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Abstract This paper presents detailed formalizations of ontological arguments in a simple
modal natural deduction calculus. The first formal proof closely follows the hints in Scott’s
manuscript about Gödel’s argument and fills in the gaps, thus verifying its correctness. The
second formal proof improves the first one, by relying on the weaker modal logic KB instead
of S5 and by avoiding the equality relation. The second proof is also technically shorter than
the first one, because it eliminates unnecessary detours and uses Axiom 1 for the positivity
of properties only once. The third and fourth proofs formalize, respectively, Anderson’s and
Bjørdal’s variants of the ontological argument, which are known to be immune to modal
collapse.

Keywords: Ontological Argument, Higher-Order Logics, Modal Logics, Natural Deduction.

“There is a scientific (exact) philosophy and theology, which deals with concepts of the highest
abstractness; and this is also most highly fruitful for science. [. . . ]

Religions are, for the most part, bad; but religion is not.”
- Kurt Gödel (Wang, 1996)[p. 316]

1 Introduction

Ontological arguments for the existence of God can be traced back at least to St. Anselm
(1033-1109). His argument considers a greatest conceivable being, who must exist, because
if it did not have the property of existence, then we could conceive of a greater being that,
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in addition to other properties, also had the property of existence. St. Anselm’s argument
was criticized and further developed by Descartes, Leibniz and Kant, among many others.

Leibniz identified the possible existence of God as a critical missing step in St. Anselm’s
argument. To fill this gap, he argued that the properties of God, the perfections, are com-
patible. This means that it is possible to satisfy all perfections at once, which implies that
the existence of a greatest conceivable being with all these properties is possible.

Gödel built on Leibniz’s work (Adams, 1995) and brought the ontological argument to
a modern form using a modal logic with higher-order quantification over properties. In this
setting, he gave precise axioms describing the notion of positive property and defined God
as a being that has all positive properties. Gödel’s work was saved in his own notes (Gödel,
1970) as well as in notes by Scott (Scott, 2001), to whom he confided his proof.

The increase in formality of the ontological argument has required a development of its
basic notions. Gödel’s notion of positive property and Leibniz’s notion of perfection differ. A
formal distinction is that Leibniz’s perfections are atomic whereas Gödel’s positive properties
can consist of combinations of atomic properties (Fitting, 2002)[p.139]. In particular, one of
Gödel’s axioms states that any conjunction of positive properties is itself positive. From this
axiom, it is immediately deduced that the property of being God-like is positive. Intuitively, a
(possibly infinite) conjunction of positive properties is deduced from the universal definition
of God-likeness. This deductive inference is not formalizable in a finite first-order calculus.
The interplay between universal quantification (in the definition of a God-like being) and
infinite conjunctions (in Gödel’s axiom for positive properties) could explain why, starting
with Scott (Scott, 2001), this axiom of Gödel has been replaced by another that simply states
the positivity of the property of being god-like.

The aim of this paper is to present detailed formalizations of variants of ontological
arguments in a natural deduction calculus. For a comprehensive introduction to natural
deduction, the reader can consult (Prawitz, 2006) or (Gabbay, 1996). The natural deduction
calculus proposed and used in this paper is an extension of a standard natural deduction
calculus for (non-modal) higher-order logic (Benzmüller & Brown & Kohlhase, 2004) with
new introduction and elimination rules for modal operators (as presented in Section 2). This
calculus is sound and complete relative to the non-modal calculus extended with Axiom K
and the Necessitation rule (as demonstrated in Subsection 2.1). There are many higher-order
logics (Benzmüller & Brown & Kohlhase, 2004) and higher-order modal logics (Muskens,
2006). The calculus proposed here can be regarded as a minimalistic calculus for a rigid
higher-order modal logic K without extensionality principles. By adding axioms for stronger
modal logics (e.g. KB and S5), this calculus is sufficient to achieve this paper’s aim.

The natural deduction style was chosen for four reasons. Firstly, presentations of Gödel’s
proof are typically either informal or formalized in other styles of proof calculi (e.g. Fitting’s
tableaux (Fitting, 2002) or Sobel’s sentential modal calculus (Sobel, 2001)). Therefore, a
formalization in natural deduction is a valuable complement to the existing presentations.
Secondly, it makes the ontological proof accessible to people who are familiarized with the
natural deduction style. Thirdly, as natural deduction is the style used by proof assistants
such as Coq (Paulin-Mohring, 2015) and Isabelle (Nipkow & Paulson & Wenzel, 2002),
natural deduction formalizations can be verified step-by-step in such proof assistants, and we
have in fact done this (Benzmüller & Woltzenlogel Paleo, 2015a). And finally, in comparison
to other kinds of proof systems (e.g. resolution, tableaux, sequent calculi), natural deduction
can be considered less technical, more human-readable and more intuitive, because it relies on
natural principles of reasoning such as modus ponens (implication elimination) and reasoning
by assumption (implication introduction); these qualities are conducive to rendering the
formalizations of ontological arguments accessible to a wider audience.

The first main contribution of this paper is a detailed formalization of Scott’s version
(Scott, 2001) of Gödel’s ontological argument (Gödel, 1970) (as shown in Section 4) in the
proposed natural deduction calculus. The second main contribution of the paper is a new
proof (shown in Section 5), also in natural deduction style. In contrast to Scott’s proof
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(Scott, 2001), which requires the modal logic S5, the new proof requires only the weaker
modal logic KB. The new proof also does not rely on the equality relation and is much
shorter. Although there have been claims (as discussed in more detail in Section 5) about
the sufficiency of weaker modal logics and the superfluousness of the equality relation, formal
proofs substantiating these claims were missing up to now.

A major criticism against Gödel’s argument is an undesirable consequence of the stip-
ulated axioms known as modal collapse. This is discussed in greater detail in Section 6,
where a natural deduction derivation of the collapse is presented. Many recent works on the
ontological argument have proposed modifications of the argument that do not entail modal
collapse. In this paper we present natural deduction formalizations of two of these solutions:
Anderson’s emendation (in Section 7) and Bjørdal’s variant (in Section 8).

1.1 Related Work

An early unpublished draft of Section 5 of this paper, prepared by Woltzenlogel Paleo in
March 2013, served as the starting point for two distinct but complementary research endeav-
ours. Kanckos and Woltzenlogel Paleo transformed that early draft into this paper, aiming
for human-readable and yet formal natural deduction proofs. Benzmüller and Woltzenlo-
gel Paleo, on the other hand, focused on the verification of variants of Gödel’s ontological
arguments using higher-order automated reasoning tools, which quickly led to many publica-
tions. The main automatically obtained results about Gödel’s and Scott’s proofs appeared
in the European Conference on Artificial Intelligence (Benzmüller & Woltzenlogel Paleo,
2014d) and, two years later, a detailed analysis of an inconsistency found in Gödel’s axioms
was published in the International Joint Conference on Artificial Intelligence (Benzmüller
& Woltzenlogel Paleo, 2016a). The automatic verification of variants by Anderson, Bjørdal
and Hájek were presented in the First World Congress on Logic and Religion (Benzmüller
& Weber & Woltzenlogel Paleo, 2015) and published in (Benzmüller & Weber & Woltzen-
logel Paleo, 2017) and results related to the modal collapse were reported in the 4th Word
Congress on the Square of Opposition (Benzmüller & Woltzenlogel Paleo, 2014c) and later
published in (Benzmüller & Woltzenlogel Paleo, 2016b). More detailed reconstructions of
Scott’s variant within the interactive proof assistants Isabelle and Coq were released, re-
spectively, in Isabelle’s Archive of Formal Proofs (Benzmüller & Woltzenlogel Paleo, 2013b)
and in the Symposium of Computer Science in Russia (Benzmüller & Woltzenlogel Paleo,
2015a). The popularity of the topic led to invited talks and corresponding invited abstracts
in the proceedings of workshops (Benzmüller & Woltzenlogel Paleo, 2014a,b, 2013a) and
summer schools (Benzmüller & Woltzenlogel Paleo, 2015c,b) as well as articles targeting a
more general audience (Woltzenlogel Paleo, 2013). More recently, this line of research ven-
tured into other types of ontological arguments, and a computer-assisted reconstruction of an
argument by Leibniz will appear as a chapter in a book dedicated to the 300th anniversary of
Leibniz’s death (Bentert & Benzmüller & Streit & Woltzenlogel Paleo, 2016). The automatic
verification of Gödel’s and Scott’s variants (Benzmüller & Woltzenlogel Paleo, 2014d) was
preceded by an automatic verification of (a non-modal version of) Anselm’s ontological argu-
ment (Oppenheimer & Zalta, 2011). However, whereas the complexity of Gödel’s and Scott’s
arguments required the embedding of higher-order modal logics into higher-order logics and
the use of higher-order automated reasoners, Anselm’s argument greater simplicity enabled
its verification with a first-order prover. Anselm’s argument has also been formalized within
the interactive proof assistant PVS (Rushby, 2013) and there has been a failed attempt to
formalize Avicenna’s argument in PVS as well.

