. A
rational AFs could be expected to select a component ni
on which to focus that had a relatively large amplitude ai
in both the current percept xP and a high-value goal and
a reference frame nj, also with a relatively large amplitude
in both xP and the goal, that was affected in the past pri-
marily by actions that did not affect ni. While the valuation
of the attentional focus ni may be ‘‘bad,” a rational AFs

would select a reference frame nj with a ‘‘good” or at least
not ‘‘bad” valuation, as this amplitude of this component is
meant to be kept fixed in subsequent interactions with W.
A rational D kernel acting on the workspace XF would
then choose actions g that, in the past as recorded in XC,
moved the amplitude of xi in the direction of its value in
the chosen goal state while keeping the amplitude of xj
fixed. As XC; XEC and XF are updated one cycle behind
XMD;XMPA;XE and XG and hence two cycles behind XP ,
the kernel D must always work with expectation and valu-
ation information that is slightly out-of-date.

The structure of and operations within the experiential
space X required for an attentional system are summarized
in Fig. 10b. Selecting a new component for attention and
maintaining attention on a previously-selected component
are competitive processes in this architecture, as they are
in humans (reviewed by Vossel, Geng, & Fink, 2014). When
top-down goals and expectations dominate and hence the
dorsal attention system controls perceptual processing, the
salience of goal-irrelevant stimuli is reduced; a switch to vig-
ilance and hence ventral attentional control, in contrast,
reduces the salience of goal-relevant stimuli. Top-down,
dorsal attentional dominance facilitates exploration and
information gathering, while bottom-up, ventral attentional
dominance facilitates threat avoidance. This attention
switch can be incorporated into predictive coding and active
inference models using the concept of ‘‘precision” for both
expectations and percepts; high-precision expectations
dominate low-precision percepts and vice versa (Friston,
2010, 2013). Precision is effectively a measure of reliability
based on prior experiences and is hence a second-order
expectation that must be learned by refining an a priori bias
as discussed above. Predictive coding networks modulated
by estimated precision have been shown to describe the
cellular-scale connection architecture of cortical mini-
columns (Bastos et al., 2012) as well as the modular connec-
tion architectures of motor (Shipp, Adams, & Friston,
2013) and visual (Kanai, komura, Shipp, & Friston, 2015)
processing (see also Adams, Friston, & Bastos (2015) for
an overview of these results). As noted earlier, the smooth-
ness of stored probability distributions provides a natural
estimate of the number of experiences that have contributed
to them and hence their reliability. A rational switching
function can be expected to favor high-reliability expecta-
tions and disfavor low-reliability expectations, and hence
to implement a precision-based modulation of attention.

Extending the system shown in Fig. 10b to multiple
focus and/or reference components costs memory and
processing complexity, but does not change the architec-
ture. It is interesting to note that within this architecture,
all change is implicitly attributed by the agent to the action
taken; from the agent’s intrinsic perspective, its actions
change the state of its attentional focus with respect to its
reference frame. For the system to behave effectively, the
world W must be such that this attribution of observed
changes to executed actions is satisficing in W. The world
must not, in other words, surprise the agent so often that
the agent’s sense that actions have predictable conse-
quences becomes impossible to maintain. The world must
not, in other words, exhibit either overall randomness or
overall stasis as noted earlier.

It is worth re-emphasizing, moreover, that in the CA
framework X is a space of experiences. Hence the RCA
depicted in Fig. 10b is regarded as experiencing each state
of its highly-structured space X, including all those compo-
nents on which its attention is not focussed (the formalism
leaves open the question of whether these components
themselves have unexperienced internal structure). It
may, however, be ‘‘unconscious” of unattended compo-
nents in the sense in which this term is used in theories that
associate consciousness with relative amplification or atten-
tion (e.g. Baars, Franklin, & Ramsoy, 2013; Dehaene,
Charles, King, & Marti, 2014; Graziano, 2014). In general,
how an RCA acts depends on its attentional focus. Report-
ing what it is experiencing, e.g. to an investigator in a lab-
oratory or even to itself via a modality such as inner
speech, is a specific kind of action that requires a specific
attentional focus. Whether the attentional focus required
to support a given form of reporting is achieved in any par-
ticular case or is even achievable by a particular RCA is a
matter of architecture, i.e. of how the memory-construction
and attentional-control kernels are defined. Agents that
never report particular kinds of experiences, or that never
report experiences using a given modality such as inner
speech (Heavey & Hurlburt, 2008), are not only possible
but to be expected within the CA framework. Indeed the
CA framework predicts that agents are typically aware of

