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Chapter 1. Introduction
This document describes the scalar cryptography extension for RISC-V. All instructions described herein use the
general purpose X registers, and obey the 2-read-1-write register access constraint. These instructions are
designed to be lightweight and suitable for 32 and 64 bit base architectures; from embedded IoT class cores to
large, application class cores which do not implement a vector unit.

This document also describes the architectural interface to an Entropy Source, which can be used to generate
cryptographic secrets. This is found in Chapter 4.

It also contains a mechanism allowing core implementers to provide "Constant Time Execution" guarantees in
Chapter 5.

A companion document Volume II: Vector Instructions, describes instruction proposals which build on the RISC-
V Vector Extension. The Vector Cryptography extension is currently a work in progress waiting for the base
Vector extension to stabilise. We expect to pick up this work in ernest in Q4-2021 or Q1-2022.

1.1. Intended Audience
Cryptography is a specialist subject, requiring people with many different backgrounds to cooperate in its secure
and efficient implementation. Where possible, we have written this specification to be understandable by all,
though we recognise that the motivations and references to algorithms or other specifications and standards may
be unfamiliar to those who are not domain experts.

This specification anticipates being read and acted on by various people with different backgrounds. We have
tried to capture these backgrounds here, with a brief explanation of what we expect them to know, and how it
relates to the specification. We hope this aids peoples understanding of which aspects of the specification are
particularly relevant to them, which they may (safely!) ignore, and pass to a colleague.

Cryptographers and cryptographic software developers
These are the people we expect to write code using the instructions in this specification. They should
understand fairly obviously the motivations for the instructions we include, and be familiar with most of the
algorithms and outside standards which we refer to. We expect the sections on constant time execution
(Chapter 5) and the entropy source (Chapter 4) to be chiefly understood with their help.

Computer architects
We do not expect architects to have a cryptography background. We nonetheless expect architects to be able
to examine our instructions for implementation issues, understand how the instructions will be used in
context, and advise on how best to fit the functionality the cryptographers want to the ISA interface.

Digital design engineers & micro-architects
These are the people who will implement the specification inside a core. Again, no cryptography expertise is
assumed, but we expect them to interpret the specification and anticipate any hardware implementation
issues. E.g., where high-frequency design considerations apply, or where latency/area tradeoffs exist etc. In
particular, they should be aware of the literature around efficiently implementing AES and SM4 SBoxes in
hardware.

Verification engineers
Responsible for ensuring the correct implementation of the extension in hardware. No cryptography
background is assumed. We hope they are able to identify interesting test cases from the specification, and
knowing how the instructions are used in the real world. We do not expect verification engineers in this sense
to be experts in entropy source design or certification, since this is a very specialised area. We do expect
them however to identify all of the architectural test cases around the entropy source interface.
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These are by no means the only people concerned with the specification, but they are the ones we considered
most while writing it.

1.2. Sail Specifications
RISC-V maintains a formal model of the ISA specification, implemented in the Sail ISA specification language [
1]. Note that Sail refers to the specification language itself, and that there is a model of RISC-V, written using
Sail. It is not correct to refer to "the Sail model". This is ambiguous, given there are many models of different
ISAs implemented using Sail. We refer to the Sail implementation of RISC-V as "the RISC-V Sail model".

The Cryptography extension uses inline Sail code snippets from the actual model to give canonical descriptions
of instruction functionality. Each instruction is accompanied by its expression in Sail, and includes calls to
supporting functions which are too verbose to include directly in the specification. This supporting code is listed
in Appendix D. The Sail Manual is recommended reading in order to best understand the code snippets.

1.3. Policies
In creating this proposal, we tried to adhere to the following policies:

• Where there is a choice between: 1) supporting diverse implementation strategies for an algorithm or 2)
supporting a single implementation style which is more performant / less expensive; the crypto extension will
pick the more constrained but performant option. This fits a common pattern in other parts of the RISC-V
specification, where recommended (but not required) instruction sequences for performing particular tasks
are given as an example, such that both hardware and software implementers can optimise for only a single
use-case.

• The extension will be designed to support existing standardised cryptographic constructs well. It will not try
to support proposed standards, or cryptographic constructs which exist only in academia. Cryptographic
standards which are settled upon concurrently with, or after the RISC-V cryptographic extension
standardisation will be dealt with by future additions to, or versions of, the RISC-V cryptographic standard
extension. It is anticipated that the NIST Lightweight Cryptography contest, and the NIST Post-Quantum
Cryptography contest may be dealt with this way, depending on timescales.

• Historically, there has been some discussion [39] on how newly supported operations in general purpose
computing might enable new bases for cryptographic algorithms. The standard will not try to anticipate new
useful low level operations which may be useful as building blocks for future cryptographic constructs.

• Regarding side-channel countermeasures: Where relevant, proposed instructions must aim to remove the
possibility of any timing side-channels. For side-channels based on power or electro-magnetic (EM)
measurements, the extension will not aim to support countermeasures which are implemented above the ISA
abstraction layer. Recommendations will be given where relevant on how micro-architectures can implement
instructions in a power/EM side-channel resistant way.
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Chapter 2. Extensions Overview
The group of extensions introduced by the Scalar Cryptography Instruction Set Extension is listed here.

Detection of individual cryptography extensions uses the unified software-based RISC-V discovery method.

 At the time of writing, these discovery mechanisms are still a work in progress.



A note on extension rationale
Specialist encryption and decryption instructions are separated into different functional groups
because some use cases (e.g., Galois/Counter Mode in TLS 1.3, among others) do not require
decryption functionality.

The NIST and ShangMi algorithms suites are separated because their usefulness is heavily
dependent on the countries a device is expected to operate in. NIST ciphers are a part of
most standardised internet protocols, while ShangMi ciphers are required for use in China.

2.1. Zbkb - Bitmanip instructions for Cryptography
These are a subset of the Bitmanipulation Extension Zbb which are particularly useful for Cryptography.



Some of these instructions are defined in the first Bitmanip ratification package, and some
are not ( pack, packh, packw, brev8, zip, unzip). All of the instructions in Zbkb have their
complete specification included in this document, including those not present in the initial
Bitmanip ratification package. This is to make the specification complete as a standalone
document. Inevitably there might be small divergences between the Bitmanip and Scalar
Cryptography specification documents as they move at different paces. When this happens,
assume that the Bitmanip specification has the most up-to-date version of Bitmanip
instructions. This is an unfortunate but neccessary stop-gap while Scalar Cryptography and
Bitmanip are being rapidly iterated on prior to public review.

RV32 RV64 Mnemonic Instruction

✓ ✓ ror Rotate right (Register)

✓ ✓ rol Rotate left (Register)

✓ ✓ rori Rotate right (Immediate)

✓ rorw Rotate right Word (Register)

✓ rolw Rotate Left Word (Register)

✓ roriw Rotate right Word (Immediate)

✓ ✓ andn AND with inverted operand

✓ ✓ orn OR with inverted operand

✓ ✓ xnor Exclusive NOR

✓ ✓ pack Pack low halves of registers

✓ ✓ packh Pack low bytes of registers

✓ packw Pack low 16-bits of registers (RV64)
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RV32 RV64 Mnemonic Instruction

✓ ✓ brev8 Reverse bits in bytes

✓ ✓ rev8 Byte-reverse register

✓ zip Bit interleave

✓ unzip Bit deinterleave

2.2. Zbkc - Carry-less multiply instructions
Constant time carry-less multiply for Galois/Counter Mode. These are separated from the Zbkb because they
have a considerable implementation overhead which cannot be amortised across other instructions.



These instructions are defined in the first Bitmanip ratification package for the Zbc extension.
All of the instructions in Zbkc have their complete specification included in this document,
including those not present in the initial Bitmanip ratification package. This is to make the
specification complete as a standalone document. Inevitably there might be small divergences
between the Bitmanip and Scalar Cryptography specification documents as they move at
different paces. When this happens, assume that the Bitmanip specification has the most up-
to-date version of Bitmanip instructions. This is an unfortunate but neccessary stop-gap while
Scalar Cryptography and Bitmanip are being rapidly iterated on prior to public review.

RV32 RV64 Mnemonic Instruction

✓ ✓ clmul Carry-less multiply (low-part)

✓ ✓ clmulh Carry-less multiply (high-part)

2.3. Zbkx - Crossbar permutation instructions
These instructions are useful for implementing SBoxes in constant time, and potentially with DPA protections.
These are separated from the Zbkb because they have a implementation overhead which cannot be amortised
across other instructions.



All of these instructions are missing from the first Bitmanip ratification package. Hence, all of
the instructions in Zbkx have their complete specification included in this document. This is
to make the specification complete as a standalone document. Inevitably there might be small
divergences between the Bitmanip and Scalar Cryptography specification documents as they
move at different paces. When this happens, assume that the Bitmanip specification has the
most up-to-date version of Bitmanip instructions. This is an unfortunate but neccessary stop-
gap while Scalar Cryptography and Bitmanip are being rapidly iterated on prior to public
review.

RV32 RV64 Mnemonic Instruction

✓ ✓ xperm8 Crossbar permutation (bytes)

✓ ✓ xperm4 Crossbar permutation (nibbles)
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2.4. Zknd - NIST Suite: AES Decryption
Instructions for accelerating the decryption and key-schedule functions of the AES block cipher.

RV32 RV64 Mnemonic Instruction

✓ aes32dsi AES final round decrypt (RV32)

✓ aes32dsmi AES middle round decrypt (RV32)

✓ aes64ds AES decrypt final round (RV64)

✓ aes64dsm AES decrypt middle round (RV64)

✓ aes64im AES Decrypt KeySchedule MixColumns (RV64)

✓ aes64ks1i AES Key Schedule Instruction 1 (RV64)

✓ aes64ks2 AES Key Schedule Instruction 2 (RV64)

2.5. Zkne - NIST Suite: AES Encryption
Instructions for accelerating the encryption and key-schedule functions of the AES block cipher.

RV32 RV64 Mnemonic Instruction

✓ aes32esi AES final round encrypt (RV32)

✓ aes32esmi AES middle round encrypt (RV32)

✓ aes64es AES encrypt final round instruction (RV64)

✓ aes64esm AES encrypt middle round instruction (RV64)

✓ aes64ks1i AES Key Schedule Instruction 1 (RV64)

✓ aes64ks2 AES Key Schedule Instruction 2 (RV64)

2.6. Zknh - NIST Suite: Hash Function Instructions
Instructions for accelerating the SHA2 family of cryptographic hash functions, as specified in [49].

RV32 RV64 Mnemonic Instruction

✓ ✓ sha256sig0 SHA2-256 Sigma0 instruction

✓ ✓ sha256sig1 SHA2-256 Sigma1 instruction

✓ ✓ sha256sum0 SHA2-256 Sum0 instruction

✓ ✓ sha256sum1 SHA2-256 Sum1 instruction

✓ sha512sig0h SHA2-512 Sigma0 high (RV32)

✓ sha512sig0l SHA2-512 Sigma0 low (RV32)

✓ sha512sig1h SHA2-512 Sigma1 high (RV32)

✓ sha512sig1l SHA2-512 Sigma1 low (RV32)
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RV32 RV64 Mnemonic Instruction

✓ sha512sum0r SHA2-512 Sum0 (RV32)

✓ sha512sum1r SHA2-512 Sum1 (RV32)

✓ sha512sig0 SHA2-512 Sigma0 instruction (RV64)

✓ sha512sig1 SHA2-512 Sigma1 instruction (RV64)

✓ sha512sum0 SHA2-512 Sum0 instruction (RV64)

✓ sha512sum1 SHA2-512 Sum1 instruction (RV64)

2.7. Zksed - ShangMi Suite: SM4 Block Cipher Instructions
Instructions for accelerating the SM4 Block Cipher. Note that unlike AES, this cipher uses the same core
operation for encryption and decryption, hence there is only one extension for it.

RV32 RV64 Mnemonic Instruction

✓ ✓ sm4ed SM4 Encrypt/Decrypt Instruction

✓ ✓ sm4ks SM4 Key Schedule Instruction

2.8. Zksh - ShangMi Suite: SM3 Hash Function Instructions
Instructions for accelerating the SM3 hash function.

RV32 RV64 Mnemonic Instruction

✓ ✓ sm3p0 SM3 P0 transform

✓ ✓ sm3p1 SM3 P1 transform

2.9. Zkr - Entropy Source Extension
The entropy source extension defines the seed CSR at address 0x015. This CSR provides up to 16 physical
entropy bits that can be used to seed cryptographic random bit generators.

See Chapter 4 for the normative specification and access control notes. Appendix B contains design rationale and
further recommendations to implementers.

2.10. Zkn - NIST Algorithm Suite
This extension is shorthand for the following set of other extensions:

Included Extension Description

Zbkb Bitmanipulation instructions for cryptography.

Zbkc Carry-less multiply instructions.

Zbkx Cross-bar Permutation instructions.
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Included Extension Description

Zkne AES encryption instructions.

Zknd AES decryption instructions.

Zknh SHA2 hash function instructions.

A core which implements Zkn must implement all of the above extensions.

2.11. Zks - ShangMi Algorithm Suite
This extension is shorthand for the following set of other extensions:

Included Extension Description

Zbkb Bitmanipulation instructions for cryptography.

Zbkc Carry-less multiply instructions.

Zbkx Cross-bar Permutation instructions.

Zksed SM4 block cipher instructions.

Zksh SM3 hash function instructions.

A core which implements Zks must implement all of the above extensions.

2.12. Zk - Standard scalar cryptography extension
This extension is shorthand for the following set of other extensions:

Included Extension Description

Zkn NIST Algorithm suite extension.

Zkr Entropy Source extension.

Zkt Data independent execution latency extension.

A core which implements Zk must implement all of the above extensions.

2.13. Zkt - Data Independent Execution Latency
This extension allows CPU implementers to indicate to cryptographic software developers that a subset of RISC-
V instructions are guaranteeed to be implemented such that their execution latency is independent of the data
values they operate on. A complete description of this extension is found in Chapter 5.
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Chapter 3. Instructions
3.1. aes32dsi
Synopsis

AES final round decryption instruction for RV32.

Mnemonic
aes32dsi rd, rs1, rs2, bs

Encoding
0671112141519202425293031

1100110rd000rs1rs210101bs

Description
This instruction sources a single byte from rs2 according to bs. To this it applies the inverse AES SBox
operation, and XOR’s the result with rs1. This instruction must always be implemented such that it’s
execution latency does not depend on the data being operated on.

Operation

function clause execute (AES32DSI (bs,rs2,rs1,rd)) = {
  let shamt   : bits( 5) = bs @ 0b000; /* shamt = bs*8 */
  let si      : bits( 8) = (X(rs2)[31..0] >> shamt)[7..0]; /* SBox Input */
  let so      : bits(32) = 0x000000 @ aes_sbox_inv(si);
  let result  : bits(32) = X(rs1)[31..0] ^ rol32(so, unsigned(shamt));
  X(rd) = EXTS(result); RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknd (RV32) v1.0.0-rc2 Frozen

Zkn (RV32) v1.0.0-rc2 Frozen

Zk (RV32) v1.0.0-rc2 Frozen
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3.2. aes32dsmi
Synopsis

AES middle round decryption instruction for RV32.

Mnemonic
aes32dsmi rd, rs1, rs2, bs

Encoding
0671112141519202425293031

1100110rd000rs1rs211101bs

Description
This instruction sources a single byte from rs2 according to bs. To this it applies the inverse AES SBox
operation, and a partial inverse MixColumn, before XOR’ing the result with rs1. This instruction must
always be implemented such that it’s execution latency does not depend on the data being operated on.