2 Natural Deduction

The language of higher-order modal logic used here is inspired by that of Church’s simple
type theory (Church, 1940).
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Definition 1 Simple types are given by the following grammar:

θ, τ ::= µ | o | θ → τ

where µ is the atomic type for individuals, o is the atomic type for propositions and θ → τ
is the type for functions taking an argument of type θ and returning something of type τ .
‘→’ is assumed to be right associative.

Definition 2 Terms and formulas are given by the following grammar:

s, t ::= pτ | Xτ | (λXθ.sτ )θ→τ | (sθ→τ tθ)τ |
⊥o | →o→o→o | ∧o→o→o |
∀(τ→o)→o | ∃(τ→o)→o | 2o→o | 3o→o

where pτ and Xτ range over, respectively, constants and variables of type τ . Parenthesis
conventions, infix notation for propositional connectives and binding notation1 for quantifiers
are assumed. Furthermore, subscript types are omitted when they are clear from the context.
Implicit alpha-conversion is assumed: two expressions are considered to be the same modulo
renaming of their bound variables. Negation (¬o→o), disjunction (∨o→o→o), equivalence
(↔o→o→o), equality (=τ→τ→o), inequality ( 6=τ→τ→o), are defined by ¬A ≡ A → ⊥, (A ∨
B) ≡ ¬(¬A ∧ ¬B), (A ↔ B) ≡ (A → B) ∧ (B → A), s = t ≡ ∀P.(P s) ↔ (P t) (Leibniz’s
equality) and s 6= t ≡ ¬(s = t), .

The natural deduction calculus proposed and used here has standard rules for proposi-
tional connectives and quantifiers, as shown in Figures 1 and 4. The extension to classical
logic is achieved by adding a rule for double negation elimination, shown in Figure 3, and
β-reduction2 is handled by the β rule shown in Figure 5. Finally, modal operators are han-
dled by special new rules that insert or remove formulas from boxes, as shown in Figure 6. A
derivation is a directed acyclic graph whose nodes are formulas and whose edges correspond
to applications of the inference rules. A proof of a formula F is a derivation without open
assumptions and having F as root not inside any box.

In every inference rule, (sub)formulas in the conclusion correspond3 to formulas in the
premises (even in the case of quantifier rules, where the formulas differ due to substitution).
For any expression occurring both in a formula in the premise and in its corresponding
(sub)formula in the conclusion, the occurrence in the premise is said to be an ancestor
of the occurrence in the conclusion, and the occurrence in the conclusion is said to be a
descendant of the occurrence in the premise.

Applications of the β rule are silently omitted. Double lines are used to abbreviate
propositional reasoning steps when they are tedious and too space-consuming. Dashed lines
are used to refer to an axiom or theorem with the proof shown elsewhere. When proof trees
are too large to fit on the page, some branches may be displayed separately. In such cases, the
conclusion of the branch and the location in the main proof tree where the branch belongs
are annotated with the same symbol (a subscripted ?). Dotted lines are used to indicate
folding and unfolding of definitions. Furthermore, as it is inconvenient to draw boxes around
large derivations in LATEX, formulas inside boxes are labeled with the names of the boxes
surrounding them. Therefore, the boxes can be omitted without loss of information.

The calculus having only the rules shown in Figures 1, 3, 4 and 5 is named ND. This
calculus is essentially the same as the simplest natural deduction calculus in the family of
calculi discussed in (Benzmüller & Brown & Kohlhase, 2004). The main difference is that
they take disjunction as a primitive connective instead of conjunction, and they use a sequent
notation, where the assumptions are listed in the left side of the sequent. The calculus with
the new rules for modal operators shown in Figure 6 is named NDK.

1 ∀x.F [x] and ∃x.F [x] are assumed to be abbreviations for, respectively, ∀(λx.F [x]) and ∃(λx.F [x]).
2 Rules for η-expansion (Benzmüller & Brown & Kohlhase, 2004) are not included here, because they are

not needed in the ontological arguments studied here.
3 This correspondence could be defined formally, but it would be tedious to do so.
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Fig. 1 Propositional rules

⊥
A
⊥E

B
A→ B

→I

A
n

....
B

A→ B
→n
I

A A→ B
B

→E

A B
A ∧B

∧I A ∧B
A

∧E1
A ∧B
B

∧E2

Fig. 2 Admissible propositional rules

¬A A
⊥

¬E A↔ B B
A

↔E
A↔ B A

B
↔E

Fig. 3 Double negation elimination

¬¬A
A

¬¬E

Fig. 4 Quantifier rules

A[α]

∀xτ .A[x]
∀I

∀xτ .A[x]

A[t]
∀E

A[t]

∃xτ .A[x]
∃I

∃xτ .A[x]

A[β]
∃E

eigen-variable conditions:
if ρ is a ∀I inference eliminating a variable α, then any occurrence of α in the proof should be

an ancestor of the occurrence of α eliminated by ρ and not a descendant of a variable
introduced by a ∃E inference;

if ρ is a ∃E inference introducing a variable β, then any occurrence of β in the proof should be a
descendant of the occurrence of β introduced by ρ and not an ancestor of a variable eliminated

by a ∀I inference.

Fig. 5 Reduction rules

A
B

β

only if B and A are β-equivalent
(i.e. there is a C such that both B and A β-reduce to C)

2.1 Suitability for Rigid Higher-Order Modal Logic K

ND is a calculus for a (non-modal) higher-order logic without functional and boolean ex-
tensionality principles (Benzmüller & Brown & Kohlhase, 2004). Adding the modal rules
results in a calculus that is suitable for a basic rigid modal logic K, in the sense that NDK

is sound and complete relative to ND extended with Axiom K (2(A→ B)→ (2A→ 2B))
and the necessitation rule (which establishes that 2A is a theorem if A is a theorem).

Theorem 1 NDK is complete relative to ND extended with Axiom K and necessitation.
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Fig. 6 Rules for modal operators

ω :

....
A

2A
2I

2A

w :

A....

2E

w :

....
A

3A
3I

3A

ω :

A....

3E

eigen-box condition:
a modal inference is said to access

the box immediately above or below it.
2I and 3E are strong modal rules:

ω must be a fresh name for the box they access
(in analogy to the eigen-variable condition for strong quantifier rules).

