
	

BeOS	Programming	For	The	BeginnerBeOS	Programming	For	The	Beginner
by	John	Kenneth	Grytten	(13	April	2000)	

Return	to	The	Archives

Introduction	Introduction	

My	motivation	for	writing	this	article	is	to	open	your	mind	to	BeOS	programming.	The	key
reasons	for	working	in	the	BeOS	is	its	responsiveness	and	excellent	media	performance.	I	will
try	to	give	an	overview	of	developer	tools	and	explain	fundamentals	of	C++	development	in
BeOS.	For	coverage	on	BeOS	5,	read	BeNews	Extra:	BeMAGAZINE.

3dmiX	-	one	innovative	BeOS	app.

An	Overview	Of	Development	Tools	An	Overview	Of	Development	Tools	

The	whole	point	of	FreeBe	(aka	BeOS	5	Personal	Edition)	is	to	make	it	as	small	as	possible	for
people	to	download.	For	this	reason	you	won't	find	the	developer	tools	included,	but	you	can
download	the	file	"BeOS5DevTools.zip"	(about	20	MB)	separately	from	various	mirrors.

mailto:joh_gryt@hig.no
https://flipcode.com/archives/articles.shtml
http://www.benews.com/BeMag/
http://free.be.com/
http://www.benews.com/story/3005.1.html


Based	on	the	open	source	EGCS	tools	from	Cygnus,	BeOS	developers	enjoy	much	of	the	same
development	environment	as	developers	on	Linux.	In	fact,	GCC	(GNU	Compiler	Collection)	is
one	of	the	the	most	popular	compilers	on	any	platform.	Be	use	Metrowerks'	tools	on	the
PowerPC	platform,	but	thanks	to	the	BeIDE	(Integrated	Developer	Environment)	BeOS	native
programs	are	source	compatible	between	Intel	and	PowerPC.	To	make	life	easier,	Be	has	also
made	available	CrossDevelopment	tools.	In	fact,	99%	of	the	BeOS	source	tree	is	portable	C
and/or	C++	code,	and	that's	important	to	avoid	difficulties	in	the	transistion	to	new
architectures.	As	an	illustration,	Be	had	very	great	success	in	doing	a	complete	port	from
PowerPC	to	Intel	in	only	about	a	year.

Looking	at	what	other	tools	are	available,	you'll	find	many	third	party	utilities	and	ports	of
popular	crossplatform	high-level	languages.	There	is	the	NASM	assembler	for	Intel,	the
Squirrel	language	for	easy	GUI	programming	(Logo	dialect)	without	learning	C++,	Perl	and
REBOL	for	general	scripting,	PHP	4.0	and	BeKaffe	(Java	VM)	for	client-server	development	--
and	many	more...	I	should	probably	mention	Python	and	the	Hugo	language	(for	game
development).	Go	to	BeBits,	your	definitive	guide	to	BeOS	applications	to	find	all	this	and
much	more.	Personally,	I	would	like	to	point	out	that	the	crossplatform	Simple	Directmedia
Layer	from	Sam	Lantinga	has	full	BeOS	support.	SDL	makes	it	relatively	easy	to	program
games	and	demos,	as	known	from	the	demo	scene.

Visual	Be++	-	drag	and	drop	UI	components	like	in	Delphi

Be	has	announced	that	they	are	working	with	Sun	Microsystems	to	incorporate	the	Java(tm)2
Platform,	Standard	Edition	(J2SE)	and	PersonalJava(tm)	technology	into	BeOS.	Hopefully	this
will	bring	full	Java	support	to	BeOS	users,	and	BeKaffe	will	no	longer	be	the	only	Java	virtual
machine	available.	Java	will	bring	the	free	visual	development	tool	VisualAge	from	IBM,	as
other	"pure	java"	apps.	A	very	promising	commercial	BeOS	native	visual	programming	tool
called	Visual	Be++	is	being	developed	by	Kelly	Schrock	and	will	allow	developers	to	approch
programming	like	in	Delphi	or	Visual	Basic,	only	in	C++.	There	are	also	free	tools,	for	instance
BeBuilder	and	Interface	Elements,	that	make	GUI	creation	easier.

http://gcc.gnu.org/
http://www.bebits.com/
http://www.devolution.com/~slouken/SDL
http://www.scene.org/