Operation

function clause execute (AES32DSMI (bs,rs2,rs1,rd)) = {
  let shamt   : bits( 5) = bs @ 0b000; /* shamt = bs*8 */
  let si      : bits( 8) = (X(rs2)[31..0] >> shamt)[7..0]; /* SBox Input */
  let so      : bits( 8) = aes_sbox_inv(si);
  let mixed   : bits(32) = aes_mixcolumn_byte_inv(so);
  let result  : bits(32) = X(rs1)[31..0] ^ rol32(mixed, unsigned(shamt));
  X(rd) = EXTS(result); RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknd (RV32) v1.0.0-rc2 Frozen

Zkn (RV32) v1.0.0-rc2 Frozen

Zk (RV32) v1.0.0-rc2 Frozen
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3.3. aes32esi
Synopsis

AES final round encryption instruction for RV32.

Mnemonic
aes32esi rd, rs1, rs2, bs

Encoding
0671112141519202425293031

1100110rd000rs1rs210001bs

Description
This instruction sources a single byte from rs2 according to bs. To this it applies the forward AES SBox
operation, before XOR’ing the result with rs1. This instruction must always be implemented such that it’s
execution latency does not depend on the data being operated on.

Operation

function clause execute (AES32ESI (bs,rs2,rs1,rd)) = {
  let shamt   : bits( 5) = bs @ 0b000; /* shamt = bs*8 */
  let si      : bits( 8) = (X(rs2)[31..0] >> shamt)[7..0]; /* SBox Input */
  let so      : bits(32) = 0x000000 @ aes_sbox_fwd(si);
  let result  : bits(32) = X(rs1)[31..0] ^ rol32(so, unsigned(shamt));
  X(rd) = EXTS(result); RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zkne (RV32) v1.0.0-rc2 Frozen

Zkn (RV32) v1.0.0-rc2 Frozen

Zk (RV32) v1.0.0-rc2 Frozen
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3.4. aes32esmi
Synopsis

AES middle round encryption instruction for RV32.

Mnemonic
aes32esmi rd, rs1, rs2, bs

Encoding
0671112141519202425293031

1100110rd000rs1rs211001bs

Description
This instruction sources a single byte from rs2 according to bs. To this it applies the forward AES SBox
operation, and a partial forward MixColumn, before XOR’ing the result with rs1. This instruction must
always be implemented such that it’s execution latency does not depend on the data being operated on.

Operation

function clause execute (AES32ESMI (bs,rs2,rs1,rd)) = {
  let shamt   : bits( 5) = bs @ 0b000; /* shamt = bs*8 */
  let si      : bits( 8) = (X(rs2)[31..0] >> shamt)[7..0]; /* SBox Input */
  let so      : bits( 8) = aes_sbox_fwd(si);
  let mixed   : bits(32) = aes_mixcolumn_byte_fwd(so);
  let result  : bits(32) = X(rs1)[31..0] ^ rol32(mixed, unsigned(shamt));
  X(rd) = EXTS(result); RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zkne (RV32) v1.0.0-rc2 Frozen

Zkn (RV32) v1.0.0-rc2 Frozen

Zk (RV32) v1.0.0-rc2 Frozen
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3.5. aes64ds
Synopsis

AES final round decryption instruction for RV64.

Mnemonic
aes64ds rd, rs1, rs2

Encoding
0671112141519202425293031

1100110rd000rs1rs21011100

Description
Uses the two 64-bit source registers to represent the entire AES state, and produces half of the next round
output, applying the Inverse ShiftRows and SubBytes steps. This instruction must always be implemented
such that it’s execution latency does not depend on the data being operated on.



Note To Software Developers
The following code snippet shows the final round of the AES block decryption. t0 and t1
hold the current round state. t2 and t3 hold the next round state.

aes64ds t2, t0, t1
aes64ds t3, t1, t0

Note the reversed register order of the second instruction.

Operation

function clause execute (AES64DS(rs2, rs1, rd)) = {
  let sr : bits(64) = aes_rv64_shiftrows_inv(X(rs2)[63..0], X(rs1)[63..0]);
  let wd : bits(64) = sr[63..0];
  X(rd) = aes_apply_inv_sbox_to_each_byte(wd);
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknd (RV64) v1.0.0-rc2 Frozen

Zkn (RV64) v1.0.0-rc2 Frozen

Zk (RV64) v1.0.0-rc2 Frozen
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3.6. aes64dsm
Synopsis

AES middle round decryption instruction for RV64.

Mnemonic
aes64dsm rd, rs1, rs2

Encoding
0671112141519202425293031

1100110rd000rs1rs21111100

Description
Uses the two 64-bit source registers to represent the entire AES state, and produces half of the next round
output, applying the Inverse ShiftRows, SubBytes and MixColumns steps. This instruction must always be
implemented such that it’s execution latency does not depend on the data being operated on.



Note To Software Developers
The following code snippet shows one middle round of the AES block decryption. t0 and t1
hold the current round state. t2 and t3 hold the next round state.

aes64dsm t2, t0, t1
aes64dsm t3, t1, t0

Note the reversed register order of the second instruction.

Operation

function clause execute (AES64DSM(rs2, rs1, rd)) = {
  let sr : bits(64) = aes_rv64_shiftrows_inv(X(rs2)[63..0], X(rs1)[63..0]);
  let wd : bits(64) = sr[63..0];
  let sb : bits(64) = aes_apply_inv_sbox_to_each_byte(wd);
  X(rd)  = aes_mixcolumn_inv(sb[63..32]) @ aes_mixcolumn_inv(sb[31..0]);
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknd (RV64) v1.0.0-rc2 Frozen

Zkn (RV64) v1.0.0-rc2 Frozen

Zk (RV64) v1.0.0-rc2 Frozen
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3.7. aes64es
Synopsis

AES final round encryption instruction for RV64.

Mnemonic
aes64es rd, rs1, rs2

Encoding
0671112141519202425293031

1100110rd000rs1rs21001100

Description
Uses the two 64-bit source registers to represent the entire AES state, and produces half of the next round
output, applying the ShiftRows and SubBytes steps. This instruction must always be implemented such that
it’s execution latency does not depend on the data being operated on.



Note To Software Developers
The following code snippet shows the final round of the AES block encryption. t0 and t1
hold the current round state. t2 and t3 hold the next round state.

aes64es t2, t0, t1
aes64es t3, t1, t0

Note the reversed register order of the second instruction.

Operation

function clause execute (AES64ES(rs2, rs1, rd)) = {
  let sr : bits(64) = aes_rv64_shiftrows_fwd(X(rs2)[63..0], X(rs1)[63..0]);
  let wd : bits(64) = sr[63..0];
  X(rd) = aes_apply_fwd_sbox_to_each_byte(wd);
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zkne (RV64) v1.0.0-rc2 Frozen

Zkn (RV64) v1.0.0-rc2 Frozen

Zk (RV64) v1.0.0-rc2 Frozen
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3.8. aes64esm
Synopsis

AES middle round encryption instruction for RV64.

Mnemonic
aes64esm rd, rs1, rs2

Encoding
0671112141519202425293031

1100110rd000rs1rs21101100

Description
Uses the two 64-bit source registers to represent the entire AES state, and produces half of the next round
output, applying the ShiftRows, SubBytes and MixColumns steps. This instruction must always be
implemented such that it’s execution latency does not depend on the data being operated on.



Note To Software Developers
The following code snippet shows one middle round of the AES block encryption. t0 and t1
hold the current round state. t2 and t3 hold the next round state.

aes64esm t2, t0, t1
aes64esm t3, t1, t0

Note the reversed register order of the second instruction.

Operation

function clause execute (AES64ESM(rs2, rs1, rd)) = {
  let sr : bits(64) = aes_rv64_shiftrows_fwd(X(rs2)[63..0], X(rs1)[63..0]);
  let wd : bits(64) = sr[63..0];
  let sb : bits(64) = aes_apply_fwd_sbox_to_each_byte(wd);
  X(rd)  =  aes_mixcolumn_fwd(sb[63..32]) @ aes_mixcolumn_fwd(sb[31..0]);
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zkne (RV64) v1.0.0-rc2 Frozen

Zkn (RV64) v1.0.0-rc2 Frozen

Zk (RV64) v1.0.0-rc2 Frozen
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3.9. aes64im
Synopsis

This instruction accelerates the inverse MixColumns step of the AES Block Cipher, and is used to aid
creation of the decryption KeySchedule.

Mnemonic
aes64im rd, rs1

Encoding
0671112141519202425293031

1100100rd100rs1000000001100

Description
The instruction applies the inverse MixColumns transformation to two columns of the state array, packed
into a single 64-bit register. It is used to create the inverse cipher KeySchedule, according to the equivalent
inverse cipher construction in [47] (Page 23, Section 5.3.5). This instruction must always be implemented
such that it’s execution latency does not depend on the data being operated on.

Operation

function clause execute (AES64IM(rs1, rd)) = {
  let w0 : bits(32) = aes_mixcolumn_inv(X(rs1)[31.. 0]);
  let w1 : bits(32) = aes_mixcolumn_inv(X(rs1)[63..32]);
  X(rd)  = w1 @ w0;
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknd (RV64) v1.0.0-rc2 Frozen

Zkn (RV64) v1.0.0-rc2 Frozen

Zk (RV64) v1.0.0-rc2 Frozen
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3.10. aes64ks1i
Synopsis

This instruction implements part of the KeySchedule operation for the AES Block cipher involving the SBox
operation.

Mnemonic
aes64ks1i rd, rs1, rnum

Encoding
067111214151920232425293031

1100100rd100rs1rnum10001100

Description
This instruction implements the rotation, SubBytes and Round Constant addition steps of the AES block
cipher Key Schedule. This instruction must always be implemented such that it’s execution latency does not
depend on the data being operated on. Note that rnum must be in the range 0x0..0xA. The values
0xB..0xF are reserved.

Operation

function clause execute (AES64KS1I(rnum, rs1, rd)) = {
  if(unsigned(rnum) > 10) then {
    handle_illegal();  RETIRE_SUCCESS
  } else {
    let tmp1 : bits(32) = X(rs1)[63..32];
    let rc   : bits(32) = aes_rnum_to_rcon(rnum); /* round number -> round
constant */
    let tmp2 : bits(32) = if (rnum ==0xA) then tmp1 else ror32(tmp1, 8);
    let tmp3 : bits(32) = aes_sbox_fwd(tmp2[31..24]) @ aes_sbox_fwd(tmp2[23..16])
@
                          aes_sbox_fwd(tmp2[15.. 8]) @ aes_sbox_fwd(tmp2[ 7.. 0])
;
    let result : bits(64) = (tmp3 ^ rc) @ (tmp3 ^ rc);
    X(rd) = EXTZ(result);
    RETIRE_SUCCESS
  }
}

Included in
Extension Minimum version Lifecycle state

Zkne (RV64) v1.0.0-rc2 Frozen

Zknd (RV64) v1.0.0-rc2 Frozen

Zkn (RV64) v1.0.0-rc2 Frozen

Zk (RV64) v1.0.0-rc2 Frozen
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3.11. aes64ks2
Synopsis

This instruction implements part of the KeySchedule operation for the AES Block cipher.

Mnemonic
aes64ks2 rd, rs1, rs2

Encoding
0671112141519202425293031

1100110rd000rs1rs21111110

Description
This instruction implements the additional XOR’ing of key words as part of the AES block cipher Key
Schedule. This instruction must always be implemented such that it’s execution latency does not depend on
the data being operated on.

Operation

function clause execute (AES64KS2(rs2, rs1, rd)) = {
  let w0 : bits(32) = X(rs1)[63..32] ^ X(rs2)[31..0];
  let w1 : bits(32) = X(rs1)[63..32] ^ X(rs2)[31..0] ^ X(rs2)[63..32];
  X(rd)  = w1 @ w0;
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zkne (RV64) v1.0.0-rc2 Frozen

Zknd (RV64) v1.0.0-rc2 Frozen

Zkn (RV64) v1.0.0-rc2 Frozen

Zk (RV64) v1.0.0-rc2 Frozen
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3.12. andn
Synopsis

AND with inverted operand

Mnemonic
andn rd, rs1, rs2

Encoding
067111214151920242531

1100110rd111rs1rs20000010
OPANDNANDN

Description
This instruction performs the bitwise logical AND operation between rs1 and the bitwise inversion of rs2.

Operation

X(rd) = X(rs1) & ~X(rs2);

Included in
Extension Minimum version Lifecycle state

Zbb ([zbb]) v1.0.0 Frozen

Zbkb (Zbkb) v1.0.0-rc2 Frozen
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3.13. brev8
Synopsis

Reverse the bits in each byte of a source register.

Mnemonic
brev8 rd, rs

Encoding
06711121415192031

1100100rd101rs111000010110
OP-IMM

Description
This instruction reverses the order of the bits in every byte of a register.



This instruction is a specific encoding of a more generic instruction which was originally
proposed as part of the RISC-V Bitmanip extension (grevi). Eventually, the more generic
instruction may be standardised. Until then, only the most common instances of it, such as
this, are being included in specifications.

Operation

result : xlenbits = EXTZ(0b0);
foreach (i from 0 to sizeof(xlen) by 8) {
    result[i+7..i] = reverse_bits_in_byte(X(rs1)[i+7..i]);
};
X(rd) = result;

Included in
Extension Minimum version Lifecycle state

Zbkb (Zbkb) v1.0.0-rc2 Frozen
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3.14. clmul
Synopsis

Carry-less multiply (low-part)

Mnemonic
clmul rd, rs1, rs2

Encoding
067111214151920242531

1100110rd100rs1rs21010000
OPCLMULMINMAX/CLMUL

Description
clmul produces the lower half of the 2·XLEN carry-less product.

Operation

let rs1_val = X(rs1);
let rs2_val = X(rs2);
let output : xlenbits = 0;

foreach (i from 0 to xlen by 1) {
   output = if   ((rs2_val >> i) & 1)
            then output ^ (rs1_val << i);
        else output;
}

X[rd] = output

Included in
Extension Minimum version Lifecycle state

Zbc ([zbc]) v1.0.0 Frozen

Zbkc (Zbkc) v1.0.0-rc2 Frozen
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3.15. clmulh
Synopsis

Carry-less multiply (high-part)

Mnemonic
clmulh rd, rs1, rs2

Encoding
067111214151920242531

1100110rd110rs1rs21010000
OPCLMULHMINMAX/CLMUL

Description
clmulh produces the upper half of the 2·XLEN carry-less product.

Operation

let rs1_val = X(rs1);
let rs2_val = X(rs2);
let output : xlenbits = 0;

foreach (i from 1 to xlen by 1) {
   output = if   ((rs2_val >> i) & 1)
            then output ^ (rs1_val >> (xlen - i));
        else output;
}

X[rd] = output

Included in
Extension Minimum version Lifecycle state

Zbc ([zbc]) v1.0.0 Frozen

Zbkc (Zbkc) v1.0.0-rc2 Frozen
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3.16. orn
Synopsis

OR with inverted operand

Mnemonic
orn rd, rs1, rs2

Encoding
067111214151920242531

1100110rd011rs1rs20000010
OPORNORN

Description
This instruction performs the bitwise logical OR operation between rs1 and the bitwise inversion of rs2.

Operation

X(rd) = X(rs1) | ~X(rs2);

Included in
Extension Minimum version Lifecycle state

Zbb ([zbb]) v1.0.0 Frozen

Zbkb (Zbkb) v1.0.0-rc2 Frozen
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3.17. pack
Synopsis

Pack the low halves of rs1 and rs2 into rd.

Mnemonic
pack rd, rs1, rs2

Encoding
067111214151920242531

1100110rd001rs1rs20010000
OPPACKPACK

Description
The pack instruction packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the lower half and
rs2 in the upper half.