Every box must be accessed by exactly one strong modal inference.

boxed assumption condition:
assumptions should be discharged within the box where they are created.

Proof The necessitation rule can be immediately simulated with the 2I rule. Axiom K can
be derived in NDK as shown below:

2
2(A→ B)

2E
ω : A→ B

1
2A 2E
ω : A →E

ω : B 2I
2B →1

I2A→ 2B →2
I2(A→ B)→ (2A→ 2B)

Theorem 2 NDK is sound relative to ND extended with Axiom K and necessitation.

Proof It is necessary to show that NDK proofs of the following form can be translated to
proofs in ND extended with the Axiom K and the necessitation rule.

2A1

ω : A1
2E

... . . .

2An
ω : An

2E

...
ω : B
2B

2I

A translation to ND extended with Axiom K and necessitation is shown below for the case
when n = 1:

1
A1

..

.

B →1
IA1 → B
necessitation

2(A1 → B)

Axiom K

2(A1 → B)→ (2A1 → 2B) →E
2A1 → 2B 2A1 →E

2B

For n > 1, the translation is a straightforward generalization:
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1
A1

.

.

. . . .

n
An

.

.

.

B
→∗

I
A1 → . . . → An → B

nec.
2(A1 → . . . → An → B)

Axiom K, iterated

2(A1 → . . . → An → B) → (2A1 → . . . → 2An → 2B)
→E

2A1 → . . . → 2An → 2B

2A1 → . . . → 2An → 2B 2A1 . . . 2An →E
2B

Without the restriction that every box must be accessed by exactly one strong modal
inference, the calculus would be unsound for the modal logic K. For example, the formula
∀φ.(2φ→ 3φ) is not valid in K but would be provable without this restriction:

1
2φ

2E
ω : φ

3I
3φ

→1
I2φ→ 3φ
∀I∀φ.(2φ→ 3φ)

This example proof is unsound according to the NDK calculus, because the eigen-box
condition is violated: the box labelled by ω is not accessed by any strong inference.

The straightforward combinations of the quantifier rules of ND either with the modal
rules of NDK or with Axiom K and the necessitation rule are suitable for a higher-order
modal logic where constants and variables are rigid. From the point of view of a possible
world semantics, rigidity means that their interpretation is independent of the world in
which they are being interpreted. Rigidity is tacitly assumed by most works investigating the
ontological argument, and is explicitly assumed here. Nevertheless, it should be noted that its
adequacy for the ontological argument has already been contested (Fitting, 2002). Another
assumption made here is that the quantification domains are constant (i.e. independent
of the possible worlds). Neither Gödel’s manuscript nor Scott’s manuscript reveal whether
they use constant or varying domains, and this is also the case for many variants (e.g. Hájek
1996). Nevertheless, some authors of variants of Gödel’s ontological argument do explicitly
state a preference for varying domains (Anderson, 1990, footnotes 11 and 14). Our choice of
constant domains is motivated by simplicity. As is well-known, varying domain quantifiers
(also known as actualistic quantifiers) can be simulated by constant domain quantifiers (also
known as possibilistic quantifiers) guarded by a primitive existence predicate4; therefore, the
formalization of ontological arguments with varying domain quantification would be feasible
in the natural deduction calculus presented here as well.

3 Some Useful Derivable Principles

From an axiomatic point of view, modal logics stronger than K differ from each other with
respect to which axiom schemas they admit in addition to K (and necessitation). Some
common axiom schemas of relevance to the ontological argument are T (2A → A), B
(A → 23A), 4 (2A → 22A) and 5 (3A → 23A). From a semantic point of view, these
axioms correspond to geometric frame conditions that must be satisfied by the accessibility
relation in Kripke models (see e.g. Fitting & Mendelsohn 1998 or Blackburn & al. 2001,
Section 3.1 on Frame definability): T corresponds to reflexivity, B corresponds to symmetry,
4 corresponds to transitivity and 5 corresponds to euclidianity. In the models of logic S5,
all these axioms are satisfied; in the models of logic KB, B is satisfied; and in the models
of logic B, T and B are satisfied.

4 Formally, ∀ex.F [x] ≡ ∀x.E(x)→ F [x] and ∃ex.F [x] ≡ ∃x.E(x) ∧ F [x].
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In this section, natural deduction proofs of three convenient derived modal principles are
presented. These principles are used in the ontological proofs formalized in the next sections.
Although they are well-known among modal logicians, we include their proofs here in order
to have a self-contained and fully formal presentation of the ontological proofs.

The distribution principle can be seen as a form of modus ponens within the scope of
modalities: if A→ B holds in all accessible worlds and A holds in an accessible world, then
B holds in an accessible world. This principle is provable in the modal logic K.

Lemma (Distribution Principle)

2(A→ B)→ (3A→ 3B)

Proof

2
2(A→ B)

2E
ω : A→ B

1
3A 3E
ω : A →E

ω : B 3I
3B →1

I3A→ 3B →2
I2(A→ B)→ (3A→ 3B)

Brouwer’s reduction principle is derivable in modal logic KB, using Axiom B. The proofs
of Gödel and Scott (Section 4) do not make direct use of this principle, but the new proof
presented in Section 5 does.

Lemma (Brouwer’s Reduction Principle)

32A→ A

Proof

2
32A

¬2¬2A

1¬A

Axiom B
¬A→ 23¬A
¬A→ 2¬2¬¬A →E

2¬2¬¬A
2¬2A ¬E⊥ →1

I¬¬A ¬¬E
A →2

I32A→ A

In the modal logic S5, a sequential iteration of modalities can be collapsed to the last
modality in the sequence. In other words, the following principles hold in S5:

– 3n2A→ 2A
– 2n3A→ 3A
– 3n3A→ 3A
– 2n2A→ 2A

Below we exhibit a natural deduction proof for the first principle listed above when n = 1.
Informally, this particular case can be read as the claim that anything that is possibly
necessary is in fact necessary, and it is sufficient for the ontological proofs of Gödel and
Scott. The proof of this principle depends on the previously proven Brouwer’s reduction
principle, on the Modal Axiom 5, and on K, which was shown to be derivable in the proof
of Theorem 1.

Lemma (Iteration Principle)
32A→ 2A
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Proof

Brouwer’s Reduction
ω : 32A→ A 2I
2(32A→ A)

K

2(32A→ A)→ (232A→ 2A) →E
232A→ 2A

Axiom 5 for 2A
32A→ 232A

1
32A →E

232A →E
2A →1

I32A→ 2A

The reflexivity of equality is a theorem in higher-order logics where equality is defined
as Leibniz’s equality. A natural deduction proof can be easily constructed, as shown below.

Lemma (Reflexivity)
∀x.x = x

Proof

1
P (α)

→1
IP (α)→ P (α)

2
P (α)

→2
IP (α)→ P (α)

∧I
(P (α)→ P (α)) ∧ (P (α)→ P (α))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P (α)↔ P (α)

∀I∀P.P (α)↔ P (α)
. . . . . . . . . . . . . . . . .

α = α ∀I∀x.x = x

4 Scott’s Proof in Natural Deduction

In this section we present a detailed formalization of Scott’s proof in the natural deduction
calculus defined in Section 2. The reasoning in Scott’s manuscript has been reproduced
step-by-step and reasoning gaps are completed by using the deduction steps considered
most natural. All derived formulas that do appear in Scott’s manuscript are marked with
a † here. Unmarked formulas were derived in the process of filling the gaps between the
marked formulas.