more than they can report awareness of to an external obser-
ver or even to themselves. Agents are, in other words, typ-
ically under-equipped with attentional resources, and hence
unable to access some or even much of their experience
for behavioral reporting via any particular modality. Being
under-equipped for reporting experiences post hoc is unsur-
prising on evolutionary grounds; indeed why human beings
should engage in so much post hoc self-reporting via
modalities such as inner speech remains a mystery
(Fields, 2002). As reportability by some observable behav-
ior remains the ‘‘gold standard” in assessments of aware-
ness (e.g. Dehaene et al., 2014), this strong and counter-
intuitive prediction of the CA framework can at present
only be tested indirectly, e.g. using phenomena such as
blindsight (reviewed by Overgaard, 2011). It raises the
methodological question of whether ‘‘reporting” of
experiences by imaging methods such a fMRI, as
employed by Boly et al. (2013), for example, with
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otherwise-unresponsive coma patients, should be regarded
as evidence of awareness across the board.

4.5. Remembering and planning action sequences

The attentional workspace XF defined above does not
explicitly represent the action taken at each t and so cannot
support either memory for ‘‘cases” of successful action or
planning. The most recently executed g is, however, avail-
able within XMD. A fixed-capacity case memory can be
regarded as a subjective probability distribution over pos-
sible cases, where each case is a vector of fixed length
lcase, the components of which are quadruples
ðaini; bjnj; tF ; gðtF ÞÞ with the percept components ni; nj and
the amplitude bj fixed. A case defined in this way provides

a representation of how the amplitude ai of the attentional
focus ni varies relative to the fixed amplitude bj of the ref-

erence frame nj when subjected to the sequence

gðtF ¼ 0Þ . . . gðtF ¼ lcaseÞ of actions. This definition formu-
lates in language compliant with ITP the concept of a case
employed in the case-based reasoning and planning litera-
ture (Kolodner, 1993; Riesbeck & Schank, 1989). It is also
similar in both role and scope to the concept of an ‘‘event
file” introduced by Hommel (2004) to represent the tempo-
ral binding of perceptions with context-appropriate
actions. Cases or event files are effectively ‘‘snapshots” of
active inference that show how a particular perceptual
input is processed given the attentional context in which
it is received and the particular expectations that it
activates.

As an example, consider a sequence of actions involved
in reaching for and grasping a coffee cup. The immediate
goal of the sequence is to grasp the coffee cup; we will
ignore the question of different grasps being needed for dif-
ferent subsequent actions. The target of the sequence is a
particular coffee cup that is visually identifiable by particu-
lar perceived features, e.g. location, size, shape and color.
The cup’s perceived size, shape and color do not change
as a result of the motion; hence their values can serve as
the reference frame that determines the cup’s identity. As
the goal of the action sequence is to change the perceived
location of the coffee cup, its location cannot be included
in the reference frame; if it was, the cup would lose its iden-
tity when it was moved. The attentional workspace XF ,
therefore, contains the variable perceived values of the
positions of the cup and of the reaching hand as foci and
the fixed perceived values of the size, shape and color of
the cup as the reference frame. The recorded case contains,
effectively, a sequence of ‘‘snapshots” of the contents of XF :
a time sequence of cup and hand position values, together
with the actions that produced them, relative to these fixed
reference values. A memory Mcase for such cases can be
constructed using the counter-incrementing methods used
to construct XMD and XMPA above. As action sequences that
are worth recording are typically those that either satisfied
goals or led to trouble, it is useful to construct each record
in Mcase as a 5-tuple ½xP ðtF ¼ 0Þ;EððxP ðtF ¼ 0ÞÞ;xP ðtF ¼ lcaseÞ;
EððxP ðtF ¼ lcaseÞÞ; caseðtF Þ�, where xP ðtF ¼ 0Þ and
xP ðtF ¼ lcaseÞ are the full percepts at the beginning and
the end of caseðtF Þ respectively, and EððxP ðtF ¼ 0ÞÞ and
EððxP ðtF ¼ lcaseÞÞ are their evaluations as recorded in XE.
This representation allows Mcase to be searched – i.e. ker-
nels acting on Mcase to depend upon – either the initial state
and its evaluation or the final state and its evaluation. Case
memories constructed in this way are clearly combinatori-
ally explosive; hence case-based planning in systems with
limited memory is necessarily heuristic, not exhaustive, a
condition widely recognized in the case-based planning
literature.