Operation

let lo_half : bits(xlen/2) = X(rs1)[xlen/2-1..0];
let hi_half : bits(xlen/2) = X(rs2)[xlen/2-1..0];
X(rd) = EXTZ(hi_half @ lo_half);

Included in
Extension Minimum version Lifecycle state

Zbkb (Zbkb) v1.0.0-rc2 Frozen
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3.18. packh
Synopsis

Pack the low bytes of rs1 and rs2 into rd.

Mnemonic
packh rd, rs1, rs2

Encoding
067111214151920242531

1100110rd111rs1rs20010000
OPPACKHPACKH

Description
And the packh instruction packs the least-significant bytes of rs1 and rs2 into the 16 least-significant bits of
rd, zero extending the rest of rd.

Operation

let lo_half : bits(8) = X(rs1)[7..0];
let hi_half : bits(8) = X(rs2)[7..0];
X(rd) = EXTZ(hi_half @ lo_half);

Included in
Extension Minimum version Lifecycle state

Zbkb (Zbkb) v1.0.0-rc2 Frozen
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3.19. packw
Synopsis

Pack the low 16-bits of rs1 and rs2 into rd on RV64.

Mnemonic
packw rd, rs1, rs2

Encoding
01267111214151920242531

1101110rd001rs1rs20010000

Description
This instruction packs the low 16 bits of rs1 and rs2 into the 32 least-significant bits of rd, sign extending the
32-bit result to the rest of rd. This instruction only exists on RV64 based systems.

Operation

let lo_half : bits(16) = X(rs1)[15..0];
let hi_half : bits(16) = X(rs2)[15..0];
X(rd) = EXTS(hi_half @ lo_half);

Included in
Extension Minimum version Lifecycle state

Zbkb (Zbkb) v1.0.0-rc2 Frozen
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3.20. rev8
Synopsis

Byte-reverse register

Mnemonic
rev8 rd, rs

Encoding (RV32)
06711121415192031

1100100rd101rs000110010110
OP-IMM

Encoding (RV64)
06711121415192031

1100100rd101rs000111010110
OP-IMM

Description
This instruction reverses the order of the bytes in rs.



This instruction is a specific encoding of a more generic instruction which was originally
proposed as part of the RISC-V Bitmanip extension (grevi). Eventually, the more generic
instruction may be standardised. Until then, only the most common instances of it, such as
this, are being included in specifications.

Operation

let input = X(rs);
let output : xlenbits = 0;
let j = xlen - 1;

foreach (i from 0 to (xlen - 8) by 8) {
   output[i..(i + 7)] = input[(j - 7)..j];
   j = j - 8;
}

X[rd] = output


Software Hint
The byte-reverse operation is only available for the full register width. To emulate word-sized
and halfword-sized byte-reversal, perform a rev8 rd,rs followed by a srai rd,rd.

Included in
Extension Minimum version Lifecycle state

Zbb ([zbb]) v1.0.0 Frozen

Zbkb (Zbkb) v1.0.0-rc2 Frozen
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3.21. rol
Synopsis

Rotate Left (Register)

Mnemonic
rol rd, rs1, rs2

Encoding
067111214151920242531

1100110rd100rs1rs20000110
OPROLROL

Description
This instruction performs a rotate left of rs1 by the amount in least-significant log2(XLEN) bits of rs2.

Operation

let shamt = if   xlen == 32
            then X(rs2)[4..0]
        else X(rs2)[5..0];
let result = (X(rs1) << shamt) | (X(rs1) >> (xlen - shamt));

X(rd) = result;

Included in
Extension Minimum version Lifecycle state

Zbb ([zbb]) v1.0.0 Frozen

Zbkb (Zbkb) v1.0.0-rc2 Frozen
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3.22. rolw
Synopsis

Rotate Left Word (Register)

Mnemonic
rolw rd, rs1, rs2

Encoding
067111214151920242531

1101110rd100rs1rs20000110
OP-32ROLWROLW

Description
This instruction performs a rotate left on the least-significant word of rs1 by the amount in least-significant 5
bits of rs2. The resulting word value is sign-extended by copying bit 31 to all of the more-significant bits.

Operation

let rs1 = EXTZ(X(rs1)[31..0])
let shamt = X(rs2)[4..0];
let result = (rs1 << shamt) | (rs1 >> (32 - shamt));
X(rd) = EXTS(result);

Included in
Extension Minimum version Lifecycle state

Zbb ([zbb]) v1.0.0 Frozen

Zbkb (Zbkb) v1.0.0-rc2 Frozen
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3.23. ror
Synopsis

Rotate Right

Mnemonic
ror rd, rs1, rs2

Encoding
067111214151920242531

1100110rd101rs1rs20000110
OPRORROR

Description
This instruction performs a rotate right of rs1 by the amount in least-significant log2(XLEN) bits of rs2.

Operation

let shamt = if   xlen == 32
            then X(rs2)[4..0]
        else X(rs2)[5..0];
let result = (X(rs1) >> shamt) | (X(rs1) << (xlen - shamt));

X(rd) = result;

Included in
Extension Minimum version Lifecycle state

Zbb ([zbb]) v1.0.0 Frozen

Zbkb (Zbkb) v1.0.0-rc2 Frozen
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3.24. rori
Synopsis

Rotate Right (Immediate)

Mnemonic
rori rd, rs1, shamt

Encoding (RV32)
067111214151920242531

1100100rd101rs1shamt0000110
OP-IMMRORIRORI

Encoding (RV64)
067111214151920252631

1100100rd101rs1shamt000110
OP-IMMRORIRORI

Description
This instruction performs a rotate right of rs1 by the amount in the least-significant log2(XLEN) bits of
shamt. For RV32, the encodings corresponding to shamt[5]=1 are reserved.

Operation

let shamt = if   xlen == 32
            then shamt[4..0]
        else shamt[5..0];
let result = (X(rs1) >> shamt) | (X(rs1) << (xlen - shamt));

X(rd) = result;

Included in
Extension Minimum version Lifecycle state

Zbb ([zbb]) v1.0.0 Frozen

Zbkb (Zbkb) v1.0.0-rc2 Frozen
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3.25. roriw
Synopsis

Rotate Right Word by Immediate

Mnemonic
roriw rd, rs1, shamt

Encoding
067111214151920242531

1101100rd101rs1shamt0000110
OP-IMM-32RORIWRORIW

Description
This instruction performs a rotate right on the least-significant word of rs1 by the amount in the least-
significant log2(XLEN) bits of shamt. The resulting word value is sign-extended by copying bit 31 to all of
the more-significant bits.

Operation

let rs1_data = EXTZ(X(rs1)[31..0];
let result = (rs1_data >> shamt[4..0]) | (rs1_data << (32 - shamt[4..0]));
X(rd) = EXTS(result[31..0]);

Included in
Extension Minimum version Lifecycle state

Zbb ([zbb]) v1.0.0 Frozen

Zbkb (Zbkb) v1.0.0-rc2 Frozen
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3.26. rorw
Synopsis

Rotate Right Word (Register)

Mnemonic
rorw rd, rs1, rs2

Encoding
067111214151920242531

1101110rd101rs1rs20000110
OP-32RORWRORW

Description
This instruction performs a rotate right on the least-significant word of rs1 by the amount in least-significant
5 bits of rs2. The resultant word is sign-extended by copying bit 31 to all of the more-significant bits.

Operation

let rs1 = EXTZ(X(rs1)[31..0])
let shamt = X(rs2)[4..0];
let result = (rs1 >> shamt) | (rs1 << (32 - shamt));
X(rd) = EXTS(result);

Included in
Extension Minimum version Lifecycle state

Zbb ([zbb]) v1.0.0 Frozen

Zbkb (Zbkb) v1.0.0-rc2 Frozen
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3.27. sha256sig0
Synopsis

Implements the Sigma0 transformation function as used in the SHA2-256 hash function [49] (Section 4.1.2).

Mnemonic
sha256sig0 rd, rs1

Encoding
0671112141519202425293031

1100100rd100rs1010000001000

Description
This instruction is supported for both RV32 and RV64 base architectures. For RV32, the entire XLEN source
register is operated on. For RV64, the low 32 bits of the source register is operated on, and the result sign
extended to XLEN bits. Though named for SHA2-256, the instruction works for both the SHA2-224 and
SHA2-256 parameterisations as described in [49]. This instruction must always be implemented such that it’s
execution latency does not depend on the data being operated on.

Operation

function clause execute (SHA256SIG0(rs1,rd)) = {
  let inb    : bits(32) = X(rs1)[31..0];
  let result : bits(32) = ror32(inb,  7) ^ ror32(inb, 18) ^ (inb >>  3);
  X(rd)      = EXTS(result);
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknh v1.0.0-rc2 Frozen

Zkn v1.0.0-rc2 Frozen

Zk v1.0.0-rc2 Frozen
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3.28. sha256sig1
Synopsis

Implements the Sigma1 transformation function as used in the SHA2-256 hash function [49] (Section 4.1.2).

Mnemonic
sha256sig1 rd, rs1

Encoding
0671112141519202425293031

1100100rd100rs1110000001000

Description
This instruction is supported for both RV32 and RV64 base architectures. For RV32, the entire XLEN source
register is operated on. For RV64, the low 32 bits of the source register is operated on, and the result sign
extended to XLEN bits. Though named for SHA2-256, the instruction works for both the SHA2-224 and
SHA2-256 parameterisations as described in [49]. This instruction must always be implemented such that it’s
execution latency does not depend on the data being operated on.

Operation

function clause execute (SHA256SIG1(rs1,rd)) = {
  let inb    : bits(32) = X(rs1)[31..0];
  let result : bits(32) = ror32(inb, 17) ^ ror32(inb, 19) ^ (inb >> 10);
  X(rd)      = EXTS(result);
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknh v1.0.0-rc2 Frozen

Zkn v1.0.0-rc2 Frozen

Zk v1.0.0-rc2 Frozen
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3.29. sha256sum0
Synopsis

Implements the Sum0 transformation function as used in the SHA2-256 hash function [49] (Section 4.1.2).

Mnemonic
sha256sum0 rd, rs1

Encoding
0671112141519202425293031

1100100rd100rs1000000001000

Description
This instruction is supported for both RV32 and RV64 base architectures. For RV32, the entire XLEN source
register is operated on. For RV64, the low 32 bits of the source register is operated on, and the result sign
extended to XLEN bits. Though named for SHA2-256, the instruction works for both the SHA2-224 and
SHA2-256 parameterisations as described in [49]. This instruction must always be implemented such that it’s
execution latency does not depend on the data being operated on.

Operation

function clause execute (SHA256SUM0(rs1,rd)) = {
  let inb    : bits(32) = X(rs1)[31..0];
  let result : bits(32) = ror32(inb,  2) ^ ror32(inb, 13) ^ ror32(inb, 22);
  X(rd)      = EXTS(result);
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknh v1.0.0-rc2 Frozen

Zkn v1.0.0-rc2 Frozen

Zk v1.0.0-rc2 Frozen
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3.30. sha256sum1
Synopsis

Implements the Sum1 transformation function as used in the SHA2-256 hash function [49] (Section 4.1.2).

Mnemonic
sha256sum1 rd, rs1

Encoding
0671112141519202425293031

1100100rd100rs1100000001000

Description
This instruction is supported for both RV32 and RV64 base architectures. For RV32, the entire XLEN source
register is operated on. For RV64, the low 32 bits of the source register is operated on, and the result sign
extended to XLEN bits. Though named for SHA2-256, the instruction works for both the SHA2-224 and
SHA2-256 parameterisations as described in [49]. This instruction must always be implemented such that it’s
execution latency does not depend on the data being operated on.

Operation

function clause execute (SHA256SUM1(rs1,rd)) = {
  let inb    : bits(32) = X(rs1)[31..0];
  let result : bits(32) = ror32(inb,  6) ^ ror32(inb, 11) ^ ror32(inb, 25);
  X(rd)      = EXTS(result);
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknh v1.0.0-rc2 Frozen

Zkn v1.0.0-rc2 Frozen

Zk v1.0.0-rc2 Frozen
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3.31. sha512sig0h
Synopsis

Implements the high half of the Sigma0 transformation, as used in the SHA2-512 hash function [49] (Section
4.1.3).

Mnemonic
sha512sig0h rd, rs1, rs2

Encoding
0671112141519202425293031

1100110rd000rs1rs20111010

Description
This instruction is implemented on RV32 only. Used to compute the Sigma0 transform of the SHA2-512 hash
function in conjunction with the sha512sig0l instruction. The transform is a 64-bit to 64-bit function, so
the input and output is represented by two 32-bit registers. This instruction must always be implemented
such that it’s execution latency does not depend on the data being operated on.



Note to software developers
The entire Sigma0 transform for SHA2-512 may be computed on RV32 using the following
instruction sequence:

sha512sig0l    t0, a0, a1
sha512sig0h    t1, a0, a1

Operation

function clause execute (SHA512SIG0H(rs2, rs1, rd)) = {
  X(rd) = EXTS((X(rs1) >>  1) ^ (X(rs1) >>  7) ^ (X(rs1) >>  8) ^
               (X(rs2) << 31)                  ^ (X(rs2) << 24) );
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknh (RV32) v1.0.0-rc2 Frozen

Zkn (RV32) v1.0.0-rc2 Frozen

Zk (RV32) v1.0.0-rc2 Frozen
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3.32. sha512sig0l
Synopsis

Implements the low half of the Sigma0 transformation, as used in the SHA2-512 hash function [49] (Section
4.1.3).

Mnemonic
sha512sig0l rd, rs1, rs2

Encoding
0671112141519202425293031

1100110rd000rs1rs20101010

Description
This instruction is implemented on RV32 only. Used to compute the Sigma0 transform of the SHA2-512 hash
function in conjunction with the sha512sig0h instruction. The transform is a 64-bit to 64-bit function, so
the input and output is represented by two 32-bit registers. This instruction must always be implemented
such that it’s execution latency does not depend on the data being operated on.



Note to software developers
The entire Sigma0 transform for SHA2-512 may be computed on RV32 using the following
instruction sequence:

sha512sig0l    t0, a0, a1
sha512sig0h    t1, a0, a1

Operation

function clause execute (SHA512SIG0L(rs2, rs1, rd)) = {
  X(rd) = EXTS((X(rs1) >>  1) ^ (X(rs1) >>  7) ^ (X(rs1) >>  8) ^
               (X(rs2) << 31) ^ (X(rs2) << 25) ^ (X(rs2) << 24) );
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknh (RV32) v1.0.0-rc2 Frozen

Zkn (RV32) v1.0.0-rc2 Frozen

Zk (RV32) v1.0.0-rc2 Frozen
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3.33. sha512sig1h
Synopsis

Implements the high half of the Sigma1 transformation, as used in the SHA2-512 hash function [49] (Section
4.1.3).

Mnemonic
sha512sig1h rd, rs1, rs2

Encoding
0671112141519202425293031

1100110rd000rs1rs21111010

Description
This instruction is implemented on RV32 only. Used to compute the Sigma1 transform of the SHA2-512 hash
function in conjunction with the sha512sig1l instruction. The transform is a 64-bit to 64-bit function, so
the input and output is represented by two 32-bit registers. This instruction must always be implemented
such that it’s execution latency does not depend on the data being operated on.