Scott’s version of Gödel’s proof depends on five axioms that circumscribe the notion
of positive property, with positivity being denoted by the undefined second-order predicate
symbol P . Additionally, three definitions are used for establishing the notions of God-like,
essence and necessary existence. Technically, these definitions only abbreviate certain com-
plex formulas. The argument would still go through if all defined symbols were replaced by
the complex formulas they define. This observation is particularly relevant in the case of nec-
essary existence. Since this notion of “existence” is just an abbreviation, Gödel’s argument
is not susceptible to Kant’s criticism against Anselm’s argument (that existence should not
be treated as a predicate). In Gödel’s proof, existence is properly denoted by the existential
quantifier. It is, therefore, unfortunately misleading to refer to the defined predicate symbol
E as “necessary existence”, when in fact it is just a convenient abbreviation.

In addition to the five axioms and three definitions that pertain specifically to the argu-
ment, the proof also uses S5’s Iteration principle (in the proof of Lemma 2) and the lemma
of reflexivity for equality (in the proof of Theorem 1). The use of reflexivity could be avoided,
but we chose to use it because it allows the construction of a shorter proof.

Axiom 1 Either a property or its negation5 is positive, but not both:

∀ϕ.(P (¬ϕ)↔ ¬P (ϕ))

Axiom 2 A property necessarily implied by a positive property is positive:

∀ϕ.∀ψ.((P (ϕ) ∧2∀x.(ϕ(x)→ ψ(x)))→ P (ψ))

5 Throughout the paper, ¬ϕ is an abbreviation for λx.¬ϕ(x)

9



Theorem 1 Positive properties are possibly exemplified:

∀ϕ.(P (ϕ)→ 3∃x.ϕ(x))

Proof

5
P (ρ)

Reflexivity

ω : ∀x.x = x ∀Eω : γ = γ →I
ω : ρ(γ)→ γ = γ

∀I
ω : ∀x.(ρ(x)→ x = x)

2I
2∀x.(ρ(x)→ x = x)†

∧I
P (ρ) ∧ 2∀x.(ρ(x)→ x = x)

Axiom 2 for ρ and λx.x = x

P (ρ) ∧ 2∀x.(ρ(x)→ x = x)→ P (λx.x = x) →E
[?1] P (λx.x = x)†

5
P (ρ)

1
ω : ρ(β)

3
2∀x.¬ρ(x)

2E
ω : ∀x.¬ρ(x)

∀E
ω : ¬ρ(β) ¬E

ω : ⊥ ⊥E
ω : ¬(β = β)

. . . . . . . . . . . . .
ω : β 6= β

→1
Iω : ρ(β)→ β 6= β
∀I

ω : ∀x.(ρ(x)→ x 6= x)
2I

2∀x.(ρ(x)→ x 6= x)†
∧I

P (ρ) ∧ 2∀x.(ρ(x)→ x 6= x)

Axiom 2 for ρ and λx.x 6= x

P (ρ) ∧ 2∀x.(ρ(x)→ x 6= x)→ P (λx.x 6= x) →E
[?2] P (λx.x 6= x)†

?2

P (λx.x 6= x)†

?1

P (λx.x = x)†
Contraposition of Half of Axiom 1

P (λx.x = x)→ ¬P (λx.x 6= x) →E
¬P (λx.x 6= x) ¬E

[?3] ⊥

4
2¬∃x.ρ(x)

2E
ω : ¬∃x.ρ(x)

2
ω : ρ(α)

∃I
ω : ∃x.ρ(x) ¬E

ω : ⊥ →2
Iω : ¬ρ(α)
∀I

ω : ∀x.¬ρ(x)
2I

2∀x.¬ρ(x)†

?3
⊥ →3

I¬2∀x.¬ρ(x) ¬E⊥ →4
I¬2¬∃x.ρ(x)

3∃x.ρ(x)
→5
IP (ρ)→ 3∃x.ρ(x)
∀I∀ϕ.(P (ϕ)→ 3∃x.ϕ(x))

Definition 1 A God-like being possesses all positive properties:

G(x) ≡ ∀ϕ.(P (ϕ)→ ϕ(x))

Axiom 3 The property of being god-like is positive:

P (G)

Corollary 1 Possibly, God exists:
3∃x.G(x)
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Proof

Axiom 3
P (G)

Theorem 1 for G
P (G)→ 3∃x.G(x) →E

3∃x.G(x)

Axiom 4 Positive properties are necessarily positive:

∀ϕ.(P (ϕ)→ 2 P (ϕ))

Definition 2 An essence of an individual is a property possessed by it and necessarily
implying any of its properties:

ϕ ess x ≡ ϕ(x) ∧ ∀ψ.(ψ(x)→ 2∀x.(ϕ(x)→ ψ(x)))

Theorem 2 Being god-like is an essence of any God-like being:

∀x.G(x)→ G ess x

Proof

4
ρ(γ)

1
¬P (ρ)

Axiom 1

∀ϕ.(P (¬ϕ)↔ ¬P (ϕ))
∀E

P (λx.¬ρ(x))↔ ¬P (ρ) ↔E
P (λx.¬ρ(x))

5
G(γ)

. . . . . . . . . . . . . . . . .
∀ϕ.P (ϕ)→ ϕ(γ)

∀E
P (λx.¬ρ(x))→ ¬ρ(γ) →E

¬ρ(γ) ¬E⊥ →1
I¬¬P (ρ) ¬¬E

[?4] P (ρ)

5
G(γ)

?4

P (ρ)

Axiom 4

∀ϕ.(P (ϕ)→ 2 P (ϕ))
∀E

P (ρ)→ 2P (ρ) →E
2P (ρ)†

3
ω : P (ρ)

2
ω : G(δ)

. . . . . . . . . . . . . . . . . . . .
ω : ∀ϕ.P (ϕ)→ ϕ(δ)

∀E
ω : P (ρ)→ ρ(δ) →E

ω : ρ(δ)
→2
Iω : G(δ)→ ρ(δ)
∀I

ω : ∀y.(G(y)→ ρ(y))
→3
Iω : P (ρ)→ ∀y.(G(y)→ ρ(y))

2I
2(P (ρ)→ ∀y.(G(y)→ ρ(y)))

Axiom K
2P (ρ)→ 2∀y.(G(y)→ ρ(y)) →E

2∀y.(G(y)→ ρ(y))
→4
Iρ(γ)→ 2∀y.(G(y)→ ρ(y))
∀I∀ϕ.ϕ(γ)→ 2∀y.(G(y)→ ϕ(y))
∧I

G(γ) ∧ (∀ϕ.ϕ(γ)→ 2∀y.(G(y)→ ϕ(y)))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G ess γ
→5
IG(γ)→ G ess γ
∀I∀x.G(x)→ G ess x

Definition 3 Necessary existence of an individual is the necessary exemplification of all its
essences:

E(x) ≡ ∀ϕ.(ϕ ess x→ 2∃y.ϕ(y))

Axiom 5 Necessary existence is a positive property:

P (E)

Lemma 1 If there is a God-like being, then there is a God-like being necessarily:

∃z.G(z)→ 2∃x.G(x)

11



Proof

1∃z.G(z)
∃E

G(γ)

Theorem 2
∀x.G(x)→ G ess x

∀E
G(γ)→ G ess γ →E

G ess γ†

Axiom 5
P (E)

1∃z.G(z)
∃E

G(γ)
. . . . . . . . . . . . . . . . . . . .
∀ϕ.P (ϕ)→ ϕ(γ)

∀E
P (E)→ E(γ) →E

E(γ)†
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
∀ϕ.ϕ ess γ → 2∃x.ϕ(x)