C++	and	BeOS	C++	and	BeOS	

Most	Be	developers	don't	use	visual	programming	tools.	The	good	news	is	that	BeOS	really
delivers	on	the	concept	of	object-oriented	programming	using	C++	the	way	it	is	intended.	For
information	on	"Learning	C++	as	a	new	language"	and	opinions	on	the	use	of	libraries	in	C++
from	the	creator	of	the	language,	I	suggest	you	visit	C++	Answers	From	Bjarne	Stroustrup	and
his	homepage.	Many	thanks	to	Slashdot	for	bringing	these	informative	and	inspiring	answers.
BeOS	is	written	in	C	and	C++.	To	make	use	of	the	various	kits	described	in	the	the	Be	Book
you	are	(at	least	for	the	moment)	forced	to	develop	programs	in	C++	using	the	concept	of
inheritance.	Each	object	in	a	program	is	usually	put	in	a	separate	source	file	with	a	descriptive
name.	You	don't	really	need	to	learn	everything	in	C++,	but	you	absolutely	need	to	know	the
basic	OOP	concepts.	In	fact,	according	to	Bjarne	Stroustrup,	learning	programming	with	C++
and	a	few	good	libraries	(like	in	the	Be	API)	can	be	very	effective,	because	you	can	focus	on
the	central	ideas	and	introduce	additional	concepts	as	you	learn	the	basic	rules.	Sadly,	I	don't
have	time	to	write	a	complete	course	in	learning	C++	using	the	Be	API	-	but	I	believe	that
could	be	a	very	successful	for	many	(instead	of	getting	used	to	bad	habits	on	other
platforms).

Free	development	tools,	the	BeIDE	and	the	elegant	Be	API	(Application	Programming
Interface)	together	make	C++	development	in	BeOS	a	breeze	compared	to	other	operating
systems.	I	often	compare	developing	in	BeOS	like	programming	in	Java,	only	a	bit	more
difficult	and	a	lot	more	rewarding.	With	C++	you	enjoy	the	superior	performance	of	the	BeOS
system	and	the	power	of	language	flexibility,	which	sometimes	is	needed	for	large	or	special
projects.	Remember	that	real	BeOS	developers	inherit	functionality	in	existing	components
that	are	specially	optimized	to	work	with	the	rest	of	the	system.	I	like	to	describe	the
popularity	of	the	Be	API	in	the	developer	community	much	like	the	concept	of	LEGO	among
"kids	of	all	ages".	That's	right,	it's	easy	to	understand	and	you	can	build	virtually	anything	you
can	think	of	with	a	set	of	basic	yet	very	functional	pieces.	Both	LEGO	and	the	libraries	of	the
BeOS	consist	of	high	quality	parts	that	are	designed	for	seemless	integration,	high	flexibility
and	extensive	reuse	without	problems	-	in	the	computer	industry	this	translates	to	no	fuzz
and	binary	compatibility	--	that	you	don't	need	to	recompile	a	program	because	of	OS
updates.	Of	course	this	has	some	implications	that	developers	should	know	about.

http://slashdot.org/interviews/00/02/25/1034222.shtml
http://www.research.att.com/~bs/
http://www-classic.be.com/documentation/be_book/
http://www.lego.dk/
http://www-classic.be.com/developers/switch/


OpenGL	-	Be	has	officially	licenced	OpenGL	from	Silicon	Graphics

The	Be	API	provides	functionality	through	fundamental	"kits"	like	the	The	Application	Kit	and
The	Interface	Kit,	but	also	in	the	more	specialized	form	of	the	The	Media	Kit	and	The	OpenGL
Kit.	The	rest	is	listed	in	the	Be	Book.	The	fundamental	kits	offer	what	you	need	for	a	basic
application	(advanced	drag	and	drop	included).	The	Media	Kit	gives	you	access	to	a	low-
latency	network	of	media	processing	add-ons.	Applications	made	with	The	Media	Kit	can
support	all	media	file	formats	and	codecs	supported	by	the	OS,	and	you	get	advanced	timing
synchronization	--	down	to	the	lowest	latency	allowed	by	the	hardware.	Unlike	in	other
operating	systems,	the	kernel	does	not	get	in	the	way.	The	Media	Kit	allows	you	to	play	and
record	any	media	format	(video	and	audio),	you	can	even	create	your	own	media	nodes	to
handle	new	sound	cards	or	even	new	types	of	digital	media	besides	video	and	sound	(think
more	interactive	content	that	requires	accurate	timing).	In	BeOS	5	there	is	the	revamped	Midi
Kit	for	your	needs	in	that	area.	The	OpenGL	Kit	is	currently	being	reworked	to	support
hardware	accelerated	OpenGL	on	a	wide	range	of	video	cards.	The	Network	Kit	offers	high
level	interface	to	network	programming.	Because	of	its	clean	interface,	Be	is	able	to
reimplement	BONE	(BeOS	Networking	Environment)	in	the	kernel	(the	net_server	lives	in
user	space	currently)	without	developers	having	to	do	anything	at	all	to	get	the	promised
2000%	speedup	in	networking	performance.