Note to software developers
The entire Sigma1 transform for SHA2-512 may be computed on RV32 using the following
instruction sequence:

sha512sig1l    t0, a0, a1
sha512sig1h    t1, a0, a1

Operation

function clause execute (SHA512SIG1H(rs2, rs1, rd)) = {
  X(rd) = EXTS((X(rs1) <<  3) ^ (X(rs1) >>  6) ^ (X(rs1) >> 19) ^
               (X(rs2) >> 29)                  ^ (X(rs2) << 13) );
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknh (RV32) v1.0.0-rc2 Frozen

Zkn (RV32) v1.0.0-rc2 Frozen

Zk (RV32) v1.0.0-rc2 Frozen
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3.34. sha512sig1l
Synopsis

Implements the low half of the Sigma1 transformation, as used in the SHA2-512 hash function [49] (Section
4.1.3).

Mnemonic
sha512sig1l rd, rs1, rs2

Encoding
0671112141519202425293031

1100110rd000rs1rs21101010

Description
This instruction is implemented on RV32 only. Used to compute the Sigma1 transform of the SHA2-512 hash
function in conjunction with the sha512sig1h instruction. The transform is a 64-bit to 64-bit function, so
the input and output is represented by two 32-bit registers. This instruction must always be implemented
such that it’s execution latency does not depend on the data being operated on.



Note to software developers
The entire Sigma1 transform for SHA2-512 may be computed on RV32 using the following
instruction sequence:

sha512sig1l    t0, a0, a1
sha512sig1h    t1, a0, a1

Operation

function clause execute (SHA512SIG1L(rs2, rs1, rd)) = {
  X(rd) = EXTS((X(rs1) <<  3) ^ (X(rs1) >>  6) ^ (X(rs1) >> 19) ^
               (X(rs2) >> 29) ^ (X(rs2) << 26) ^ (X(rs2) << 13) );
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknh (RV32) v1.0.0-rc2 Frozen

Zkn (RV32) v1.0.0-rc2 Frozen

Zk (RV32) v1.0.0-rc2 Frozen
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3.35. sha512sum0r
Synopsis

Implements the the Sum0 transformation, as used in the SHA2-512 hash function [49] (Section 4.1.3).

Mnemonic
sha512sum0r rd, rs1, rs2

Encoding
0671112141519202425293031

1100110rd000rs1rs20001010

Description
This instruction is implemented on RV32 only. Used to compute the Sum0 transform of the SHA2-512 hash
function. The transform is a 64-bit to 64-bit function, so the input and output is represented by two 32-bit
registers. This instruction must always be implemented such that it’s execution latency does not depend on
the data being operated on.



Note to software developers
The entire Sum0 transform for SHA2-512 may be computed on RV32 using the following
instruction sequence:

sha512sum0r    t0, a0, a1
sha512sum0r    t1, a1, a0

Note the reversed source register ordering.

Operation

function clause execute (SHA512SUM0R(rs2, rs1, rd)) = {
  X(rd) = EXTS((X(rs1) << 25) ^ (X(rs1) << 30) ^ (X(rs1) >> 28) ^
               (X(rs2) >>  7) ^ (X(rs2) >>  2) ^ (X(rs2) <<  4) );
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknh (RV32) v1.0.0-rc2 Frozen

Zkn (RV32) v1.0.0-rc2 Frozen

Zk (RV32) v1.0.0-rc2 Frozen
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3.36. sha512sum1r
Synopsis

Implements the the Sum1 transformation, as used in the SHA2-512 hash function [49] (Section 4.1.3).

Mnemonic
sha512sum1r rd, rs1, rs2

Encoding
0671112141519202425293031

1100110rd000rs1rs21001010

Description
This instruction is implemented on RV32 only. Used to compute the Sum1 transform of the SHA2-512 hash
function. The transform is a 64-bit to 64-bit function, so the input and output is represented by two 32-bit
registers. This instruction must always be implemented such that it’s execution latency does not depend on
the data being operated on.



Note to software developers
The entire Sum1 transform for SHA2-512 may be computed on RV32 using the following
instruction sequence:

sha512sum1r    t0, a0, a1
sha512sum1r    t1, a1, a0

Note the reversed source register ordering.

Operation

function clause execute (SHA512SUM1R(rs2, rs1, rd)) = {
  X(rd) = EXTS((X(rs1) << 23) ^ (X(rs1) >> 14) ^ (X(rs1) >> 18) ^
               (X(rs2) >>  9) ^ (X(rs2) << 18) ^ (X(rs2) << 14) );
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknh (RV32) v1.0.0-rc2 Frozen

Zkn (RV32) v1.0.0-rc2 Frozen

Zk (RV32) v1.0.0-rc2 Frozen
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3.37. sha512sig0
Synopsis

Implements the Sigma0 transformation function as used in the SHA2-512 hash function [49] (Section 4.1.3).

Mnemonic
sha512sig0 rd, rs1

Encoding
0671112141519202425293031

1100100rd100rs1011000001000

Description
This instruction is supported for the RV64 base architecture. It implements the Sigma0 transform of the
SHA2-512 hash function. [49]. This instruction must always be implemented such that it’s execution latency
does not depend on the data being operated on.

Operation

function clause execute (SHA512SIG0(rs1, rd)) = {
  X(rd) = ror64(X(rs1),  1) ^ ror64(X(rs1),  8) ^ (X(rs1) >> 7);
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknh (RV64) v1.0.0-rc2 Frozen

Zkn (RV64) v1.0.0-rc2 Frozen

Zk (RV64) v1.0.0-rc2 Frozen
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3.38. sha512sig1
Synopsis

Implements the Sigma1 transformation function as used in the SHA2-512 hash function [49] (Section 4.1.3).

Mnemonic
sha512sig1 rd, rs1

Encoding
0671112141519202425293031

1100100rd100rs1111000001000

Description
This instruction is supported for the RV64 base architecture. It implements the Sigma1 transform of the
SHA2-512 hash function. [49]. This instruction must always be implemented such that it’s execution latency
does not depend on the data being operated on.

Operation

function clause execute (SHA512SIG1(rs1, rd)) = {
  X(rd) = ror64(X(rs1), 19) ^ ror64(X(rs1), 61) ^ (X(rs1) >> 6);
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknh (RV64) v1.0.0-rc2 Frozen

Zkn (RV64) v1.0.0-rc2 Frozen

Zk (RV64) v1.0.0-rc2 Frozen
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3.39. sha512sum0
Synopsis

Implements the Sum0 transformation function as used in the SHA2-512 hash function [49] (Section 4.1.3).

Mnemonic
sha512sum0 rd, rs1

Encoding
0671112141519202425293031

1100100rd100rs1001000001000

Description
This instruction is supported for the RV64 base architecture. It implements the Sum0 transform of the
SHA2-512 hash function. [49]. This instruction must always be implemented such that it’s execution latency
does not depend on the data being operated on.

Operation

function clause execute (SHA512SUM0(rs1, rd)) = {
  X(rd) = ror64(X(rs1), 28) ^ ror64(X(rs1), 34) ^ ror64(X(rs1) ,39);
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknh (RV64) v1.0.0-rc2 Frozen

Zkn (RV64) v1.0.0-rc2 Frozen

Zk (RV64) v1.0.0-rc2 Frozen
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3.40. sha512sum1
Synopsis

Implements the Sum1 transformation function as used in the SHA2-512 hash function [49] (Section 4.1.3).

Mnemonic
sha512sum1 rd, rs1

Encoding
0671112141519202425293031

1100100rd100rs1101000001000

Description
This instruction is supported for the RV64 base architecture. It implements the Sum1 transform of the
SHA2-512 hash function. [49]. This instruction must always be implemented such that it’s execution latency
does not depend on the data being operated on.

Operation

function clause execute (SHA512SUM1(rs1, rd)) = {
  X(rd) = ror64(X(rs1), 14) ^ ror64(X(rs1), 18) ^ ror64(X(rs1) ,41);
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zknh (RV64) v1.0.0-rc2 Frozen

Zkn (RV64) v1.0.0-rc2 Frozen

Zk (RV64) v1.0.0-rc2 Frozen
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3.41. sm3p0
Synopsis

Implements the P0 transformation function as used in the SM3 hash function [4, 30].

Mnemonic
sm3p0 rd, rs1

Encoding
0671112141519202425293031

1100100rd100rs1000100001000

Description
This instruction is supported for the RV32 and RV64 base architectures. It implements the P0 transform of
the SM3 hash function [4, 30]. This instruction must always be implemented such that it’s execution latency
does not depend on the data being operated on.


Supporting Material
This instruction is based on work done in [56].

Operation

function clause execute (SM3P0(rs1, rd)) = {
  let r1     : bits(32) = X(rs1)[31..0];
  let result : bits(32) =  r1 ^ rol32(r1,  9) ^ rol32(r1, 17);
  X(rd) = EXTS(result);
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zksh v1.0.0-rc2 Frozen

Zks v1.0.0-rc2 Frozen
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3.42. sm3p1
Synopsis

Implements the P1 transformation function as used in the SM3 hash function [4, 30].

Mnemonic
sm3p1 rd, rs1

Encoding
0671112141519202425293031

1100100rd100rs1100100001000

Description
This instruction is supported for the RV32 and RV64 base architectures. It implements the P1 transform of
the SM3 hash function [4, 30]. This instruction must always be implemented such that it’s execution latency
does not depend on the data being operated on.


Supporting Material
This instruction is based on work done in [56].

Operation

function clause execute (SM3P1(rs1, rd)) = {
  let r1     : bits(32) = X(rs1)[31..0];
  let result : bits(32) =  r1 ^ rol32(r1, 15) ^ rol32(r1, 23);
  X(rd) = EXTS(result);
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zksh v1.0.0-rc2 Frozen

Zks v1.0.0-rc2 Frozen
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3.43. sm4ed
Synopsis

Accelerates the block encrypt/decrypt operation of the SM4 block cipher [5, 31].

Mnemonic
sm4ed rd, rs1, rs2, bs

Encoding
0671112141519202425293031

1100110rd000rs1rs200011bs

Description
Implements a T-tables in hardware style approach to accelerating the SM4 round function. A byte is
extracted from rs2 based on bs, to which the SBox and linear layer transforms are applied, before the result
is XOR’d with rs1 and written back to rd. This instruction exists on RV32 and RV64 base architectures. On
RV64, the 32-bit result is sign extended upto XLEN bits. This instruction must always be implemented such
that it’s execution latency does not depend on the data being operated on.

Operation

function clause execute (SM4ED (bs,rs2,rs1,rd)) = {
  let shamt : bits(5)  = bs @ 0b000; /* shamt = bs*8 */
  let sb_in : bits(8)  = (X(rs2)[31..0] >> shamt)[7..0];
  let x     : bits(32) = 0x000000 @ sm4_sbox(sb_in);
  let y     : bits(32) = x ^ (x               <<  8) ^ ( x               <<  2) ^
                             (x               << 18) ^ ((x & 0x0000003F) << 26) ^
                             ((x & 0x000000C0) << 10);
  let z     : bits(32) = rol32(y, unsigned(shamt));
  let result: bits(32) = z ^ X(rs1)[31..0];
  X(rd)                = EXTS(result);
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zksed v1.0.0-rc2 Frozen

Zks v1.0.0-rc2 Frozen
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3.44. sm4ks
Synopsis

Accelerates the Key Schedule operation of the SM4 block cipher [5, 31].

Mnemonic
sm4ks rd, rs1, rs2, bs

Encoding
0671112141519202425293031

1100110rd000rs1rs201011bs

Description
Implements a T-tables in hardware style approach to accelerating the SM4 Key Schedule. A byte is extracted
from rs2 based on bs, to which the SBox and linear layer transforms are applied, before the result is XOR’d
with rs1 and written back to rd. This instruction exists on RV32 and RV64 base architectures. On RV64,
the 32-bit result is sign extended upto XLEN bits. This instruction must always be implemented such that it’s
execution latency does not depend on the data being operated on.

Operation

function clause execute (SM4KS (bs,rs2,rs1,rd)) = {
  let shamt : bits(5)  = (bs @ 0b000); /* shamt = bs*8 */
  let sb_in : bits(8)  = (X(rs2)[31..0] >> shamt)[7..0];
  let x     : bits(32) = 0x000000 @ sm4_sbox(sb_in);
  let y     : bits(32) = x ^ ((x & 0x00000007) << 29) ^ ((x & 0x000000FE) <<  7) ^
                             ((x & 0x00000001) << 23) ^ ((x & 0x000000F8) << 13) ;
  let z     : bits(32) = rol32(y, unsigned(shamt));
  let result: bits(32) = z ^ X(rs1)[31..0];
  X(rd) = EXTS(result);
  RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zksed v1.0.0-rc2 Frozen

Zks v1.0.0-rc2 Frozen
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3.45. unzip
Synopsis

Implements the inverse of the zip instruction.

Mnemonic
unzip rd, rs

Encoding
01267111214151920242531

1100100rd101rs1111110010000

Description
This instruction gathers bits from the high and low halves of the source word into odd/even bit positions in
the destination word. It is the inverse of the zip instruction. This instruction is available only on RV32.



This instruction is a specific encoding of a more generic instruction which was originally
proposed as part of the RISC-V Bitmanip extension (unshfli). Eventually, the more generic
instruction may be standardised. Until then, only the most common instances of it, such as
this, are being included in specifications.

Operation

foreach (i from 0 to xlen/2-1) {
  X(rd)[i] = X(rs1)[2*i]
  X(rd)[i+xlen/2] = X(rs1)[2*i+1]
}



Software Hint
This instruction is useful for implementing the SHA3 cryptographic hash function on a 32-bit
architecture, as it implements the bit-interleaving operation used to speed up the 64-bit
rotations directly.

Included in
Extension Minimum version Lifecycle state

Zbkb (Zbkb) (RV32) v1.0.0-rc2 Frozen
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3.46. xnor
Synopsis

Exclusive NOR

Mnemonic
xnor rd, rs1, rs2

Encoding
067111214151920242531

1100110rd001rs1rs20000010
OPXNORXNOR

Description
This instruction performs the bit-wise exclusive-NOR operation on rs1 and rs2.

Operation

X(rd) = ~(X(rs1) ^ X(rs2));

Included in
Extension Minimum version Lifecycle state

Zbb ([zbb]) v1.0.0 Frozen

Zbkb (Zbkb) v1.0.0-rc2 Frozen
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3.47. xperm8
Synopsis

Byte-wise lookup of indicies into a vector in registers.

Mnemonic
xperm8 rd, rs1, rs2

Encoding
01267111214151920242531

1100110rd001rs1rs20010100

Description
The xperm8 instruction operates on bytes. The rs1 register contains a vector of XLEN/8 8-bit elements. The
rs2 register contains a vector of XLEN/8 8-bit indexes. The result is each element in rs2 replaced by the
indexed element in rs1, or zero if the index into rs2 is out of bounds.

Operation

val xperm8_lookup : (bits(8), xlenbits) -> bits(8)
function xperm8_lookup (idx, lut) = {
    (lut >> (idx @ 0b000))[7..0]
}

function clause execute ( XPERM_8 (rs2,rs1,rd)) = {
    result : xlenbits = EXTZ(0b0);
    foreach(i from 0 to xlen by 8) {
        result[i+7..i] = xperm8_lookup(X(rs2)[i+7..i], X(rs1));
    };
    X(rd) = result;
    RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zbkx (Zbkx) v1.0.0-rc2 Frozen
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3.48. xperm4
Synopsis

Nibble-wise lookup of indicies into a vector.

Mnemonic
xperm4 rd, rs1, rs2

Encoding
01267111214151920242531

1100110rd010rs1rs20010100

Description
The xperm4 instruction operates on nibbles. The rs1 register contains a vector of XLEN/4 4-bit elements.
The rs2 register contains a vector of XLEN/4 4-bit indexes. The result is each element in rs2 replaced by the
indexed element in rs1, or zero if the index into rs2 is out of bounds.