∀E
G ess γ → 2∃x.G(x) →E

2∃x.G(x)
→1
I∃z.G(z)→ 2∃x.G(x)

Lemma 2 If the existence of a God-like being is possible, then it is necessary:

3∃z.G(z)→ 2∃x.G(x)

Proof

Lemma 1

ω : ∃x.G(x)→ 2∃x.G(x)
2I

2(∃x.G(x)→ 2∃x.G(x))

Distribution Principle

2(∃x.G(x)→ 2∃x.G(x))→ (3∃x.G(x)→ 32∃x.G(x)) →E
[?5] 3∃x.G(x)→ 32∃x.G(x)

1
3∃x.G(x)

?5

3∃x.G(x)→ 32∃x.G(x) →E
32∃x.G(x)†

S5 Iteration Principle

32∃x.G(x)→ 2∃x.G(x) →E
2∃x.G(x)

→1
I3∃z.G(z)→ 2∃x.G(x)

Theorem 3 Necessarily, there exists a God-like being:

2∃x.G(x)

Proof

Corollary 1

3∃x.G(x)
Lemma 2

3∃x.G(x)→ 2∃x.G(x) →E
2∃x.G(x)

5 A New Proof

In this section we present a new proof in KB. This proof uses exactly the same axioms and
definitions of Scott’s proof shown in the previous sections, but it uses neither the Axiom of
reflexivity for equality nor S5’s Modal iteration principle. Instead, it relies only on Brouwer’s
reduction principle (for Theorem 3). The new proof is also shorter than Scott’s proof.

Axiom 1 Either a property or its negation is positive, but not both:

∀ϕ.(P (¬ϕ)↔ ¬P (ϕ))

Axiom 2 A property necessarily implied by a positive property is positive:

∀ϕ.∀ψ.((P (ϕ) ∧2∀x.(ϕ(x)→ ψ(x)))→ P (ψ))

12



Theorem 1 Positive properties are possibly exemplified:

∀ϕ.(P (ϕ)→ 3∃x.ϕ(x))

Proof

3
P (ρ)

2
2¬∃x.ρ(x)

2E
ω : ¬∃x.ρ(x)

1
ω : ρ(x)

∃I
ω : ∃x.ρ(x)

¬E
ω : ⊥ →1

Iω : ¬ρ(x)
→I

ω : ρ(x) → ¬ρ(x)
∀I

ω : ∀x.(ρ(x) → ¬ρ(x))
2I

2∀x.(ρ(x) → ¬ρ(x))
∧I

P (ρ) ∧ 2∀x.(ρ(x) → ¬ρ(x))
Axiom 2 for ρ and λx.¬ρ(x)

(P (ρ) ∧ 2∀x.(ρ(x) → ¬ρ(x))) → P (λx.¬ρ(x))
→E

[?6] P (λx.¬ρ(x))

?6

P (λx.¬ρ(x))

Axiom 1

∀ϕ.(P (¬ϕ)↔ ¬P (ϕ))
∀E

P (λx.¬ρ(x))↔ ¬P (ρ) ↔E
¬P (ρ)

3
P (ρ) ¬E⊥ →2

I¬2¬∃x.ρ(x)

3∃x.ρ(x)
→3
IP (ρ)→ 3∃x.ρ(x)
∀I∀ϕ.(P (ϕ)→ 3∃x.ϕ(x))

Comparing this new proof of Theorem 1 with the proof of Theorem 1 indicated by
Gödel and Scott, it is noticeable that the new proof is significantly shorter. The key idea to
obtain a shorter proof is to instantiate the second universally quantified property of Axiom
2 by λx.¬ρ(x) instead of using the relation symbols = or 6= as Gödel and Scott did. This
eliminates the reliance of the ontological argument on the presence of = and 6= in the logical
language. Furthermore, Axiom 2 is then needed only once.

Although the simpler proof of Theorem 1 presented here was developed independently,
it seems conceptually related to a possible simplification briefly described by Anderson
(Anderson, 1990, footnote 2) and attributed by him to an anonymous referee. The simpler
proof of Theorem 1 is not particularly special. In fact, it is probably the most likely proof that
any well-trained logician would construct, if asked to derive Theorem 1 from Axioms 1 and 2
using methodical proof search techniques. Modern techniques usually rely on unification to
compute or guess good instances for weakly quantified variables, and therefore they would
never result in instantiations containing = and 6=, which are symbols that do not appear
anywhere in the axioms or in the theorems to be proved. We may wonder why Gödel preferred
to use those unusual instantiations. It might be an interesting question from a historical point
of view, suggesting that there may have been an evolution in the way logicians construct
formal proofs, or from a philosophical point of view, if Gödel’s preference was philosophically
motivated.

Definition 1 A God-like being possesses all positive properties:

G(x) ≡ ∀ϕ.(P (ϕ)→ ϕ(x))

Axiom 3 The property of being god-like is positive:

P (G)

Corollary 1 Possibly, a God-like being exists:

3∃x.G(x)
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Proof The proof of this corollary is identical to the proof shown in Section 4.

Axiom 4 Positive properties are necessarily positive:

∀ϕ.(P (ϕ)→ 2 P (ϕ))

Definition 2 An essence of an individual is a property possessed by it and necessarily
implying any of its properties:

ϕ ess x ≡ ϕ(x) ∧ ∀ψ.(ψ(x)→ 2∀x.(ϕ(x)→ ψ(x)))

At this point, Gödel and Scott proceed to prove Theorem 2, which is then used to prove
Lemma 1. However, a close inspection of Scott’s proof of Lemma 1 reveals that Theorem 2
is an unnecessary detour. Therefore, we do not include it in the new proof.

Definition 3 Necessary existence of an individual is the necessary exemplification of all its
essences:

E(x) ≡ ∀ϕ.(ϕ ess x→ 2∃y.ϕ(y))

Axiom 5 Necessary existence is a positive property:

P (E)

The new proof of Lemma 1 does not rely on Theorem 2. Overall, it is slightly shorter
than Scott’s proofs of Theorem 2 and Lemma 1 combined, but a large part of the new proof
of Lemma 1 is structurally very similar to Scott’s proof of Theorem 2, and their underlying
intuitive ideas are still essentially the same. However, despite being an unnecessary detour
from a technical point of view, Theorem 2 is very interesting from a philosophical perspective.
It breaks an otherwise long proof of Lemma 1 in a point that facilitates comprehension by
humans at an intuitive and informal level.

This phenomenon is intriguing: the new proof of Lemma 1 is technically simpler (because
it has fewer inferences), but Scott’s proof of Lemma 1 with Theorem 2 can be considered
intuitively simpler (because it is easier to understand). This constitutes an interesting case
for Hilbert’s 24th Problem (Thiele, 2003), which asks for criteria to properly compare the
simplicity of proofs. While Hilbert had mathematical proofs in mind, insights into the 24th
problem could be gained by analyzing philosophical proofs as well. As Gödel suggested, “a
scientific (exact) philosophy and theology [. . . ] is also most highly fruitful for science”.