It is natural to interpret a set of one or more fixed com-
ponents of experience, with respect to which one or more
other components of experience change when one or more
sequences of actions is executed as defining an effective or
apparent object. Objects defined in this way are collections
of expectations, based on accumulated experience, about
the co-occurrence and co-variation under actions of partic-
ular values of particular experiential degrees of freedom.
Objects in this sense are effectively categories defined by
fixed (i.e. reference) and variable features together with sets
of expected behaviors, i.e. changes in the amplitudes of the
variable features relative to the fixed features in response to
actions. Hence such objects are more properly considered
to be object types as opposed to de re individuals. While
an agent may assume, as a useful heuristic, that an object
category has only one member and act on the basis of this
assumption, consistency with ITP requires that nothing in
the agent’s experience can be sufficient to demonstrate that
this is the case. Hence object identity over time is ambigu-
ous in principle in the ITP/CA framework. Objects defined
in this way play the role of ‘‘icons” on the ITP interface. As
the number of recorded cases involving actions that change
the state of some object increase, its ‘‘icon” gains pre-
dictable functionality and hence utility as a locus of
behavior.

The present framework leaves open the question of
whether any ‘‘object”-specifying reference frames are
innate. It predicts, however, that any such reference
frames, whether innately specified or constructed from
experience, will have low dimensionality compared to the
perceptual experiences that they help to interpret. Dra-
matic evidence for low dimensionality is provided by stud-
ies of two of the earliest-developing and ecologically most
crucial reference frames for humans, those that identify
animacy and agency (reviewed by Scholl & Tremoulet,
2000; Scholl & Gao, 2013; Fields, 2014). Indeed Gao,
McCarthy, and Scholl (2010) have shown that a simple ori-
ented ‘‘V” shape not only satisfies the typical human visual
criterion for agency detection, but distracts attention
sufficiently to disrupt performance in an object-tracking
task. Human face-recognition criteria are similarly rudi-
mentary. Additional evidence for low reference-frame
dimensionality is provided by the kinds of categorization
conflicts studied in the quantum cognition literature



Fig. 11. (a) Selection of a case and case-record for execution based on the
current percept. This action does not enable case execution. (b) Enabling
or disabling case execution by setting or resetting the control bit c based
on a comparison of current and expected percepts during case execution.
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(reviewed e.g. by Pothos & Busemeyer, 2013; Bruza, Kitto,
Ramm, & Sitbon, 2015), for example the ‘‘Linda” problem.
Here the ‘‘natural” reference frames, i.e. concepts or coher-
ent sets of expectations, do not exhibit classical composi-
tionality; combining reference frames to reproduce the
judgements made by subjects requires the use of complex
‘‘quantum” probability amplitudes. Complex probabilities
can, however, be represented by classical probabilities in
higher-dimensional spaces (e.g. Fuchs & Schack, 2013,
see also; Fields, 2016 for a less formal discussion), consis-
tent with attentional selection of a low-dimensional sub-
space to serve as a reference frame. If ‘‘object”-specifying
reference frames in fact encode fitness information as ITP
requires, one would expect a general inverse correlation
between fitness consequences and reference frame dimen-
sionality. While both the global and local structure of the
typical human category hierarchy have been investigated
(reviewed by Martin, 2007; Keifer & Pulvermüller, 2012),
neither the minimal functional content (i.e. dimensionality)
nor the fitness-dimensionality correlation of typical cate-
gories have been broadly investigated.