Operation

val xperm4_lookup : (bits(4), xlenbits) -> bits(4)
function xperm4_lookup (idx, lut) = {
    (lut >> (idx @ 0b00))[3..0]
}

function clause execute ( XPERM_4 (rs2,rs1,rd)) = {
    result : xlenbits = EXTZ(0b0);
    foreach(i from 0 to xlen by 4) {
        result[i+3..i] = xperm4_lookup(X(rs2)[i+3..i], X(rs1));
    };
    X(rd) = result;
    RETIRE_SUCCESS
}

Included in
Extension Minimum version Lifecycle state

Zbkx (Zbkx) v1.0.0-rc2 Frozen
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3.49. zip
Synopsis

Gather odd and even bits of the source word into upper/lower halves of the destination.

Mnemonic
zip rd, rs

Encoding
01267111214151920242531

1100100rd100rs1011110010000

Description
This instruction scatters all of the odd and even bits of a source word into the high and low halves of a
destination word. It is the inverse of the unzip instruction. This instruction is available only on RV32.



This instruction is a specific encoding of a more generic instruction which was originally
proposed as part of the RISC-V Bitmanip extension (shfli). Eventually, the more generic
instruction may be standardised. Until then, only the most common instances of it, such as
this, are being included in specifications.

Operation

foreach (i from 0 to xlen/2-1) {
  X(rd)[2*i] = X(rs1)[i]
  X(rd)[2*i+1] = X(rs1)[i+xlen/2]
}



Software Hint
This instruction is useful for implementing the SHA3 cryptographic hash function on a 32-bit
architecture, as it implements the bit-interleaving operation used to speed up the 64-bit
rotations directly.

Included in
Extension Minimum version Lifecycle state

Zbkb (Zbkb) (RV32) v1.0.0-rc2 Frozen
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Chapter 4. Entropy Source
The seed CSR provides an interface to a NIST SP 800-90B [61] or BSI AIS-31 [36] compliant physical Entropy
Source (ES).

An entropy source, by itself, is not a cryptographically secure Random Bit Generator (RBG), but can be used to
build standard (and nonstandard) RBGs of many types with the help of symmetric cryptography. Expected usage
is to condition (typically with SHA-2/3) the output from an entropy source and use it to seed a
cryptographically secure Deterministic Random Bit Generator (DRBG) such as AES-based CTR_DRBG [14]. The
combination of an Entropy Source, Conditioning, and a DRBG can be used to create random bits securely [15].
See Appendix B for a non-normative description of a certification and self-certification procedures, design
rationale, and more detailed suggestions on how the entropy source output can be used.

4.1. The seed CSR
seed is a user mode CSR located at address 0x015. The 32-bit contents of seed are as follows:

Bits Name Description

31:30 OPST Status: BIST (00), WAIT (01), ES16 (10), DEAD (11).

29:24 reserved For future use by the RISC-V specification.

23:16 custom Designated for custom and experimental use.

15: 0 entropy 16 bits of randomness, only when OPST=ES16.

The seed CSR must be accessed with a read-write instruction. A read-only instruction such as CSRRS/CSRRC
with rs1=x0 or CSRRSI/CSRRCI with uimm=0 will raise an illegal instruction exception. The write value (in rs1
or uimm) must be ignored by implementations. The purpose of the write is to signal polling and flushing.

The instruction csrrw rd, seed, x0 can be used for fetching seed status and entropy values. It is available on
both RV32 and RV64 base architectures and will zero-extend the 32-bit word to XLEN bits.

Encoding
06711121415192031

1100111rd10000000101010000000
SYSTEMCSRRWx0seed = 0x015

The seed CSR is also access controlled by execution mode, and attempted read or write access will raise an
illegal instruction exception outside M mode unless access is explicitly granted. See Section 4.3 for more details.

The status bits seed[31:30] = OPST may be ES16 (10), indicating successful polling, or one of three entropy
polling failure statuses BIST (00), WAIT (01), or DEAD (11), discussed below.

Each returned seed[15:0] = entropy value represents unique randomness when OPST=ES16 (seed[31:30] =
10), even if its numerical value is the same as that of a previously polled entropy value. The implementation
requirements of entropy bits are defined in Section 4.2. When OPST is not ES16, entropy must be set to 0. An
implementation may safely set reserved and custom bits to zeros.

For security reasons, the interface guarantees that secret entropy words are not made available multiple times.
Hence polling (reading) must also have the side effect of clearing (wipe-on-read) the entropy contents and
changing the state to WAIT (unless there is entropy immediately available for ES16). Other states (BIST, WAIT,
and DEAD) may be unaffected by polling.
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The Status Bits returned in seed[31:30]=OPST:

• 00 - BIST indicates that Built-In Self-Test "on-demand" (BIST) testing is being performed. If OPST returns
temporarily to BIST from any other state, this signals a non-fatal self-test alarm, which is non-actionable,
apart from being logged. Such a BIST alarm must be latched until polled at least once to enable software to
record its occurrence.

• 01 - WAIT means that a sufficient amount of entropy is not yet available. This is not an error condition and
may (in fact) be more frequent than ES16 since physical entropy sources often have low bandwidth.

• 10 - ES16 indicates success; the low bits seed[15:0] will have 16 bits of randomness (entropy), which is
guaranteed to meet certain minimum entropy requirements, regardless of implementation.

• 11 - DEAD is an unrecoverable self-test error. This may indicate a hardware fault, a security issue, or
(extremely rarely) a type-1 statistical false positive in the continuous testing procedures. In case of a fatal
failure, an immediate lockdown may also be an appropriate response in dedicated security devices.

Example. 0x8000ABCD is a valid ES16 status output, with 0xABCD being the entropy value. 0xFFFFFFFF is an
invalid output (DEAD) with no entropy value.

Figure 1. Entropy Source state transition diagram.

Normally the operational state alternates between WAIT (no data) and ES16, which means that 16 bits of
randomness (entropy) have been polled. BIST (Built-in Self-Test) only occurs after reset or to signal a
non-fatal self-test alarm (if reached after WAIT or ES16). DEAD is an unrecoverable error state.

4.2. Entropy Source Requirements
The output entropy (seed[15:0] in ES16 state) is not necessarily fully conditioned randomness due to
hardware and energy limitations of smaller, low-powered implementations. However, minimum requirements are
defined. The main requirement is that 2-to-1 cryptographic post-processing in 256-bit input blocks will yield 128-
bit "full entropy" output blocks. Entropy source users may make this conservative assumption but are not
prohibited from using more than twice the number of seed bits relative to the desired resulting entropy.

An implementation of the entropy source should meet at least one of the following requirements sets in order to
be considered a secure and safe design:

• Section 4.2.1: A physical entropy source meeting NIST SP 800-90B [61] criteria with evaluated min-entropy
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of 192 bits for each 256 output bits (min-entropy rate 0.75).
• Section 4.2.2: A physical entropy source meeting the AIS-31 PTG.2 [36] criteria, implying average Shannon

entropy rate 0.997. The source must also meet the NIST 800-90B min-entropy rate 192/256 = 0.75.
• Section 4.2.3: A virtual entropy source is a DRBG seeded from a physical entropy source. It must have at

least a 256-bit (Post-Quantum Category 5) internal security level.

All implementations must signal initialization, test mode, and health alarms as required by respective standards.
This may require the implementer to add non-standard (custom) test interfaces in a secure and safe manner, an
example of which is described in Section B.6

4.2.1. NIST SP 800-90B / FIPS 140-3 Requirements
All NIST SP 800-90B [61] required components and heath test mechanisms must be implemented.

The entropy requirement is satisfied if 128 bits of full entropy can be obtained from each 256-bit (16*16 -bit)
successful, but possibly non-consecutive entropy (ES16) output sequence using a vetted conditioning algorithm
such as a cryptographic hash (See Section 3.1.5.1.2, SP 800-90B). In practice, a min-entropy rate of 0.75 or
larger is required for this.

Note that 128 bits of estimated input min-entropy does not yield 128 bits of conditioned, full entropy in SP 800-
90B/C evaluation. Instead, the implication is that every 256-bit sequence should have min-entropy of at least
128+64 = 192 bits, as discussed in SP 800-90C [15]; the likelihood of successfully "guessing" an individual 256-
bit output sequence should not be higher than 2-192 even with (almost) unconstrained amount of entropy source
data and computational power.

Rather than attempting to define all the mathematical and architectural properties that the entropy source must
satisfy, we define that the physical entropy source be strong and robust enough to pass the equivalent of NIST
SP 800-90 evaluation and certification for full entropy when conditioned cryptographically in ratio 2:1 with 128-
bit output blocks.

Even though the requirement is defined in terms of 128-bit full entropy blocks, we recommend 256-bit security.
This can be accomplished by using at least 512 entropy bits to initialize a DRBG that has 256-bit security.

4.2.2. BSI AIS-31 PTG.2 / Common Criteria Requirements
For alternative Common Criteria certification (or self-certification), AIS 31 PTG.2 class [36] (Sect. 4.3.) required
hardware components and mechanisms must be implemented. In addition to AIS-31 PTG.2 randomness
requirements (Shannon entropy rate of 0.997 as evaluated in that standard), the overall min-entropy requirement
of remains, as discussed in Section 4.2.1. Note that 800-90B min-entropy can be significantly lower than AIS-31
Shannon entropy. These two metrics should not be equated or confused with each other.

4.2.3. Virtual Sources: Security Requirement


A virtual source is not an ISA compliance requirement. It is defined for the benefit of the
RISC-V security ecosystem so that virtual systems may have a consistent level of security.

A virtual source is not a physical entropy source but provides additional protection against covert channels,
depletion attacks, and host identification in operating environments that can not be entirely trusted with direct
access to a hardware resource. Despite limited trust, implementors should try to guarantee that even such
environments have sufficient entropy available for secure cryptographic operations.

A virtual source traps access to the seed CSR, emulates it, or otherwise implements it without direct access to a
physical entropy source. The output can be cryptographically secure pseudorandomness instead of real entropy,
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but must have at least 256-bit security, as defined below. A virtual source is intended especially for guest
operating systems, sandboxes, emulators, and similar use cases.

As a technical definition, a random-distinguishing attack against the output should require computational
resources comparable or greater than those required for exhaustive key search on a secure block cipher with a
256-bit key (e.g., AES 256). This applies to both classical and quantum computing models, but only classical
information flows. The virtual source security requirement maps to Post-Quantum Security Category 5 [51], so
that virtual sources can be used for cryptography.

Any implementation of the seed CSR that limits the security strength shall not reduce it to less than 256 bits. If
the security level is under 256 bits, then the interface must not be available.

A virtual entropy source does not need to implement WAIT or BIST states. It should fail (DEAD) if the host
DRBG or entropy source fails and there is insufficient seeding material for the host DRBG.

4.3. Access Control to seed
The seed CSR is by default only available in M mode, but can be made available to other modes via the
mseccfg.sseed and mseccfg.useed access control bits. sseed is bit 9 of and useed is bit 8 of the mseccfg
CSR. Without the corresponding access control bit set to 1, an attempted read or write access to seed from U,
S, or other non-M modes will raise an Illegal Instruction Exception.

Table 1. Entropy Source Access Control.

Mode sseed useed Description

M * * The seed CSR is always available in machine mode as normal (with a CSR
read-write instruction. Attempted read without a write raises an Illegal
Instruction Exception regardless of mode access control bits).

S/HS/VS 0 * Any seed CSR access raises an Illegal Instruction Exception.

S/HS/VS 1 * The seed CSR is accessible as normal. No exception is raised for read-write.

U/VU * 0 Any seed CSR access raises an Illegal Instruction Exception.

U/VU * 1 The seed CSR is accessible as normal. No exception is raised for read-write.

M-mode can trap attempted access to seed and feed a less privileged guest virtual entropy source data (Section
4.2.3) instead of invoking an SP 800-90B (Section 4.2.1) or PTG.2 (Section 4.2.2) physical entropy source.
Output generation is made with an appropriately seeded software DRBG. Systems should implement carefully
considered access control policies from lower privilege modes to physical entropy sources. See Section B.3.5 for
security considerations related to direct access to entropy sources.

Note that additional modes such as HS, VS, and VU are present in systems with Hypervisor (H) extension
implemented. Without additional hardware access control mechanisms, direct access from all of these to the
physical source is controlled via mseccfg.sseed and mseccfg.useed.

Implementations may implement mseccfg such that [s,u]seed is a read-only constant value 0. Software may
discover if access to the seed CSR can be enabled in U and S mode by writing a 1 to [s,u]seed and reading
back the result.

If S or U mode is not implemented, then the corresponding [s,u]seed bits of mseccfg must be hardwired to
zero. The [s,u]seed bits must have a defined reset value. The system must not allow them to be in an
undefined state after a reset. mseccfg exists if Zkr is implemented, or if it is required by other processor
features. If Zkr is not implemented, the [s,u]seed bits must be hardwired to zero.
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Chapter 5. Data Independent Execution Latency
Subset: Zkt
The Zkt extension attests that the machine has data-independent execution time for a safe subset of
instructions. This property is commonly called "constant-time" although should not be taken with that literal
meaning.

All currently proposed cryptographic instructions (scalar K extension) are on this list, together with a set of
relevant supporting instructions from I, M, C, and B extensions.


Note to software developers
Failure to prevent leakage of sensitive parameters via the direct timing channel is considered a
serious security vulnerability and will typically result in a CERT CVE security advisory.

5.1. Scope and Goal
An "ISA contract" is made between a programmer and the RISC-V implementation that Zkt instructions do not
leak information about processed secret data (plaintext, keying information, or other "sensitive security
parameters" — FIPS 140-3 term) through differences in execution latency. Zkt does not define a set of
instructions available in the core; it just restricts the behaviour of certain instructions if those are implemented.

Currently, the scope of this document is within scalar RV32/RV64 processors. Vector cryptography instructions
(and appropriate vector support instructions) will be added later, as will other security-related functions that
wish to assert leakage-free execution latency properties.

Loads, stores, conditional branches are excluded, along with a set of instructions that are rarely necessary to
process secret data. Also excluded are instructions for which workarounds exist in standard cryptographic
middleware due to the limitations of other ISA processors.

The stated goal is that OpenSSL, BoringSSL (Android), the Linux Kernel, and similar trusted software will not
have directly observable timing side channels when compiled and running on a Zkt-enabled RISC-V target. The
Zkt extension explicitly states many of the common latency assumptions made by cryptography developers.

Vendors do not have to implement all of the list’s instructions to be Zkt compliant; however, if they claim to
have Zkt and implement any of the listed instructions, it must have data-independent latency.

For example, many simple RV32I and RV64I cores (without Multiply, Compressed, Bitmanip, or Cryptographic
extensions) are technically compliant with Zkt. A constant-time AES can be implemented on them using "bit-
slice" techniques, but it will be excruciatingly slow when compared to implementation with AES instructions.
There are no guarantees that even a bit-sliced cipher implementation (largely based on boolean logic
instructions) is secure on a core without Zkt attestation.



Note to software developers
Programming techniques can only mitigate leakage directly caused by arithmetic, caches, and
branches. Other ISAs have had micro-architectural issues such as Spectre, Meltdown,
Speculative Store Bypass, Rogue System Register Read, Lazy FP State Restore, Bounds
Check Bypass Store, TLBleed, and L1TF/Foreshadow, etc. See e.g. NSA Hardware and
Firmware Security Guidance

It is not within the remit of this proposal to mitigate these micro-architectural leakages.
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5.2. Background
• Timing attacks are much more powerful than was realised before the 2010s, which has led to a significant

mitigation effort in current cryptographic code-bases.
• Cryptography developers use static and dynamic security testing tools to trace the handling of secret

information and detect occasions where it influences a branch or is used for a table lookup.
• Architectural testing for Zkt can be pragmatic and semi-formal; security by design against basic timing

attacks can usually be achieved via conscious implementation (of relevant iterative multi-cycle instructions or
instructions composed of micro-ops) in way that avoids data-dependant latency.