Lemma 1 If there is a God-like being, then there is a God-like being necessarily:

∃z.G(z)→ 2∃x.G(x)

Proof

2
¬P (ρ)

Axiom 1

∀ϕ.(P (¬ϕ)↔ ¬P (ϕ))
∀E

P (λx.¬ρ(x))↔ ¬P (ρ) ↔E
P (λx.¬ρ(x))

1
∃z.G(z)

∃E
G(γ)

. . . . . . . . . . . . . . . . . . . D1
∀ϕ.(P (ϕ)→ ϕ(γ))

∀E
P (λx.¬ρ(x))→ ¬ρ(γ) →E

¬ρ(γ)
3

ρ(γ) ¬E⊥ →2
I¬¬P (ρ) ¬¬E

[?7] P (ρ)
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5
2P (ρ)

2E
ω : P (ρ)

4
ω : G(y)

. . . . . . . . . . . . . . . . . . . . . . D1
ω : ∀ϕ.(P (ϕ)→ ϕ(y))

∀E
ω : P (ρ)→ ρ(y) →E

ω : ρ(y)
→4
Iω : G(y)→ ρ(y)
∀I

ω : ∀y.(G(y)→ ρ(y))
2I

2∀y.(G(y)→ ρ(y))
→5
I2P (ρ)→ 2∀y.(G(y)→ ρ(y))

?7

P (ρ)

Axiom 4

∀ϕ.(P (ϕ)→ 2 P (ϕ))
∀E

P (ρ)→ 2 P (ρ) →E
2P (ρ) →E

2∀y.(G(y)→ ρ(y))
→6
Iρ(γ)→ 2∀y.(G(y)→ ρ(y))
∀I∀ψ.(ψ(γ)→ 2∀y.(G(y)→ ψ(y)))

1
∃z.G(z)

∃E
G(γ)

∧I
G(γ) ∧ ∀ψ.(ψ(γ)→ 2∀y.(G(y)→ ψ(y)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D2
[?8] G ess γ

?8
G ess γ

Axiom 5

P (E)

. . . . . . . . . 1
∃z.G(z)

∃E
G(γ)

. . . . . . . . . . . . . . . . . . . D1
∀ϕ.(P (ϕ)→ ϕ(γ))

∀E
P (E)→ E(γ) →E

E(γ)
. . . . . . . . . . . . . . . . . . . . . . . . . D3
∀ϕ.(ϕ ess γ → 2∃x.ϕ(x))

∀E
G ess γ → 2∃x.G(x) →E

2∃x.G(x)
→1
I∃z.G(z)→ 2∃x.G(x)

Lemma 2 also turns out to be a superfluous detour and therefore the new proof does
not include it. Inspecting Scott’s proof of Lemma 2, we see that an important step is the
derivation of 2∃x.G(x) from 32∃x.G(x) and S5’s Iteration principle. Instead, we can derive
∃x.G(x) from 32∃x.G(x) and Brouwer’s reduction theorem and then derive 2∃x.G(x) from
∃x.G(x) by the 2I (necessitation) inference rule. This is precisely what the new proof of
Theorem 3 does.

Theorem 3 Necessarily, there exists a God-like being:

2∃x.G(x)

Proof
Distribution Principle

2(∃x.G(x)→ 2∃x.G(x))→ (3∃x.G(x)→ 32∃x.G(x))

Lemma 1

∃x.G(x)→ 2∃x.G(x)
2I

2(∃x.G(x)→ 2∃x.G(x)) →E
[?9] 3∃x.G(x)→ 32∃x.G(x)

?9

3∃x.G(x)→ 32∃x.G(x)

Corollary 1

3∃x.G(x) →E
32∃x.G(x)

Brouwer’s Reduction Principle

32∃x.G(x)→ ∃x.G(x) →E
∃x.G(x)

2I
2∃x.G(x)

Since the Iteration principle requires the strong modal logic S5 while Brouwer’s reduction
principle requires only the much weaker modal logic KB, the possibility of proving Theorem
3 using Brouwer’s reduction principle instead of S5’s Iteration principle is philosophically
profound. There have been many discussions of what modal axioms are needed for the
ontological argument. In their manuscripts, Gödel and Scott do not write explicitly which
logic they use. However, a proof step in their notes clearly relies on S5’s Iteration principle.
Anderson (Anderson, 1990, footnote 5) cites several articles questioning the adequacy of
S5 for the ontological argument and conjectures that the ontological argument could be
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restricted to the weaker modal logic B. Sobel (Sobel, 2001, p. 152) acknowledges Anderson’s
conjecture, claims that it is correct and tries to informally explain how his formal proofs could
be modified to rely on B instead of S5. Nevertheless, neither Anderson nor Sobel presented
any formal proof relying only on B. The new formal proof presented in this section relies on
KB, which is weaker than B.

Curiously, in the new proof of Theorem 3, the actual existence of a God-like being
(∃x.G(x)) is proven before its necessity (2∃x.G(x)). This contrasts with Gödel’s proof, where
the actual existence is never actually proven (although it could, nevertheless, be derived as
a trivial corollary by applying the modal Axiom T).

6 Modal Collapse

A major criticism against Gödel’s proof is that its axioms lead to the so-called modal collapse
(Sobel, 1987): it is possible to prove that everything that is the case is so necessarily, and
hence actuality, possibility and necessity coincide (Sobel, 2001)[Ch. 4, section 6, theorems 9
and 10]. That is: for all propositions A,

A↔ 3A↔ 2A

Below we show natural deduction derivations of the modal collapse, thereby confirming
that it holds6 for the axioms used in the previous sections. We show only the strongest
implication above. The others are easy corollaries in sufficiently strong modal logics (e.g.
where, for instance, 2A→ 3A or 3> holds).

Theorem 4 For all propositions A, the following modal collapse proposition is provable:

A→ 2A

Theorem 2

∀y.(G(y)→ G ess y)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D2
∀y.(G(y)→ G(y) ∧ ∀ψ.(ψ(y)→ 2∀x.(G(x)→ ψ(x))))

∀y.(G(y)→ ∀ψ.(ψ(y)→ 2∀x.(G(x)→ ψ(x))))

∀y.(G(y)→ (A→ 2∀x.(G(x)→ A)))

[?10] ∃y.G(y)→ (A→ 2∀x.(G(x)→ A))

?10

∃y.G(y)→ (A→ 2∀x.(G(x)→ A))

Theorem 3

2∃y.G(y)
2E

∃y.G(y) →E
A→ 2∀x.(G(x)→ A)

A→ 2(∃x.G(x)→ A)
1

A →E
2(∃x.G(x)→ A)

2E
ω : ∃x.G(x)→ A

Theorem 3

2∃y.G(y)
2E

ω : ∃x.G(x) →E
ω : A 2I
2A →1

IA→ 2A

In Gödel’s ontological proof, we are proving a restricted modal collapse, which applies to
one specific formula, the existence of a God-like being. The interest in the proof naturally de-
creases if a consequence of the axiomatization is a modal collapse for all formulas. Therefore,
an improvement would be obtained if the modal collapse was limited only to the property
of being god-like or at least to a restricted collection of properties. Several solutions to the
problem of modal collapse have been proposed. Fitting, for instance, has argued that greater

6 It is well-known and uncontroversial that the modal collapse holds. We show a natural deduction proof
here merely for the sake of self-containment and so that the proof becomes more accessible to readers who
might be more familiarized with natural deduction than with Sobel’s proof system.
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care has to be taken with the semantics of higher-order modal logics. Quantified variables
may be rigid or flexible; and properties may be treated as intensional or extensional. Making
the right choices may prevent the modal collapse (Fitting, 2002, Sections 11.9 and 11.10).
Koons (Koons, 2006), Anderson (Anderson, 1990, p. 292) and Sobel (Sobel, 2001, p. 133)
also discuss the idea that the notion of property over which quantification is allowed might
be too general and restrictions might be appropriate. Two alternative and more conservative
solutions, requiring only modifications of the axioms and definitions but no change in the
logic, are discussed in greater detail in the next sections.

7 Anderson’s Emendation in Natural Deduction

Anderson’s solution (Anderson, 1990) modifies the definitions of God-like being and essence,
and eliminates half of Axiom 1 (replacing the equivalence by an implication).