Working	With	The	Be	API	Working	With	The	Be	API	

To	make	this	easy,	I'll	concentrate	on	one	fundamental	concept	of	C++	development	in	BeOS:
inheritance.	To	understand	this	you	should	at	least	know	what	OOP	is	and	how	it	generally
works.	Let's	first	consider	the	following	code:

http://www-classic.be.com/documentation/be_book/The%20Application%20Kit/index.html
http://www-classic.be.com/documentation/be_book/The%20Interface%20Kit/index.html
http://www-classic.be.com/documentation/be_book/The%20Media%20Kit/index.html
http://www-classic.be.com/documentation/be_book/The%20OpenGL%20Kit/index.html
http://www-classic.be.com/documentation/be_book/


			#include	<Application.h>	
				
			int	main()	
			{	
						//	create	a	new	BApplication	object	(on	the	stack)
					
						BApplication	myFunkyApplication("application/x-vnd.funkyapp");
				
						//	enter	the	message	loop
				
						myFunkyApplication.Run();	
				
			}
	

Every	application	needs	a	BApplication	object.	Calling	the	Run()	method	magically	connects
your	program	to	the	operating	system.	Ignore	the	argument	(MIME	type)	for	now	-	let	us
focus	on	what	is	really	important.

When	you	run	this	app,	you	will	notice	that	it	appears	in	the	deskbar	and	you	can	kill	it	using
the	GUI,	for	example	the	Team	Monitor.	If	we	add	new	threads	to	our	program	they	will	be
part	of	our	applications	team.	Run()	does	not	return	before	the	application	is	told	to	quit.
This	is	special	to	the	BApplication	object.	Right	now,	we	only	have	one	thread	in	our	program
and	that	is	the	message	loop.	That	means	the	application	is	given	the	possibility	to	send	and
receive	BMessage	objects.	We	can	receive	messages	in	the	shape	of	BMessages	from	the	OS
but	also	directly	from	other	apps.

At	the	moment	we	have	not	implemented	any	functionality	to	respond	to	any	messages,
except	for	the	Quit()	that	is	built	into	BApplication.	As	you	have	probably	heard,	the	BeOS	is
pervasively	multithreaded.	That	means,	unless	we	are	writing	nonsense	code	like	this	or
traditional	console	apps,	we	must	use	at	least	two	threads	to	do	anything	useful!	In	other
words,	the	system	is	designed	from	the	ground	to	take	advantage	of	multiple	processors.	Let
me	change	the	code	to	open	a	simple	window.

			//	file:	funkyapp.h
			
			class	FunkyApplication	:	public	BApplication	
			{
			public:
						FunkyApplication();
			};
			
			//	file:	funkyapp.cpp
			
			#include	<Window.h>

http://www-classic.be.com/documentation/be_book/The%20Application%20Kit/Application.html


			#include	<Application.h>	
				
			#include	"funkyapp.h"	
				
				
			int	main()	
			{	
						//	create	a	new	FunkyApplication	(inherited	from	BApplication)	object
				
						FunkyApplication	myFunkyApplication;
				
						//	enter	the	message	loop
				
						myFunkyApplication.Run();	
				
			}
				
			//	the	constructor
			
			FunkyApplication::FunkyApplication()
						:	BApplication("application/x-vnd.funkyapp")
			{
						//	we	cannot	do		BWindow	myFunkyWindow(BRect(10,10,210,110),	"Funky	Title",	B_TITLED_WINDOW,	NULL	);	
						//	like	we	did	with	BApplication,	because	Show()	will	return	immediately.	If	allocated	on	the
						//	stack,	the	memory	used	by	myFunkyWindow	would	be	released	while	in	use.
				 	 	
						BWindow*	myFunkyWindow	=	new	BWindow(BRect(10,10,210,110),	"Funky	Title",	B_TITLED_WINDOW,	NULL	);	
				 	 	
						//	make	window	visible
				 	 	
						myFunkyWindow->Show();
			}
	

Now,	I	have	split	the	code	in	a	header	file	(funkyapp.h)	and	a	source	file	(funkyapp.cpp).
While	this	is	not	so	important	in	this	case,	you	must	know	it	is	very	important	to	write	clean
code	and	follow	coding	guidelines	as	a	C++	programmer	to	keep	the	code	maintainable.

In	the	header	file,	we	define	a	new	class	FunkyApplication	that	inherits	from	BApplication.
We	also	specify	that	we	will	add	some	code	to	the	constructor	in	the	source	file.