• Laboratory testing may utilize statisticial timing attack leakage analysis techniques such as those described
in ISO/IEC 17825 [29].

• Binary executables should not contain secrets in the instruction encodings (Kerckhoffs’s principle), so
instruction timing may leak information about immediates, ordering of input registers, etc. There may be an
exception to this in systems where a binary loader modifies the executable for purposes of relocation — and
it is desirable to keep the execution location (PC) secret. This is why instructions such as LUI, AUIPC, and
ADDI are on the list.

• The rules used by audit tools are relatively simple to understand. Very briefly; we call the plaintext, secret
keys, expanded keys, nonces, and other such variables "secrets". A secret variable (arithmetically) modifying
any other variable/register turns that into a secret too. If a secret ends up in address calculation affecting a
load or store, that is a violation. If a secret affects a branch’s condition, that is also a violation. A secret
variable location or register becomes a non-secret via specific zeroization/sanitisation or by being declared
ciphertext (or otherwise no-longer-secret information). In essence, secrets can only "touch" instructions on
the Zkt list while they are secrets.

5.3. Specific Instruction Rationale
• HINT instruction forms (typically encodings with rd=x0) are excluded from the data-independent time

requirement.
• Floating point (F, D, Q, L extensions) are currently excluded from the constant-time requirement as they

have very few applications in standardised cryptography. We may consider adding floating point add, sub,
multiply as a constant time requirement for some floating point extension in case a specific algorithm (such
as the PQC Signature algorithm Falcon) becomes critical.

• Cryptographers typically assume division to be variable-time (while multiplication is constant time) and
implement their Montgomery reduction routines with that assumption.

• Zicsr, Zifencei are excluded.
• Some instructions are on the list simply because we see no harm in including them in testing scope.

5.4. Programming Information
For background information on secure programming "models", see:

• Thomas Pornin: "Why Constant-Time Crypto?" (A great introduction to timing assumptions.)
www.bearssl.org/constanttime.html

• Jean-Philippe Aumasson: "Guidelines for low-level cryptography software." (A list of recommendations.)
github.com/veorq/cryptocoding

• Peter Schwabe: "Timing Attacks and Countermeasures." (Lecture slides — nice references.) summerschool-
croatia.cs.ru.nl/2016/slides/PeterSchwabe.pdf
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• Adam Langley: "ctgrind." (This is from 2010 but is still relevant.) www.imperialviolet.org/2010/04/01/
ctgrind.html

• Kris Kwiatkowski: "Constant-time code verification with Memory Sanitizer." www.amongbytes.com/post/
20210709-testing-constant-time/

• For early examples of timing attack vulnerabilities, see www.kb.cert.org/vuls/id/997481 and related
academic papers.

5.5. Zkt listings
The following instructions are included in the Zkt subset They are listed here grouped by their original parent
extension.


Note to implementers
You do not need to implement all of these instructions to implement Zkt. Rather, every one
of these instructions that the core does implement must adhere to the requirements of Zkt.

5.5.1. RVI (Base Instruction Set)
Only basic arithmetic and slt* (for carry computations) are included. The data-independent timing requirement
does not apply to HINT instruction encoding forms of these instructions.

RV32 RV64 Mnemonic Instruction

✓ ✓ lui rd, imm [insns-lui]

✓ ✓ auipc rd, imm [insns-auipc]

✓ ✓ addi rd, rs1, imm [insns-addi]

✓ ✓ slti rd, rs1, imm [insns-slti]

✓ ✓ sltiu rd, rs1, imm [insns-sltiu]

✓ ✓ xori rd, rs1, imm [insns-xori]

✓ ✓ ori rd, rs1, imm [insns-ori]

✓ ✓ andi rd, rs1, imm [insns-andi]

✓ ✓ slli rd, rs1, imm [insns-slli]

✓ ✓ srli rd, rs1, imm [insns-srli]

✓ ✓ srai rd, rs1, imm [insns-srai]

✓ ✓ add rd, rs1, rs2 [insns-add]

✓ ✓ sub rd, rs1, rs2 [insns-sub]

✓ ✓ sll rd, rs1, rs2 [insns-sll]

✓ ✓ slt rd, rs1, rs2 [insns-slt]

✓ ✓ sltu rd, rs1, rs2 [insns-sltu]

✓ ✓ xor rd, rs1, rs2 [insns-xor]

✓ ✓ srl rd, rs1, rs2 [insns-srl]
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RV32 RV64 Mnemonic Instruction

✓ ✓ sra rd, rs1, rs2 [insns-sra]

✓ ✓ or rd, rs1, rs2 [insns-or]

✓ ✓ and rd, rs1, rs2 [insns-and]

✓ addiw rd, rs1, imm [insns-addiw]

✓ slliw rd, rs1, imm [insns-slliw]

✓ srliw rd, rs1, imm [insns-srliw]

✓ sraiw rd, rs1, imm [insns-sraiw]

✓ addw rd, rs1, rs2 [insns-addw]

✓ subw rd, rs1, rs2 [insns-subw]

✓ sllw rd, rs1, rs2 [insns-sllw]

✓ srlw rd, rs1, rs2 [insns-srlw]

✓ sraw rd, rs1, rs2 [insns-sraw]

5.5.2. RVM (Multiply)
Multiplication is included; division and remaindering excluded.

RV32 RV64 Mnemonic Instruction

✓ ✓ mul rd, rs1, rs2 [insns-mul]

✓ ✓ mulh rd, rs1, rs2 [insns-mulh]

✓ ✓ mulhsu rd, rs1, rs2 [insns-mulhsu]

✓ ✓ mulhu rd, rs1, rs2 [insns-mulhu]

✓ mulw rd, rs1, rs2 [insns-mulw]

5.5.3. RVC (Compressed)
Same criteria as in RVI. Organised by quadrants.

RV32 RV64 Mnemonic Instruction

✓ ✓ c.nop [insns-c_nop]

✓ ✓ c.addi [insns-c_addi]

✓ ✓ c.addiw [insns-c_addiw]

✓ ✓ c.lui [insns-c_lui]

✓ c.srli [insns-c_srli]

✓ c.srai [insns-c_srai]

✓ ✓ c.andi [insns-c_andi]
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RV32 RV64 Mnemonic Instruction

✓ ✓ c.sub [insns-c_sub]

✓ ✓ c.xor [insns-c_xor]

✓ ✓ c.or [insns-c_or]

✓ ✓ c.and [insns-c_and]

✓ ✓ c.subw [insns-c_subw]

✓ ✓ c.addw [insns-c_addw]

✓ c.slli [insns-c_slli]

✓ ✓ c.mv [insns-c_mv]

✓ ✓ c.add [insns-c_add]

5.5.4. RVK (Scalar Cryptography)
All K-specific instructions are included. Additionally, seed CSR latency should be independent of ES16 state
output entropy bits, as that is a sensitive security parameter. See Section B.3.5.

RV32 RV64 Mnemonic Instruction

✓ aes32dsi AES final round decrypt (RV32)

✓ aes32dsmi AES middle round decrypt (RV32)

✓ aes32esi AES final round encrypt (RV32)

✓ aes32esmi AES middle round encrypt (RV32)

✓ aes64ds AES decrypt final round (RV64)

✓ aes64dsm AES decrypt middle round (RV64)

✓ aes64es AES encrypt final round instruction (RV64)

✓ aes64esm AES encrypt middle round instruction (RV64)

✓ aes64im AES Decrypt KeySchedule MixColumns (RV64)

✓ aes64ks1i AES Key Schedule Instruction 1 (RV64)

✓ aes64ks2 AES Key Schedule Instruction 2 (RV64)

✓ ✓ sha256sig0 SHA2-256 Sigma0 instruction

✓ ✓ sha256sig1 SHA2-256 Sigma1 instruction

✓ ✓ sha256sum0 SHA2-256 Sum0 instruction

✓ ✓ sha256sum1 SHA2-256 Sum1 instruction

✓ sha512sig0h SHA2-512 Sigma0 high (RV32)

✓ sha512sig0l SHA2-512 Sigma0 low (RV32)

✓ sha512sig1h SHA2-512 Sigma1 high (RV32)

✓ sha512sig1l SHA2-512 Sigma1 low (RV32)
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RV32 RV64 Mnemonic Instruction

✓ sha512sum0r SHA2-512 Sum0 (RV32)

✓ sha512sum1r SHA2-512 Sum1 (RV32)

✓ sha512sig0 SHA2-512 Sigma0 instruction (RV64)

✓ sha512sig1 SHA2-512 Sigma1 instruction (RV64)

✓ sha512sum0 SHA2-512 Sum0 instruction (RV64)

✓ sha512sum1 SHA2-512 Sum1 instruction (RV64)

✓ ✓ sm3p0 SM3 P0 transform

✓ ✓ sm3p1 SM3 P1 transform

✓ ✓ sm4ed SM4 Encrypt/Decrypt Instruction

✓ ✓ sm4ks SM4 Key Schedule Instruction

5.5.5. RVB (Bitmanip)
The Zbkb, Zbkx and Zbkx extensions are included in their entirety.


Note to implementers
Recall that rev, zip and unzip are pseudo-instructions representing specific instances of
grevi, shfli and unshfli respectively.

RV32 RV64 Mnemonic Instruction

✓ ✓ clmul Carry-less multiply (low-part)

✓ ✓ clmulh Carry-less multiply (high-part)

✓ ✓ xperm4 Crossbar permutation (nibbles)

✓ ✓ xperm8 Crossbar permutation (bytes)

✓ ✓ ror Rotate right (Register)

✓ ✓ rol Rotate left (Register)

✓ ✓ rori Rotate right (Immediate)

✓ roriw Rotate right Word (Immediate)

✓ ✓ andn AND with inverted operand

✓ ✓ orn OR with inverted operand

✓ ✓ xnor Exclusive NOR

✓ ✓ pack Pack low halves of registers

✓ ✓ packh Pack low bytes of registers

✓ packw Pack low 16-bits of registers (RV64)

✓ ✓ brev8 Reverse bits in bytes

✓ ✓ rev8 Byte-reverse register
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RV32 RV64 Mnemonic Instruction

✓ zip Bit interleave

✓ unzip Bit deinterleave
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Appendix A: Instruction Rationale
This section contains various rationale, design notes and usage recommendations for the instructions in the
scalar cryptography extension. It also tries to record how the designs of instructions were derived, or where they
were contributed from.

A.1. AES Instructions
The 32-bit instructions were derived from work in [57] and contributed to the RISC-V cryptography extension.
The 64-bit instructions were developed collaboratively by task group members on our mailing list.

Supporting material, including rationale and a design space exploration for all of the AES instructions in the
specification can be found in the paper "The design of scalar AES Instruction Set Extensions for RISC-V" [42].

A.2. SHA2 Instructions
These instructions were developed based on academic work at the University of Bristol as part of the XCrypto
project [43], and contributed to the RISC-V cryptography extension.

The RV32 SHA2-512 instructions were based on this work, and developed in [56], before being contributed in
the same way.

A.3. SM3 and SM4 Instructions
The SM4 instructions were derived from work in [57], and are hence very similar to the RV32 AES instructions.

The SM3 instructions were inspired by the SHA2 instructions, and based on development work done in [56],
before being contributed to the RISC-V cryptography extension.

A.4. Bitmanip Instructions for Cryptography
Many of the primitive operations used in symmetric key cryptography and cryptographic hash functions are well
supported by the RISC-V Bitmanip [2] extensions.


This section repeats much of the information in Zbkb, Zbkc and Zbkx, but includes more
rationale.

We proposed that the scalar cryptographic extension reuse a subset of the instructions from the Bitmanip
extensions Zb[abc] directly. Specifically, this would mean that a core implementing either the scalar
cryptographic extensions, or the Zb[abc], or both, would be required to implement these instructions.

A.4.1. Rotations

RV32, RV64:                         RV64 only:
    ror    rd, rs1, rs2                 rorw   rd, rs1, rs2
    rol    rd, rs1, rs2                 rolw   rd, rs1, rs2
    rori   rd, rs1, imm                 roriw  rd, rs1, imm

See [3] (Section 3.1.1) for details of these instructions.
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

Notes to software developers
Standard bitwise rotation is a primitive operation in many block ciphers and hash functions; it
features particularly in the ARX (Add, Rotate, Xor) class of block ciphers and stream ciphers.

• Algorithms making use of 32-bit rotations: SHA256, AES (Shift Rows), ChaCha20, SM3.
• Algorithms making use of 64-bit rotations: SHA512, SHA3.

A.4.2. Bit & Byte Permutations

RV32:
    rev.b   rd, rs1 // grevi rd, rs1,  7 - Reverse bits in bytes
    rev8    rd, rs1 // grevi rd, rs1, 24 - Reverse bytes in 32-bit word

RV64:
    rev.b   rd, rs1 // grevi rd, rs1,  7 - Reverse bits in bytes
    rev8    rd, rs1 // grevi rd, rs1, 56 - Reverse bytes in 64-bit word

The scalar cryptography extension provides the following instructions for manipulating the bit and byte
endianness of data. They are all parameterisations of the Generalised Reverse with Immediate (grevi
instruction. The scalar cryptography extension requires only the above instances of grevi be implemented, which
can be invoked via their pseudo-ops.

The full specification of the grevi instruction is available in [3] (Section 2.2.2).



Notes to software developers
Reversing bytes in words is very common in cryptography when setting a standard endianness
for input and output data. Bit reversal within bytes is used for implementing the GHASH
component of Galois/Counter Mode (GCM) [22].

RV32:
    zip     rd, rs1 // shfli   rd, rs1, 15 - Bit interleave
    unzip   rd, rs1 // unshfli rd, rs1, 15 - Bit de-interleave

The zip and unzip pseudo-ops are specific instances of the more general shfli and unshfli instructions. The
scalar cryptography extension requires only the above instances of [un]shfli be implemented, which can be
invoked via their pseudo-ops. Only RV32 implementations require these instructions.

The full specification of the shfli instruction is available in [3] (Section 2.2.3).



Notes to software developers
These instructions perform a bit-interleave (or de-interleave) operation, and are useful for
implementing the 64-bit rotations in the SHA3 [50] algorithm on a 32-bit architecture. On
RV64, the relevant operations in SHA3 can be done natively using rotation instructions, so
zip and unzip are not required.
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A.4.3. Carry-less Multiply

RV32, RV64:
    clmul  rd, rs1, rs2
    clmulh rd, rs1, rs2

See [3] (Section 2.6) for details of this instruction. See Chapter 5 for additional implementation requirements for
these instructions, related to data independent execution latency.



Notes to software developers
As is mentioned there, obvious cryptographic use-cases for carry-less multiply are for Galois
Counter Mode (GCM) block cipher operations. GCM is recommended by NIST as a block
cipher mode of operation [22], and is the only required mode for the TLS 1.3 protocol.

A.4.4. Logic With Negate

RV32, RV64:
    andn rd, rs1, rs2
     orn rd, rs1, rs2
    xnor rd, rs1, rs2

See [3] (Section 2.1.3) for details of these instructions. These instructions are useful inside hash functions, block
ciphers and for implementing software based side-channel countermeasures like masking. The andn instruction is
also useful for constant time word-select in systems without the ternary Bitmanip cmov instruction.