Axiom 1 (Emended) If the negation of a property is positive, the property is not positive:

∀ϕ.(P (¬ϕ)→ ¬P (ϕ))

Axiom 2 (As in Scott’s) A property necessarily implied by a positive property is positive:

∀ϕ.∀ψ.((P (ϕ) ∧2∀x.(ϕ(x)→ ψ(x)))→ P (ψ))

Theorem 1 Positive properties are possibly exemplified:

∀ϕ.(P (ϕ)→ 3∃x.ϕ(x))

Proof This proof is omitted, because any of the proofs of Theorem 1 in Sections 4 and 5
would suffice to prove this theorem with only a small modification: the equivalence of Axiom
1 would not need to be reduced to an implication by conjunction elimination.

Definition 1 (Emended) A God-like being necessarily possesses those and only those
properties which are positive:

G(x) ≡ ∀ϕ.(P (ϕ)↔ 2ϕ(x))

Axiom 3 (As in Scott’s) The property of being god-like is positive:

P (G)

Corollary 1 Possibly, a God-like being exists:

3∃x.G(x)

Proof This proof is omitted, because it is identical to the proof of the same corollary shown
in Sections 4 and 5.

Axiom 4 (As in Scott’s) Positive properties are necessarily positive:

∀ϕ.(P (ϕ)→ 2P (ϕ))

Definition 2 (Emended) An essence of an individual is a property necessarily implying
those and only those properties necessarily possessed by it:

ϕ ess x ≡ ∀ψ.(2ψ(x)↔ 2∀x.(ϕ(x)→ ψ(x)))

Definition 3 (As in Scott’s) Necessary existence of an individual is the necessary exem-
plification of all its essences:

E(x) ≡ ∀ϕ.(ϕ ess x→ 2∃y.ϕ(y))
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Axiom 5 (As in Scott’s) Necessary existence is a positive property:

P (E)

Because of Anderson’s emendations to Axiom 1 and Definitions 1 and 2, the proof of
Lemma 1 has to be modified7 as well. The proof shown below has been modified as little as
possible. Interestingly, in order to eliminate the extra box modality in Anderson’s emended
Definition 1, the modified proof below uses the modal axiom T. Likewise, to obtain the extra
box in the emended Definition 2, Axioms 2 and 3 were used.

Lemma 1 If there is a God-like being, then there is a God-like being necessarily:

∃z.G(z)→ 2∃x.G(x)

Proof

1∃z.G(z)
∃E

[?11] G(γ)

?11
G(γ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D1∀ϕ.(P (λx.ϕ(x))↔ 2ϕ(γ))
∀E

P (λx.ρ(x))↔ 2ρ(γ)
4

2ρ(γ) ↔E
P (ρ)

Axiom 4 ∀E
P (ρ)→ 2P (ρ) →E

[?12] 2P (ρ)

3
2P (ρ)

2E
ω : P (ρ)

2
ω : G(y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . D1
ω : ∀ϕ.(P (λx.ϕ(x))↔ 2ϕ(γ))

∀E
ω : P (ρ)↔ 2ρ(y) ↔E
ω : P (ρ)→ 2ρ(y) →E

ω : 2ρ(y)

ω : Axiom T

ω : 2ρ(y)→ ρ(y) →E
ω : ρ(y)

→2
Iω : G(y)→ ρ(y)
∀I

ω : ∀y.(G(y)→ ρ(y))
2I

2∀y.(G(y)→ ρ(y))
→3
I2P (ρ)→ 2∀y.(G(y)→ ρ(y))

?12

2P (ρ) →E
2∀y.(G(y)→ ρ(y))

→4
I[?13] 2ρ(γ)→ 2∀y.(G(y)→ ρ(y))

Axiom 3
P (G)

5
2∀y.(G(y)→ ϕ(y)) ∧I

P (G) ∧2∀y.(G(y)→ ϕ(y))

Axiom 2
. ∀E x 2. →E

P (ϕ)

?11
G(γ)

. . . . . . . . . . . . . . . . . . . . . . . D1∀ϕ.(P (ϕ)↔ 2ϕ(γ))
∀E

P (ϕ)↔ 2ϕ(γ) ↔E
2ϕ(γ)

→5
I[?14] 2∀y.(G(y)→ ϕ(y))→ 2ϕ(γ)

?13 ?14 ∧I
2ϕ(γ)↔ 2∀y.(G(y)→ ϕ(y))

∀I∀ϕ.(2ϕ(γ)↔ 2∀y.(G(y)→ ϕ(y)))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D2

G ess γ

Axiom 5

P (E)

?11

G(γ)
. . . . . . . . . . . . . . . . . . . . D1
∀ϕ.(P (ϕ)↔ 2ϕ(γ))

∀E
P (E)↔ 2E(γ) ↔E

2E(γ)
2E

E(γ)
. . . . . . . . . . . . . . . . . . . . . . . . . D3
∀ϕ.(ϕ ess γ → 2∃x.ϕ(x))

∀E
G ess γ → 2∃x.G(x) →E

2∃x.G(x)
→1
I∃z.G(z)→ 2∃x.G(x)

7 Due to lack of space, the instantiation of Axiom 2 is omitted in the emended proof of Lemma 1.
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Theorem 3 Necessarily, there exists a God-like being:

2∃x.G(x)

Proof This proof is identical to the proof of Theorem 3 shown in Section 5.

Hájek (Hájek, 1996) claimed that Anderson’s emendation makes Axioms 4 and 5 derivable
from the other axioms and definitions. Discussions about the redundancy of these two axioms
started with an earlier (and wrong) claim by Magari (Magari, 1988) w.r.t. Scott’s variant, and
the redundancy was the topic of a long controversy between Hájek and Anderson (Benzmüller
& Weber & Woltzenlogel Paleo, 2017). As confirmed in Subsection 7.1, Hájek’s claim is
correct. Nevertheless, the proof presented above still uses Axioms 4 and 5, since this section’s
intention is to show that Anderson’s emendation requires only a minimal modification of
the proofs presented in the previous sections.

7.1 A Shorter Proof without Superfluous Axioms

In order to construct a natural deduction proof of theorem 3 using only Anderson’s Axioms
1, 2 and 3 as well as Anderson’s Definition 1, it suffices to modify the proof of Lemma 1,
which is the only part of the argument that depended on Axioms 4 and 5 and Definitions
2 and 3. The modified proof is shown below. In contrast to the previous proof, the shorter
proof does not use the modal axiom T. Therefore, modal logic KB is sufficient for Anderson’s
emendation as well.

Lemma 1 If there is a God-like being, then there is a God-like being necessarily:

∃z.G(z)→ 2∃x.G(x)

Proof

2∃z.G(z)
∃E

G(γ)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D1∀ϕ.(P (λx.ϕ(x))↔ 2ϕ(γ))

∀E
P (G)↔ 2G(γ)

Axiom 3
P (G) ↔E

2G(γ)

1
G(γ)

∃I∃x.G(x)
→1
IG(γ)→ ∃x.G(x)
2I

2(G(γ)→ ∃x.G(x))
(Axiom K)

2G(γ)→ 2∃x.G(x) →E
2∃x.G(x)

→2
I∃z.G(z)→ 2∃x.G(x)

Proofs of other lemmas, theorems and corollaries remain the same as in the previous section.
Theorem 1 is derived from Axioms 1 and 2. Corollary 1 is derived from Axiom 3 and Theorem
1. Finally, Theorem 3 can be derived from Corollary 1 and Lemma 1, which, as shown above,
depends only on Axiom 3 and Definition 1. Therefore, confirming Hájek’s claim, Axioms 4
and 5 and Definitions 2 and 3 are superfluous: they are not needed to prove Theorem 3.