The components of the experienced self reference frame,
taken together, constitute an iconic object – the experi-
enced self as a persistent embodied actor – in the above
sense. The features of the experienced self as persistent
embodied actor that are employed as fixed reference fea-
tures with respect to which other features of the experi-
enced self are allowed to vary change only slowly and
asynchronously as a function of time; it is this slow and
asynchronous change in reference features that allow the
approximation of a persistent experienced self (but see
Klein, 2014 for a discussion of the sense of a persistent
experienced self in the presence of conflicting perceptual
evidence). The conditions under which non-self objects
are represented as persistent over extended time, in partic-
ular across extended periods of non-observation, have been
subjected to surprisingly little direct experimental investi-
gation and are not well understood (e.g. Scholl, 2007;
Fields, 2012). Both the extensibility of the experienced self
reference frame to incorporate otherwise non-self objects
discussed earlier and the sheer variety of pathologies of
the experienced self, including depersonalization syn-
dromes (e.g. Debruyne, Portzky, Van den Eynde, &
Audenaert, 2009), suggest that the experienced self - non-
self distinction is not constant for individual human sub-
jects and highly variable between subjects. This question
cannot, unfortunately, yet be addressed productively in
non-human subjects.

With this concept of an iconic object, the functional dif-
ference between a case memory Mcase and the event memo-
ries XMD and XMPA becomes clear: Mcase records sequences
of partial events in which, in each sequence, only the
response to actions of the attentional focus ni and the lack
of response to actions of the reference nj are made explicit.
Each case inMcase can, therefore, be thought of as imposing
an implicit, goal-dependent criterion of relevance on the
actions it records.
Recording object-directed action sequences is useful to
an agent because it enables previously-successful sequences
to be repeated and previously-unsuccessful sequences to be
avoided. Selecting a previously-recorded case from mem-
ory for execution under some similar circumstances is the
simplest form of planning. Executing the action sequence
recorded in a remembered case requires, however, shortcut-
ting the usual decision process D. Within the architecture
shown in Fig. 10, the simplest way to accomplish this is
to associate a working memory XW with the attentional
focus XF , and to include in XW a control bit c on which
D depends. If c ¼ 0;D is independent of the contents of
XW and acts as in Fig. 9. If c ¼ 1;D selects the action g rep-
resented in XW . Populating XW requires two embedded
agents, as shown in Fig. 11. The first agent (Fig. 11a)
selects a recorded case based on the current percept, and
sequentially copies the actions specified by that case into
XW . The ‘‘world” of this agent consists of XP ;Mcase and
XW ; its ‘‘perception” kernel selects the case from Mcase for
which the initial state is closest to the current percept xP ,
its ‘‘decision” kernel selects records from this case in
sequence and its ‘‘action” kernel writes the action gðtF Þ
specified by the selected case into XW . The process executed
by this agent requires a time step, i.e. one increment of t.
The second agent (Fig. 11b) has a switching function anal-
ogous to the attention-switching dyad in Fig. 10a: it com-
pares the current percept xP ðtÞ to the currently-selected
case record, setting c ¼ 1 when the case is initially selected
and setting c ¼ 0 if the distance between the states of either
the object or reference components of xP ðtÞ and their states
as specified by the currently-selected case record exceeds
some threshold. Setting c ¼ 0 in response to such an expec-
tation violation during case execution restores D to its
usual function. Maintaining temporal synchrony requires
that the overall counter t advances only when D executes
as discussed above; this requirement can be met if D is
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regarded as acting instantaneously when c ¼ 1 and the
action g to be selected is specified by XW , i.e. when action
is performed ‘‘automatically.” In this case interrupting exe-
cution of a case must be regarded as requiring one time
step, after which no action is selected.

The processes illustrated in Fig. 11 only execute a previ-
ous case verbatim. Interrupting execution of a case initiates
a search for a new case that is a better fit to the current per-
cept xP ðtÞ. A more intelligent case-based planner can be
constructed by incorporating an additional agent capable
of modifying the currently-selected case record based on
xP ðtÞ and information about previous component responses
stored in XC. Such modification creates a new case, which
is then recorded in Mcase A second natural extension would
incorporate a ‘‘meta” agent capable of comparing multiple
cases to identify shared perception-action dependencies. A
case comparator of this kind is the minimal structure
needed to recognize relationships between events occurring
in different orders or with different numbers of intervening
events; hence it is the minimal structure needed to imple-
ment a ‘‘temporal map” as described by Balsam and
Gallistel (2009).