Notes to software developers
In the context of Cryptography, these instructions are useful for: SHA3/Keccak Chi step, Bit-
sliced function implementations, Software based power/EM side-channel countermeasures
based on masking.

A.4.5. Packing

RV32, RV64:                         RV64:
    pack   rd, rs1, rs2                 packw  rd, rs1, rs2
    packh  rd, rs1, rs2

See [3] (Section 2.1.4) for details of these instructions.



Notes to software developers
The pack* instructions are useful for re-arranging halfwords within words, and generally
getting data into the right shape prior to applying transforms. This is particularly useful for
cryptographic algorithms which pass inputs around as (potentially un-aligned) byte strings,
but can operate on words made out of those byte strings. This occurs (for example) in AES
when loading blocks and keys (which may not be word aligned) into registers to perform the
round functions.
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A.4.6. Crossbar Permutation Instructions

RV32, RV64:
    xperm.n rd, rs1, rs2
    xperm.b rd, rs1, rs2

See [3] (Section 2.2.4) for a complete description of this instruction.

The xperm.n instruction operates on nibbles. GPR[rs1] contains a vector of XLEN/4 4-bit elements. GPR[rs2]
contains a vector of XLEN/4 4-bit indexes. The result is each element in GPR[rs2] replaced by the indexed
element in GPR[rs1], or zero if the index into GPR[rs2] is out of bounds.

The xperm.b instruction operates on bytes. GPR[rs1] contains a vector of XLEN/8 8-bit elements. GPR[rs2]
contains a vector of XLEN/8 8-bit indexes. The result is each element in GPR[rs2] replaced by the indexed
element in GPR[rs1], or zero if the index into GPR[rs2] is out of bounds.



Notes to software developers
The instruction can be used to implement arbitrary bit permutations. For cryptography, they
can accelerate bit-sliced implementations, permutation layers of block ciphers, masking based
countermeasures and SBox operations.

Lightweight block ciphers using 4-bit SBoxes include: PRESENT [20], Rectangle [65], GIFT
[12], Twine [60], Skinny, MANTIS [17], Midori [11].

National ciphers using 8-bit SBoxes include: Camellia [8] (Japan), Aria [37] (Korea), AES [47]
(USA, Belgium), SM4 [5] (China) Kuznyechik (Russia).

All of these SBoxes can be implemented efficiently, in constant time, using the xperm.b
instruction [1]. Note that this technique is also suitable for masking based side-channel
countermeasures.

[1] svn.clairexen.net/handicraft/2020/lut4perm/demo02.cc
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Appendix B: Entropy Source Rationale and
Recommendations
This non-normative appendix focuses on the rationale, security, self-certification, and implementation aspects of
entropy sources. Hence we also discuss non-ISA system features that may be needed for cryptographic standards
compliance and security testing.

B.1. Checklists for Design and Self-Certification
The security of cryptographic systems is based on secret bits and keys. These bits need to be random and
originate from cryptographically secure Random Bit Generators (RBGs). An Entropy Source (ES) is required to
construct secure RBGs.

While entropy source implementations do not have to be certified designs, RISC-V expects that they behave in a
compatible manner and do not create unnecessary security risks to users. Self-evaluation and testing following
appropriate security standards is usually needed to achieve this.

• ISA Architectural Tests. Verify, to the extent possible, that RISC-V ISA requirements in this specification
are correctly implemented. This includes the state transitions (Chapter 4 and Section B.6), access control
(Section 4.3), and that seed ES16 entropy words can only be read destructively. The scope of RISC-V ISA
architectural tests are those behaviors that are independent of the physical entropy source details. A smoke
test ES module may be helpful in design phase.

• Technical justification for entropy. This may take the form of a stochastic model or a heuristic argument
that explains why the noise source output is from a random, rather than pseudorandom (deterministic)
process, and is not easily predictable or externally observable. A complete physical model is not necessary;
research literature can be cited. For example, one can show that a good ring oscillator noise derives an
amount of physical entropy from local, spontaneously occurring Johnson-Nyquist thermal noise [58], and is
therefore not merely "random-looking".

• Entropy Source Design Review. An entropy source is more than a noise source, and must have features
such as health tests (Section B.4), a conditioner (Section B.2.2), and a security boundary with clearly
defined interfaces. One may tabulate the SHALL statements of SP 800-90B [61], FIPS 140-3
Implementation Guidance [53], AIS-31 [36] or other standards being used. Official and non-official checklist
tables are available: github.com/usnistgov/90B-Shall-Statements

• Experimental Tests. The raw noise source is subjected to entropy estimation as defined in NIST 800-90B,
Section 3 [61]. The interface described in Section B.6 can used be to record datasets for this purpose. One
also needs to show experimentally that the conditioner and health test components work appropriately to
meet the ES16 output entropy requirements of Section 4.2. For SP 800-90B, NIST has made a min-entropy
estimation package freely available: github.com/usnistgov/SP800-90B_EntropyAssessment

• Resilience. Above physical engineering steps should consider the operational environment of the device,
which may be unexpected or hostile (actively attempting to exploit vulnerabilities in the design).

See Section B.5 for a discussion of various implementation options.



It is one of the goals of the RISC-V Entropy Source specification that a standard 90B Entropy
Source Module or AIS-31 RNG IP may be licensed from a third party and integrated with a
RISC-V processor design. Compared to older (FIPS 140-2) RNG and DRBG modules, an
entropy source module may have a relatively small area (just a few thousand NAND2 gate
equivalent). CMVP is introducing an "Entropy Source Validation Scope" which potentially
allows 90B validations to be re-used for different (FIPS 140-3) modules.
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B.2. Standards and Terminology
As a fundamental security function, the generation of random numbers is governed by numerous standards and
technical evaluation methods, the main ones being FIPS 140-3 [52, 53] required for U.S. Federal use, and
Common Criteria Methodology [21] used in high-security evaluations internationally.

Note that FIPS 140-3 is a significantly updated standard compared to its predecessor FIPS 140-2 and is only
coming into use in the 2020s.

These standards set many of the technical requirements for the RISC-V entropy source design, and we use their
terminology if possible.

The seed CSR provides an Entropy Source (ES) interface, not a stateful random number generator. As a
result, it can support arbitrary security levels. Cryptographic (AES, SHA-2/3) ISA Extensions can be used
to construct high-speed DRBGs that are seeded from the entropy source.

B.2.1. Entropy Source (ES)
Entropy sources are built by sampling and processing data from a noise source (Section B.5.1). We will only
consider physical sources of true randomness in this work. Since these are directly based on natural phenomena
and are subject to environmental conditions (which may be adversarial), they require features that monitor the
"health" and quality of those sources.

The requirements for physical entropy sources are specified in NIST SP 800-90B [61] (Section 4.2.1) for U.S.
Federal FIPS 140-3 [52] evaluations and in BSI AIS-31 [35, 36] (Section 4.2.2) for high-security Common
Criteria evaluations. There is some divergence in the types of health tests and entropy metrics mandated in these
standards, and RISC-V enables support for both alternatives.
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B.2.2. Conditioning: Cryptographic and Non-Cryptographic
Raw physical randomness (noise) sources are rarely statistically perfect, and some generate very large amounts of
bits, which need to be "debiased" and reduced to a smaller number of bits. This process is called conditioning. A
secure hash function is an example of a cryptographic conditioner. It is important to note that even though
hashing may make any data look random, it does not increase its entropy content.

Non-cryptographic conditioners and extractors such as von Neumann’s "debiased coin tossing" [64] are easier to
implement efficiently but may reduce entropy content (in individual bits removed) more than cryptographic
hashes, which mix the input entropy very efficiently. However, they do not require cryptanalytic or
computational hardness assumptions and are therefore inherently more future-proof. See Section B.5.5 for a
more detailed discussion.

B.2.3. Pseudorandom Number Generator (PRNG)
Pseudorandom Number Generators (PRNGs) use deterministic mathematical formulas to create abundant
random numbers from a smaller amount of "seed" randomness. PRNGs are also divided into cryptographic and
non-cryptographic ones.

Non-cryptographic PRNGs, such as LFSRs and the linear-congruential generators found in many programming
libraries, may generate statistically satisfactory random numbers but must never be used for cryptographic
keying. This is because they are not designed to resist cryptanalysis; it is usually possible to take some output
and mathematically derive the "seed" or the internal state of the PRNG from it. This is a security problem since
knowledge of the state allows the attacker to compute future or past outputs.

B.2.4. Deterministic Random Bit Generator (DRBG)
Cryptographic PRNGs are also known as Deterministic Random Bit Generators (DRBGs), a term used by SP
800-90A [14]. A strong cryptographic algorithm such as AES [47] or SHA-2/3 [50, 49] is used to produce
random bits from a seed. The secret seed material is like a cryptographic key; determining the seed from the
DRBG output is as hard as breaking AES or a strong hash function. This also illustrates that the seed/key needs
to be long enough and come from a trusted Entropy Source. The DRBG should still be frequently refreshed
(reseeded) for forward and backward security.

B.3. Specific Rationale and Considerations
B.3.1. (Section 4.1) The seed CSR
The interface was designed to be simple so that a vendor- and device-independent driver component (e.g., in
Linux kernel, embedded firmware, or a cryptographic library) may use seed to generate truly random bits.

An entropy source does not require a high-bandwidth interface; a single DRBG source initialization only requires
512 bits (256 bits of entropy), and DRBG output can be shared by any number of callers. Once initiated, a
DRBG requires new entropy only to mitigate the risk of state compromise.

From a security perspective, it is essential that the side effect of flushing the secret entropy bits occurs upon
reading. Hence we mandate a write operation on this particular CSR.

A blocking instruction may have been easier to use, but most users should be querying a (D)RBG instead of an
entropy source. Without a polling-style mechanism, the entropy source could hang for thousands of cycles under
some circumstances. A wfi ot pause mechanism (at least potentially) allows energy-saving sleep on MCUs and
context switching on higher-end CPUs.
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The reason for the particular OPST = seed[31:0] two-bit mechanism is to provide redundancy. The "fault" bit
combinations 11 (DEAD) and 00 (BIST) are more likely for electrical reasons if feature discovery fails and the
entropy source is actually not available.

The 16-bit bandwidth was a compromise motivated by the desire to provide redundancy in the return value,
some protection against potential Power/EM leakage (further alleviated by the 2:1 cryptographic conditioning
discussed in Section B.5.6), and the desire to have all of the bits "in the same place" on both RV32 and RV64
architectures for programming convenience.

B.3.2. (Section 4.2.1) NIST SP 800-90B
SP 800-90C [15] states that each conditioned block of n bits is required to have n+64 bits of input entropy to
attain full entropy. Hence NIST SP 800-90B [61] min-entropy assessment must guarantee at least 128 + 64 =
192 bits input entropy per 256-bit block ( [15], Sections 4.1. and 4.3.2 ). Only then a hashing of 16 * 16 = 256
bits from the entropy source will produce the desired 128 bits of full entropy. This follows from the specific
requirements, threat model, and distinguishability proof contained in SP 800-90C [15], Appendix A. The implied
min-entropy rate is 192/256=12/16=0.75. The expected Shannon entropy is much larger.

In FIPS 140-3 / SP 800-90 classification, an RBG2(P) construction is a cryptographically secure RBG with
continuous access to a physical entropy source (seed) and output generated by a fully seeded, secure DRBG.
The entropy source can also be used to build RBG3 full entropy sources [15]. The concatenation of output words
corresponds to the Get_ES_Bitstring function.

The 128-bit output block size was selected because that is the output size of the CBC-MAC conditioner specified
in Appendix F of [61] and also the smallest key size we expect to see in applications.

If NIST SP 800-90B certification is chosen, the entropy source should implement at least the health tests defined
in Section 4.4 of [61]: the repetition count test and adaptive proportion test, or show that the same flaws will be
detected by vendor-defined tests.

B.3.3. (Section 4.2.2) BSI AIS-31
PTG.2 is one of the security and functionality classes defined in BSI AIS 20/31 [36]. The PTG.2 source
requirements work as a building block for other types of BSI generators (e.g., DRBGs, or PTG.3 TRNG with
appropriate software post-processing).

For validation purposes, the PTG.2 requirements may be mapped to security controls T1-3 (Section B.4) and
the interface as follows:

• P1 [PTG.2.1] Start-up tests map to T1 and reset-triggered (on-demand) BIST tests.

• P2 [PTG.2.2] Continuous testing total failure maps to T2 and the DEAD state.

• P3 [PTG.2.3] Online tests are continuous tests of T2 – entropy output is prevented in the BIST state.

• P4 [PTG.2.4] Is related to the design of effective entropy source health tests, which we encourage.
• P5 [PTG.2.5] Raw random sequence may be checked via the GetNoise interface (Section B.6).
• P6 [PTG.2.6] Test Procedure A [36] (Sect 2.4.4.1) is a part of the evaluation process, and we suggest self-

evaluation using these tests even if AIS-31 certification is not sought.
• P7 [PTG.2.7] Average Shannon entropy of "internal random bits" exceeds 0.997.

Note how P7 concerns Shannon entropy, not min-entropy as with NIST sources. Hence the min-entropy
requirement needs to be also stated. PTG.2 modules built and certified to the AIS-31 standard can also meet the
"full entropy" condition after 2:1 cryptographic conditioning, but not necessarily so. The technical validation
process is somewhat different.
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B.3.4. (Section 4.2.3) Virtual Sources
All sources that are not direct physical sources (meeting the SP 800-90B or the AIS-31 PTG.2 requirements)
need to meet the security requirements of virtual entropy sources. It is assumed that a virtual entropy source is
not a limiting, shared bandwidth resource (but a software DRBG).

DRBGs can be used to feed other (virtual) DRBGs, but that does not increase the absolute amount of entropy in
the system. The entropy source must be able to support current and future security standards and applications.
The 256-bit requirement maps to "Category 5" of NIST Post-Quantum Cryptography (4.A.5 "Security Strength
Categories" in [51]) and TOP SECRET schemes in Suite B and the newer U.S. Government CNSA Suite [54].

B.3.5. (Section 4.3) Security Considerations for Direct Hardware Access
The ISA implementation and system design must try to ensure that the hardware-software interface minimizes
avenues for adversarial information flow even if not explicitly forbidden in the specification.

For security, virtualization requires both conditioning and DRBG processing of physical entropy output. It is
recommended if a single physical entropy source is shared between multiple different virtual machnies or if the
guest OS is untrusted. A virtual entropy source is significantly more resistant to depletion attacks and also
lessens the risk from covert channels.

The direct mseccfg.[s,u]seed option allows one to draw a security boundary around a component in relation
to Sensitive Security Parameter (SSP) flows, even if that component is not in M mode. This is helpful when
implementing trusted enclaves. Such modules can enforce the entire key lifecycle from birth (in the entropy
source) to death (zeroization) to occur without the key being passed across the boundary to external code.

Depletion. Active polling may deny the entropy source to another simultaneously running consumer. This can
(for example) delay the instantiation of that virtual machine if it requires entropy to initialize fully.

Covert Channels. Direct access to a component such as the entropy source can be used to establish
communication channels across security boundaries. Active polling from one consumer makes the resource
unavailable WAIT instead of ES16 to another (which is polling infrequently). Such interactions can be used to
establish low-bandwidth channels.

Hardware Fingerprinting. An entropy source (and its noise source circuits) may have a uniquely identifiable
hardware "signature." This can be harmless or even useful in some applications (as random sources may exhibit
Physically Un-clonable Function (PUF) -like features) but highly undesirable in others (anonymized virtualized
environments and enclaves). A DRBG masks such statistical features.

Side Channels. Some of the most devastating practical attacks against real-life cryptosystems have used
inconsequential-looking additional information, such as padding error messages [13] or timing information [45].