7.2 A Proof-Theoretical Explanation for the Immunity to Modal Collapse

Anderson’s change in the definition of essence adds an extra box modality, which transforms
the standard proof (shown in Section 6) of modal collapse (i.e. ` A → 2A) into a proof of
a tautology (` 2A→ 2A), as shown below.

Theorem 2

∀y.(G(y)→ G ess y)
D2

∀y.(G(y)→ ∀ψ.(2ψ(y)↔ 2∀x.(G(x)→ ψ(x))))

∀y.(G(y)→ (2A↔ 2∀x.(G(x)→ A)))

[?15] ∃y.G(y)→ (2A↔ 2∀x.(G(x)→ A))
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?15

∃y.G(y)→ (2A↔ 2∀x.(G(x)→ A))

Theorem 3

2∃y.G(y)
2E

∃y.G(y) →E
2A↔ 2∀x.(G(x)→ A)

2A↔ 2(∃x.G(x)→ A)
1

2A ↔E
2(∃x.G(x)→ A)

2E
ω : ∃x.G(x)→ A

Theorem 3

2∃y.G(y)
2E

ω : ∃x.G(x) →E
ω : A 2I
2A →1

I2A→ 2A

The exchange of the implication in Scott’s definition of essence for an equivalence and
the additional necessitation (box) modality before the property ψ (which is instantiated by
λx.A) prevents the implication of a necessary fact from its contingent counterpart, as seen
in the second part of the proof above, because the hypothetical assumption of the contingent
property A has to be exchanged for its necessitation 2A to preserve the proof structure.

8 Bjørdal’s Variant in Natural Deduction

Bjørdal’s variant (Bjørdal, 1999; Fuhrmann, 2005) is another solution to the Modal Collapse.
In striking contrast to other variants, Bjørdal’s axiomatization takes god-likeness (GB) as
a primitive notion, upon which the notion of positive property is defined. This variant also
significantly reduces the number of necessary axioms. Scott’s variants of Axioms 2, 3 and 4
become unnecessary to prove the final theorem from Bjørdal’s modified Definitions 1, 2 and
3 and Axioms 1 and 5.

Definition 1 (Changed) A property is positive iff it is necessarily possessed by every
God-like being.

PB(ϕ) ≡ 2∀x.(GB(x)→ ϕ(x))

Bjørdal refines the notion of essence by restricting the attention to positive properties
only. He calls this refined notion of essence a maximal composite.

Definition 2 (Changed) A maximal composite of an individual’s positive properties is a
positive property possessed by the individual and necessarily implying every positive prop-
erty possessed by the individual.

MCP(ϕ, x) ≡ (ϕ(x) ∧ PB(ϕ)) ∧ ∀ψ.((ψ(x) ∧ PB(ψ))→ 2∀y.(ϕ(y)→ ψ(y)))

Definition 3 (Changed) Necessary existence of an individual is the necessary exemplifi-
cation of all its maximal composites.

NEB(x) ≡ ∀ϕ.(MCP(ϕ, x)→ 2∃y.ϕ(y))

Axiom 1 (Changed) If a property is positive, its negation is not positive:

∀ϕ.(PB(ϕ)→ ¬PB(¬ϕ))

Axiom 5 Necessary existence is a positive property.

PB(NEB)

The proof of the possible instantiation of GB is adjusted (as shown below) by proving
Theorem 1 of section 5 directly for GB and not for positive properties in general.

Theorem 1 If God-likeness is a positive property, then it is possibly exemplified:

P (GB)→ 3∃x.GB(x)
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Proof

2
2¬∃x.GB(x)

2E
ω : ¬∃x.GB(x)

1
ω : GB(x)

∃I
ω : ∃x.GB(x) ¬E

ω : ⊥ →1
Iω : ¬GB(x) →I

ω : GB(x)→ ¬GB(x)
∀I

ω : ∀x.(GB(x)→ ¬GB(x))
2I

2∀x.(GB(x)→ ¬GB(x))
. . . . . . . . . . . . . . . . . . . . . . . . . D1

P (¬GB)

Axiom 1

∀ϕ.(P (¬ϕ)→ ¬P (ϕ))
∀E

P (¬GB(x))→ ¬P (GB) →E
¬P (GB)

3
P (GB) ¬E⊥ →2

I¬2¬∃x.GB(x)

3∃x.GB(x)
→3
IP (GB)→ 3∃x.GB(x)

Corollary 1 Possibly, a God-like being exists:

3∃x.GB(x)

Proof
2∀x.(GB(x)→ GB(x))

. . . . . . . . . . . . . . . . . . . . . . . . . . . D1
PB(GB)

Theorem 1
PB(GB)→ 3∃x.GB(x) →E

3∃x.GB(x)

Lemma 1 If there is a God-like being, then there is a God-like being necessarily:

∃z.GB(z)→ 2∃x.GB(x)

Proof

2
∃x.GB(x)

∃E
GB(x)

2∀x.(GB(x)→ GB(x))
. . . . . . . . . . . . . . . . . . . . . . . D1

PB(GB)
∧I

[?16] GB(x) ∧ PB(GB)

?16

GB(x) ∧ PB(GB)

1
(ψ(x) ∧ PB(ψ))

∧E
PB(ψ)

. . . . . . . . . . . . . . . . . . . . . D1
2∀y.(GB(y)→ ψ(y))

→1
I(ψ(x) ∧ PB(ψ))→ 2∀y.(GB(y)→ ψ(y))
∀I∀ψ.((ψ(x) ∧ PB(ψ))→ 2∀y.(GB(y)→ ψ(y)))
∧I

GB(x) ∧ PB(GB) ∧ ∀ψ.((ψ(x) ∧ PB(ψ))→ 2∀y.(GB(y)→ ψ(y)))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D2

[?17] MCP(GB , x)

Axiom 5

PB(NEB)
. . . . . . . . . . . . . . . . . . . . . . . . . D1
2∀x.(GB(x)→ NEB(x))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D3
2∀x.(GB(x)→ ∀ϕ.(MCP(ϕ, x)→ 2∃y.ϕ(y)))

2E
∀x.(GB(x)→ ∀ϕ.(MCP(ϕ, x)→ 2∃y.ϕ(y)))

∀E
(GB(x)→ ∀ϕ.(MCP(ϕ, x)→ 2∃y.ϕ(y)))

2
∃x.GB(x)

∃E
GB(x) →E

∀ϕ.(MCP(ϕ, x)→ 2∃y.ϕ(y))
∀E

(MCP(GB , x)→ 2∃y.GB(y))

?17

MCP(GB , x) →E
2∃y.GB(y)

→2
I∃x.GB(x)→ 2∃y.GB(y)
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9 Conclusions

The formal proofs presented here are short and accessible because of the choice of a natural
deduction calculus. The new proof of section 5 shows explicitly that the weaker modal logic
KB is sufficient for the ontological argument. The stronger modal logic S5, which is usually
taken for granted in discussions of Gödel’s ontological argument, is not necessary. This
weakening of the underlying logic confirms and strengthens a claim briefly mentioned by
Anderson (Anderson, 1990, footnote 2). KB is also sufficient for the variants of Anderson
and Bjørdal, which address Sobel’s criticism of the modal collapse.

Acknowledgements: We thank Padre Edvaldo (from Piracicaba, Brazil) for assisting Bruno
and his family in a moment of need. Gratitude for his assistance is what triggered the
production of an initial draft of this article in early 2013. We are thankful to Christoph
Benzmüller for collaborations on several related articles. This work was supported by a
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