In	the	source	file,	you	see	the	constructor.	This	is	pretty	much	the	receipe	for	picking	up
existing	objects,	spicing	them	up	and	using	them	in	your	own	app.	Here	I	create	the
myFunkyWindow	without	inheriting	anything,	just	like	I	did	in	the	first	example	with
BApplication,	but	in	a	real	app	I	would	put	it	in	separate	files,	namely	FunkyWindow.h	and
FunkyWindow.cpp	using	the	same	technique	that	I	applied	to	BApplication	to	add	the



BWindow.	To	add	controls	and	other	BView	derived	elements	to	a	BWindow,	you	should	do
that	in	the	constructor	of	the	window.	You	should	get	the	idea	pretty	quick,	but	feel	free	to
experiment	with	code	that	crash	in	various	ways.

The	Be	Integrated	Development	Environment	and	our	funky	application

Running	the	app	opens	a	window	with	the	title	"Funky	Title"	and	the	properties	and	flags	as
defined.	Reading	in	the	Be	Book	you	will	realize	that	BWindow	and	BApplication	are	both
derived	from	BLooper.	You	should	note	despite	this,	BApplication	takes	over	the	current
thread	while	BWindow	does	not.

To	do	more	advanced	stuff	with	a	GUI,	there	is	really	no	way	to	learn	but	reading	the
Interface	Kit	introduction.	If	you	have	understood	everything	in	this	article	you	should	be
well	prepared	for	self	studying	the	Be	Book.	One	great	way	to	learn	is	to	look	in	the	folder
/boot/optional/sample-code/	of	your	installation	(first	BeOS5DevTools.zip	need	to	be
extracted	to	/boot)	and	modify	the	sample	code	to	experiment	with	the	Be	API	as	you	read
about	the	topics	that	interest	you.	You	could	for	instance	begin	with	HelloWorld	and	try	to
change	window	and	font	properties.	I	should	mention	there	is	a	book	called	Programming	the
Be	Operating	System	that	gradually	adds	elements	to	the	user	interface,	but	I	guess	most
existing	developers	have	learned	from	the	Be	Book	and	a	separate	book	on	C++.	The
hardcopy	version	of	the	Be	Book	is	called	the	Be	Developers	Guide,	but	it	is	not	being
updated	with	the	latest	changes.

Conclusion	Conclusion	

While	this	article	does	not	contain	much	more	than	the	fundamentals	and	some	clues	on
where	to	search	for	more	info,	it	is	my	hope	that	you	are	now	more	hungry	to	learn	more.	If
you	are	still	wondering	why	BeOS	5	is	a	great	OS,	read	the	BeMAGZINE	mentioned	in	the
introduction.	It's	a	great	magazine	with	lots	of	info	so	I	see	no	reason	to	repeat	that	here.	C++
development	in	BeOS	takes	courage	and	motivation	for	doing	things	that	is	not	possible	on
other	platforms.	Check	out	the	latest	BeOS	headlines	for	what	is	currently	happening	in	the
community,	if	you	don't	find	any	interesting	projects	to	support	you	should	now	be	able	to
start	up	with	your	own.	There	is	a	lot	more	than	programming	skills	to	development,	but	you
need	to	understand	what	it	will	take	for	your	idea	to	materialize.	Visual	programming	can

http://www-classic.be.com/documentation/be_book/The%20Interface%20Kit/0_InterfaceKitIntro.html
http://www-classic.be.com/documentation/be_book/
http://www.ora.com/catalog/beosprog/
http://www.yabel.com/headlines/


make	the	design	of	your	application	more	effective,	but	you	should	also	rethink	your	choice
of	operating	systems	for	development	--	and	thus	the	very	building	blocks	for	your
application.	Now,	play	with	the	sample	code	and	you	may	get	rich	and	famous	in	the	emerging
market	of	the	BeOS!

BeOS5-DevTools.zip	comes	with	plenty	of	source	code	to	play	with

"At 	a	risk	of	being	called	sexist ,	ageist 	and	French,	if 	you	put 	multimedia,	a"At 	a	risk	of	being	called	sexist ,	ageist 	and	French,	if 	you	put 	multimedia,	a
leather	skirt 	and	lipst ick	on	a	grandmother	and	take	her	to 	a	nightclub,	she'sleather	skirt 	and	lipst ick	on	a	grandmother	and	take	her	to 	a	nightclub,	she's
st ill	not 	going	to 	get 	lucky."st ill	not 	going	to 	get 	lucky."
-	JLG	comments	on	the	adding	of	features	to	Windows	in	a	New	York	Times	Interview.	

This	quote	from	The	quoteable	Jean-Louis	Gassee	on	BeDope.

	

Copyright	1999-2008	(C)	FLIPCODE.COM	and/or	the	original	content	author(s).	All	rights	reserved.
Please	read	our	Terms,	Conditions,	and	Privacy	information.

http://www.bedope.com/qjlg/
https://flipcode.com/archives/terms.shtml
https://flipcode.com/archives/terms.shtml
https://flipcode.com/archives/terms.shtml