5. Conclusion

We have shown three things in this paper. First, the CA
formalism introduced by Hoffman and Prakash (2014) is
both powerful and non-trivial. Even ‘‘agents” comprising
only a handful of bits exhibit surprisingly complex behav-
ior. A three-bit agent can implement a Toffoli gate, so net-
works of three-bit agents can compute any computable
function, and can even do so reversibly. More intriguing
are the hints that networks of simple agents exhibit dynam-
ical symmetries that also characterize geometry. This result
comports well with current efforts by physicists to derive
the familiar geometry of spacetime from the symmetries
of information exchange between simple processing units
(e.g. Tegmark, 2015). We are currently working toward a
full description of spacetime constructed entirely within
the CA framework.

We have, second, shown that a concept of ‘‘fitness” as
connectivity emerges naturally when networks of interact-
ing RCAs are considered. This fitness concept accords well
with established concepts of centrality developed in the the-
ory of social and other complex networks. By expressing
fitness within the CA framework, we free ITP from any
need to rely on an externally-stipulated fitness function.
Computational experiments to characterize the conditions
in which preferential attachment and hence high-
connectivity individuals emerge in networks of interacting
RCAs are being designed.

Our third result is that networks of RCAs can, at least in
principle, implement sophisticated cognitive processes
including attention, categorization and planning. This
result fleshes out the central concepts of ITP: that experi-
ence is an interface onto an ontologically-ambiguous
world, and that ‘‘objects” and ‘‘causal relations” are
patterns of positive and negative correlations between
experiences. It highlights the critical role played by aspects
of experience that do not change, and hence serve as ‘‘con-
text” or, more formally, reference frames relative to which
aspects of experience that do change can be classified and
analyzed. Here again, our result comports well with recent
work in physics, where with the rise of quantum informa-
tion theory, the roles of reference frames in defining what
can and cannot be known or communicated about a phys-
ical situation have taken on new prominence (e.g. Bartlett
et al., 2007). A substantial program of simulation develop-
ment and testing is clearly required to evaluate, in struc-
tured and eventually in open environments, the formal
models of memory, attention, categorization and planning
developed here. The level of complexity at which such
models can feasibly be implemented remains unclear. We
hope, however, to be able to fully characterize the reference
frames required to support relatively simple behaviors in
relatively simple environments, and to use this information
to formulate predictions testable in more complex systems.

The CA framework is, as we have emphasized, a mini-
mal formal framework for understanding cognition and
agency. While debates about the structure and content of
memory - and implicitly, experience - have dominated cog-
nitive science for decades (e.g. Gibson, 1979; Fodor &
Pylyshyn, 1988; Anderson, 2003), these debates have gener-
ally been conducted either informally or in the context of
complex, conceptually open-ended modeling paradigms.
Our results, together with those of Friston and colleagues
using the predictive coding and adaptive inference frame-
work, show that cognition and agency can be addressed
in conceptually very simple terms. The primary task of
an organism in an environment is to regulate its interac-
tions with the environment, by behaving appropriately, in
order to maintain an environmental state conducive to its
own homeostasis. As Conant and Ashby (1970) showed
and Friston (2010); Friston (2013) have significantly elabo-
rated, effective regulation of the environment requires a
statistically well-founded model of the environment. Con-
sistency with ITP requires that such models treat the envi-
ronment as open, in which case they can be at best
satisficing. The results obtained here, together with those
of Friston (2013) and Friston et al. (2015), offer an outline
of how such models may be constructed in a way that is
consistent with ITP, but many details remain to be worked
out. A thorough treatment of both evolutionary and devel-
opmental processes from both extrinsic and intrinsic per-
spectives is needed to understand the kinds of worlds W

in which complex networks of interdependent RCAs can
be expected to appear.

We have largely deferred the question of motivation. As
mentioned in Section 4.3 above, rational agents exhibit
curiosity and hence explore their environments to discover
sources of ‘‘good” experiences, which in a typical W may
lie very near sources of ‘‘bad” experiences. As Gottlieb
et al. (2013) emphasize, however, rational agents do not
exhibit unlimited curiosity, as this can lead to expending
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all available resources attempting to solve unsolvable prob-
lems or learn unlearnable information. Understanding and
modeling motivation requires not only a formal character-
ization of resources and their use, but also a formal model
of reward, its representation, and its roles in both extrinsic
and intrinsic motivation. The distinction between the
‘‘pragmatic” and ‘‘epistemic” values of information
(Friston et al., 2015) is useful here; the current framework
models the effects of this distinction in terms of attention
switching, but not its origin. Both developmental robotics
(e.g. Cangelosi & Schlesinger, 2015) and the neuroscience
of the reward system (e.g. Berridge & Kringelbach, 2013)
provide empirical avenues to pursue in this regard.

We have also, and more importantly from an architec-
tural perspective, deferred the task of constructing a full
theory of RCA networks and RCA combinations. Devel-
oping such a theory will require addressing such questions
as whether RCA networks can in general be considered
locally hierarchical, whether the action spaces G of com-
plex RCAs require structures, for example to represent
fully automatized action patterns, analogous to the struc-
tures in X described here, and how to explicitly define D
kernels in complex RCAs. It will also require understand-
ing how the time counters (i.e. t parameters) of complex
RCAs relate to those of their component RCAs, a question
that has been elided here by assuming that all processes
‘‘inside” X are synchronous. Answering such questions
may well depend on resolving at least some of the issues
having to do with fitness and motivation mentioned above.
We expect, however, that their answers will shed light on
such questions as whether complex RCAs can in some
cases be regarded as unaware of the experiences - e.g. the
percepts or memories - of their component RCAs and
how the actions of complex RCAs depend, or not, on the
actions of their component RCAs.

As CAs and hence RCAs are intended, from the outset,
to represent conscious agents, it is natural to ask what the
behavior of networks of RCAs can tell us about conscious-
ness. Here two results stand out. The first is that an agent
cannot, without violating ITP, distinguish the world out-
side of her experience from another conscious agent. While
this follows from the ontological principle of conscious
realism of Hoffman and Prakash (2014), it equally follows
from the impossibility, within ITP, of determining that the
‘‘world” has non-Markovian dynamics. The second is that
agents can be expected to be aware of more than they can
report. This seems paradoxical if awareness is equated with
reportability, but makes sense when the attentional
resources that would be required to enable reporting of
all experiences are taken into account.

While examining specific cases of successful and unsuc-
cessful behavior in well-defined worlds requires addressing
the issues of motivation and multi-agent combination high-
lighted above, two substantial conceptual issues stand out.
The first is that the CA formalism, in contrast to either
standard neural network approaches or purely-functional
cognitive modelling approaches, enforces by its structure
a focus on what a constructed agent is being modelled as
experiencing. The CA formalism itself requires that the
decision kernel D acts on the space of experiences X; hence
whatever D acts on must be in X and therefore must be an
experience. Constructing complex memory structures in X

in order to make them available to D is, given this con-
straint, proposing the hypothesis that the contents of such
structures are experienced. Experienced by whom? Here the
second issue becomes relevant. As discussed in Section 3.2,
discussions of consciousness have often assumed, explicitly
or more typically implicitly, that ‘‘low-level” experiences
combine in some straightforward way into ‘‘higher-level”
experiences. The phenomenal unity of ordinary, waking
human experience is assumed by many to indicate that
there is only one relevant ‘‘level” of experience, the level
of the whole organism (or often, just its brain). With this
assumption, proper components of the human neurocogni-
tive system cannot themselves be experiencers; that this is
the case is treated as axiomatic, for example, in Integrated
Information Theory (Tononi & Koch, 2015; see Cerullo,
2015 for a critique of this assumption in the IIT context).
If complex experiencers are networks of RCAs, however,
this assumption cannot be correct: all RCAs, even the sim-
plest ones, experience something. If complex experiencers
are networks of RCAs, there is also no reason to assume
that ‘‘higher-level” experiences are in any straightforward
sense combinations of ‘‘lower-level” ones. Unless RCA
combinations are simple Cartesian products, high-level
experiences will in general not be uniquely predictable from
low-level experiences or vice versa. If complex experiencers
are only approximately hierarchical rich-club networks of
RCAs, the assumption that experiences should in general
be straightforwardly combinatoric is almost certainly
wrong.

That said, it is worth re-emphasizing that the CA frame-
work is not, and is not intended to be, a theory of con-
sciousness per se. The CA framework says nothing about
the nature of experience. It says nothing about qualia; it
simply assumes that qualia exist, that agents experience
them, and that they can be tokened by elements of X.
The CA framework is, instead, a formal framework for
modelling conscious agents and their interactions that
enforces consistency with ITP. By itself, the CA framework
is ontologically neutral, as is ITP. When equipped with the
ontological assumption of conscious realism, the CA
framework becomes at least prima facie consistent with
ontological theories that take consciousness to be an irre-
ducible primitive. The role of the CA framework in
expressing the assumptions or results of such theories can
be expected to depend on the details of their ontological
assumptions. Whether the CA framework fully captures
the ontological assumptions of existing theories that take
consciousness to be fundamental, e.g. that of Faggin
(2015), remains to be determined.

In summary, the CA framework, and RCA networks in
particular, provide both a highly-constrained formal tech-
nology for representing cognition and a way of thinking
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about cognition that emphasizes experience and decisions
based on experience. It directly implements the ontological
neutrality regarding the external world that is required by
ITP. As results from physics and other disciplines render
naı̈ve or even critical realism about perceived objects and
causal relations increasingly hard to sustain, this ability
to model experience and decision making with no support-
ing ontology will become increasingly critical for psychol-
ogy and for the biosciences in general.
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Procopio, L. M., Brukner, Č., & Walter, P. (2016). Experimental
verification of an indefinite causal order. Preprint arxiv:1608.
01683v2 [quant-ph].

Schmidhuber, J. (2015). Deep learning in neural networks: An overview.
Neural Networks, 61, 85–117.

Scholl, B. J. (2007). Object persistence in philosophy and psychology.
Mind and Language, 22, 563–591.

Scholl, B. J., & Gao, T. (2013). Perceiving animacy and intentionality:
Visual processing or higher-level judgment? In M. D. Rutherford & V.
A. Kuhlmeier (Eds.), Social perception: Detection and interpretation of

animacy, agency and intention (pp. 197–230). Cambridge, MA: MIT
Press.

Scholl, B. J., & Tremoulet, P. (2000). Perceptual causality and animacy.
Trends in Cognitive Science, 4, 299–309.

Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied
self. Trends in Cognitive Sciences, 17, 565–573.

Shalm, L. K., Meyer-Scott, E., Christensen, B. G., Bierhorst, P., Wayne,
M. A., Stevens, M. J., et al. (2015). A strong loophole-free test of local
realism. Physical Review Letters, 115, 250402.

Shipp, S., Adams, R. A., & Friston, K. J. (2013). Reflections on agranular
architecture: Predictive coding in the motor cortex. Trends in Neuro-

science, 36, 706–716.
Simons, D. J., & Ambinder, M. S. (2005). Change blindness: Theory and

consequences. Current Directions in Psychological Science, 14(1),
44–48.

Simons, J. S., Henson, R. N. A., Gilbert, S. J., & Fletcher, P. C. (2008).
Separable forms of reality monitoring supported by anterior prefrontal
cortex. Journal of Cognitive Neuroscience, 20, 447–457.
Smith, J. E., & Nair, R. (2005). The architecture of virtual machines. IEEE
Computer, 38(5), 32–38.

Steptoe, A., Shankar, A., Demakakos, P., & Wardle, J. (2013). Social
isolation, loneliness, and all-cause mortality in older men and women.
Proceedings of the National Academy of Sciences USA, 110, 5797–5801.

Tanenbaum, A. S. (1976). Structured computer organization. Upper Saddle
River, NJ: Prentice Hall.

Tegmark, M. (2015). Consciousness as a state of matter. Chaos, Solitons &
Fractals, 76, 238–270.

Toffoli, T. (1980). Reversible computing. In J. W. de Bakker & J. van
Leeuwen (Eds.). Automata, languages and programming: Lecture notes

in computer science (vol. 85, pp. 632–644). Berlin: Springer.
Tononi, G., & Koch, C. (2015). Consciousness: Here, there and

everywhere? Philosophical Transactions of the Royal Society B, 370,
20140167.

Trivers, R. L. (2011). The folly of fools. New York: Basic Books.
Turing, A. R. (1936). On computable numbers, with an application to the

Entscheidungsproblem. Proceedings of the London Mathematical

Society, Series 2, 442, 230–265.
van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the

human connectome. Journal of Neuroscience, 31, 15775–15786.
Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of

consolidation in visual working memory. Journal of Experimental

Psychology: Human Perception and Performance, 32, 1436–1451.
von Hofsten, C. (2007). Action in development. Developmental Science,

10, 54–60.
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