We urge implementers against creating unnecessary information flows via status or custom bits or to allow any
other mechanism to disable or affect the entropy source output. All information flows and interaction
mechanisms must be considered from an adversarial viewpoint: the fewer the better.

As an example of side-channel analysis, we note that the entropy polling interface is typically not "constant
time." One needs to analyze what kind of information is revealed via the timing oracle; one way of doing it is to
model seed as a rejection sampler. Such a timing oracle can reveal information about the noise source type and
entropy source usage, but not about the random output entropy bits themselves. If it does, additional
countermeasures are necessary.
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B.4. Security Controls and Health Tests
The primary purpose of a cryptographic entropy source is to produce secret keying material. In almost all cases,
a hardware entropy source must implement appropriate security controls to guarantee unpredictability, prevent
leakage, detect attacks, and deny adversarial control over the entropy output or ts generation mechanism.
Explicit security controls are required for security testing and certification.

Many of the security controls built into the device are called "health checks." Health checks can take the form
of integrity checks, start-up tests, and on-demand tests. These tests can be implemented in hardware or
firmware, typically both. Several are mandated by standards such as NIST SP 800-90B [52]. The choice of
appropriate health tests depends on the certification target, system architecture, threat model, entropy source
type, and other factors.

Health checks are not intended for hardware diagnostics but for detecting security issues. Hence the default
action in case of a failure should be aimed at damage control: Limiting further output and preventing weak
crypto keys from being generated.

We discuss three specific testing requirements T1-T3. The testing requirement follows from the definition of an
Entropy Source; without it, the module is simply a noise source and can’t be trusted to safely generate keying
material.

B.4.1. T1: On-demand testing
A sequence of simple tests is invoked via resetting, rebooting, or powering up the hardware (not an ISA signal).
The implementation will simply return BIST during the initial start-up self-test period; in any case, the driver
must wait for them to finish before starting cryptographic operations. Upon failure, the entropy source will enter
a no-output DEAD state.

Rationale. Interaction with hardware self-test mechanisms from the software side should be minimal; the term
"on-demand" does not mean that the end-user or application program should be able to invoke them in the field
(the term is a throwback to an age of discrete, non-autonomous crypto devices with human operators).

B.4.2. T2: Continuous checks
If an error is detected in continuous tests or environmental sensors, the entropy source will enter a no-output
state. We define that a non-critical alarm is signaled if the entropy source returns to BIST state from live (WAIT
or ES16) states. Critical failures will result in DEAD state immediately. A hardware-based continuous testing
mechanism must not make statistical information externally available, and it must be zeroized periodically or
upon demand via reset, power-up, or similar signal.

Rationale. Physical attacks can occur while the device is running. The design should avoid guiding such active
attacks by revealing detailed status information. Upon detection of an attack, the default action should be aimed
at damage control — to prevent weak crypto keys from being generated.

The statistical nature of some tests makes "type-1" false positives a possibility. There may also be requirements
for signaling of non-fatal alarms; AIS 31 specifies "noise alarms" that can go off with non-negligible probability
even if the device is functioning correctly; these can be signaled with BIST. There rarely is anything that can or
should be done about a non-fatal alarm condition in an operator-free, autonomous system.

The state of statistical runtime health checks (such as counters) is potentially correlated with some secret keying
material, hence the zeroization requirement.
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B.4.3. T3: Fatal error states
Since the security of most cryptographic operations depends on the entropy source, a system-wide "default
deny" security policy approach is appropriate for most entropy source failures. A hardware test failure should at
least result in the DEAD state and possibly reset/halt. It’s a show stopper: The entropy source (or its
cryptographic client application) must not be allowed to run if its secure operation can’t be guaranteed.

Rationale. These tests can complement other integrity and tamper resistance mechanisms (See Chapter 18 of [
7] for examples).

Some hardware random generators are, by their physical construction, exposed to relatively non-adversarial
environmental and manufacturing issues. However, even such "innocent" failure modes may indicate a fault
attack [34] and therefore should be addressed as a system integrity failure rather than as a diagnostic issue.

Security architects will understand to use permanent or hard-to-recover "security-fuse" lockdowns only if the
threshold of a test is such that the probability of false-positive is negligible over the entire device lifetime.

B.4.4. Information Flows
Some of the most devastating practical attacks against real-life cryptosystems have used inconsequential-looking
additional information, such as padding error messages [13] or timing information [45]. In cryptography, such
out-of-band information sources are called "oracles."

To guarantee that no sensitive data is read twice and that different callers don’t get correlated output, it is
required that hardware implements wipe-on-read on the randomness pathway during each read (successful poll).
For the same reasons, only complete and fully processed random words shall be made available via entropy
(ES16 status of seed).

This also applies to the raw noise source. The raw source interface has been delegated to an optional vendor-
specific test interface. Importantly the test interface and the main interface should not be operational at the
same time.

The noise source state shall be protected from adversarial knowledge or influence to the greatest extent
possible. The methods used for this shall be documented, including a description of the (conceptual)
security boundarys role in protecting the noise source from adversarial observation or influence.

— NIST SP 800-90B, Noise Source Requirements

An entropy source is a singular resource, subject to depletion and also covert channels [23]. Observation of the
entropy can be the same as the observation of the noise source output, as cryptographic conditioning is
mandatory only as a post-processing step. SP 800-90B and other security standards mandate protection of noise
bits from observation and also influence.

B.5. Implementation Strategies
As a general rule, RISC-V specifies the ISA only. We provide some additional suggestions so that portable,
vendor-independent middleware and kernel components can be created. The actual hardware implementation and
certification are left to vendors and circuit designers; the discussion in this Section is purely informational.

When considering implementation options and trade-offs, one must look at the entire information flow.

1. A Noise Source generates private, unpredictable signals from stable and well-understood physical random
events.
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2. Sampling digitizes the noise signal into a raw stream of bits. This raw data also needs to be protected by
the design.

3. Continuous health tests ensure that the noise source and its environment meet their operational
parameters.

4. Non-cryptographic conditioners remove much of the bias and correlation in input noise.
5. Cryptographic conditioners produce full entropy output, completely indistinguishable from ideal random.
6. DRBG takes in >=256 bits of seed entropy as keying material and uses a "one way" cryptographic process

to rapidly generate bits on demand (without revealing the seed/state).

Steps 1-4 (possibly 5) are considered to be part of the Entropy Source (ES) and provided by the seed CSR.
Adding the software-side cryptographic steps 5-6 and control logic complements it into a True Random Number
Generator (TRNG).

B.5.1. Ring Oscillators
We will give some examples of common noise sources that can be implemented in the processor itself (using
standard cells).

The most common entropy source type in production use today is based on "free running" ring oscillators and
their timing jitter. Here, an odd number of inverters is connected into a loop from which noise source bits are
sampled in relation to a reference clock [16]. The sampled bit sequence may be expected to be relatively
uncorrelated (close to IID) if the sample rate is suitably low [36]. However, further processing is usually required.

AMD [6], ARM [9], and IBM [40] are examples of ring oscillator TRNGs intended for high-security applications.

There are related metastability-based generator designs such as Transition Effect Ring Oscillator (TERO) [63].
The differential/feedback Intel construction [27] is slightly different but also falls into the same general
metastable oscillator-based category.

The main benefits of ring oscillators are: (1) They can be implemented with standard cell libraries without
external components — and even on FPGAs [62], (2) there is an established theory for their behavior [25, 26,
16], and (3) ample precedent exists for testing and certifying them at the highest security levels.

Ring oscillators also have well-known implementation pitfalls. Their output is sometimes highly dependent on
temperature, which must be taken into account in testing and modeling. If the ring oscillator construction is
parallelized, it is important that the number of stages and/or inverters in each chain is suitable to avoid entropy
reduction due to harmonic "Huyghens synchronization" [10]. Such harmonics can also be inserted maliciously in
a frequency injection attack, which can have devastating results [41]. Countermeasures are related to circuit
design; environmental sensors, electrical filters, and usage of a differential oscillator may help.

B.5.2. Shot Noise
A category of random sources consisting of discrete events and modeled as a Poisson process is called "shot
noise." There’s a long-established precedent of certifying them; the AIS 31 document [36] itself offers reference
designs based on noisy diodes. Shot noise sources are often more resistant to temperature changes than ring
oscillators. Some of these generators can also be fully implemented with standard cells (The Rambus / Inside
Secure generic TRNG IP [55] is described as a Shot Noise generator).

B.5.3. Other types of noise
It may be possible to certify more exotic noise sources and designs, although their stochastic model needs to be
equally well understood, and their CPU interfaces must be secure. See Section B.5.8 for a discussion of Quantum
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entropy sources.

B.5.4. Continuous Health Tests
Health monitoring requires some state information related to the noise source to be maintained. The tests should
be designed in a way that a specific number of samples guarantees a state flush (no hung states). We suggest
flush size W =< 1024 to match with the NIST SP 800-90B required tests (See Section 4.4 in [61]). The state is
also fully zeroized in a system reset.

The two mandatory tests can be built with minimal circuitry. Full histograms are not required, only simple
counter registers: repetition count, window count, and sample count. Repetition count is reset every time the
output sample value changes; if the count reaches a certain cutoff limit, a noise alarm (BIST) or failure (DEAD) is
signaled. The window counter is used to save every W’th output (typically W in { 512, 1024 }). The frequency of
this reference sample in the following window is counted; cutoff values are defined in the standard. We see that
the structure of the mandatory tests is such that, if well implemented, no information is carried beyond a limit of
W samples.

Section 4.5 of [61] explicitly permits additional developer-defined tests, and several more were defined in early
versions of FIPS 140-1 before being "crossed out." The choice of additional tests depends on the nature and
implementation of the physical source.

Especially if a non-cryptographic conditioner is used in hardware, it is possible that the AIS 31 [36] online tests
are implemented by driver software. They can also be implemented in hardware. For some security profiles, AIS
31 mandates that their tolerances are set in a way that the probability of an alarm is at least 10-6 yearly under
"normal usage." Such requirements are problematic in modern applications since their probability is too high for
critical systems.

There rarely is anything that can or should be done about a non-fatal alarm condition in an operator-free,
autonomous system. However, AIS 31 allows the DRBG component to keep running despite a failure in its
Entropy Source, so we suggest re-entering a temporary BIST state (Section B.4) to signal a non-fatal statistical
error if such (non-actionable) signaling is necessary. Drivers and applications can react to this appropriately (or
simply log it), but it will not directly affect the availability of the TRNG. A permanent error condition should
result in DEAD state.

B.5.5. Non-cryptographic Conditioners
As noted in Section B.2.2, physical randomness sources generally require a post-processing step called
conditioning to meet the desired quality requirements, which are outlined in Section 4.2.

The approach taken in this interface is to allow a combination of non-cryptographic and cryptographic filtering
to take place. The first stage (hardware) merely needs to be able to distill the entropy comfortably above the
necessary level.

• One may take a set of bits from a noise source and XOR them together to produce a less biased (and more
independent) bit. However, such an XOR may introduce "pseudorandomness" and make the output difficult
to analyze.

• The von Neumann extractor [64] looks at consecutive pairs of bits, rejects 00 and 11, and outputs 0 or 1 for
01 and 10, respectively. It will reduce the number of bits to less than 25% of the original, but the output is
provably unbiased (assuming independence).

• Blum’s extractor [19] can be used on sources whose behavior resembles N-state Markov chains. If its
assumptions hold, it also removes dependencies, creating an independent and identically distributed (IID)
source.

• Other linear and non-linear correctors such as those discussed by Dichtl and Lacharme [38].
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Note that the hardware may also implement a full cryptographic conditioner in the entropy source, even though
the software driver still needs a cryptographic conditioner, too (Section 4.2).

Rationale: The main advantage of non-cryptographic extractors is in their energy efficiency, relative simplicity,
and amenability to mathematical analysis. If well designed, they can be evaluated in conjunction with a
stochastic model of the noise source itself. They do not require computational hardness assumptions.

B.5.6. Cryptographic Conditioners
For secure use, cryptographic conditioners are always required on the software side of the ISA boundary. They
may also be implemented on the hardware side if necessary. In any case, the entropy ES16 output must always
be compressed 2:1 (or more) before being used as keying material or considered "full entropy."

Examples of cryptographic conditioners include the random pool of the Linux operating system, secure hash
functions (SHA-2/3, SHAKE [50, 49]), and the AES / CBC-MAC construction in Appendix F, SP 800-90B [61].

In some constructions, such as the Linux RNG and SHA-3/SHAKE [50] based generators, the cryptographic
conditioning and output (DRBG) generation are provided by the same component.

Rationale: For many low-power targets constructions the type of hardware AES CBC-MAC conditioner used by
Intel [44] and AMD [6] would be too complex and energy-hungry to implement solely to serve the seed CSR. On
the other hand, simpler non-cryptographic conditioners may be too wasteful on input entropy if high-quality
random output is required — (ARM TrustZone TRBG [9] outputs only 10Kbit/sec at 200 MHz.) Hence a
resource-saving compromise is made between hardware and software generation.

B.5.7. The Final Random: DRBGs
All random bits reaching end users and applications must come from a cryptographic DRBG. These are generally
implemented by the driver component in software. The RISC-V AES and SHA instruction set extensions should
be used if available since they offer additional security features such as timing attack resistance.

Currently recommended DRBGs are defined in NIST SP 800-90A (Rev 1) [14]: CTR_DRBG, Hash_DRBG, and
HMAC_DRBG. Certification often requires known answer tests (KATs) for the symmetric components and the
DRBG as a whole. These are significantly easier to implement in software than in hardware. In addition to the
directly certifiable SP 800-90A DRBGs, a Linux-style random pool construction based on ChaCha20 [46] can be
used, or an appropriate construction based on SHAKE256 [50].

These are just recommendations; programmers can adjust the usage of the CPU Entropy Source to meet future
requirements.

B.5.8. Quantum vs. Classical Random

The NCSC believes that classical RNGs will continue to meet our needs for government and military
applications for the foreseeable future.

— U.K. NCSC QRNG Guidance, March 2020

A Quantum Random Number Generator (QRNG) is a TRNG whose source of randomness can be unambiguously
identified to be a specific quantum phenomenon such as quantum state superposition, quantum state
entanglement, Heisenberg uncertainty, quantum tunneling, spontaneous emission, or radioactive decay [32].

Direct quantum entropy is theoretically the best possible kind of entropy. A typical TRNG based on electronic
noise is also largely based on quantum phenomena and is equally unpredictable - the difference is that the
relative amount of quantum and classical physics involved is difficult to quantify for a classical TRNG.
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QRNGs are designed in a way that allows the amount of quantum-origin entropy to be modeled and estimated.
This distinction is important in the security model used by QKD (Quantum Key Distribution) security
mechanisms which can be used to protect the physical layer (such as fiber optic cables) against interception by
using quantum mechanical effects directly.

This security model means that many of the available QRNG devices do not use cryptographic conditioning and
may fail cryptographic statistical requirements [28]. Many implementers may consider them to be entropy
sources instead.

Relatively little research has gone into QRNG implementation security, but many QRNG designs are arguably
more susceptible to leakage than classical generators (such as ring oscillators) as they tend to employ external
components and mixed materials. As an example, amplification of a photon detector signal may be observable in
power analysis, which classical noise-based sources are designed to resist.

B.5.9. Post-Quantum Cryptography
PQC public-key cryptography standards [51] do not require quantum-origin randomness, just sufficiently secure
keying material. Recall that cryptography aims to protect the confidentiality and integrity of data itself and does
not place any requirements on the physical communication channel (like QKD).

Classical good-quality TRNGs are perfectly suitable for generating the secret keys for PQC protocols that are
hard for quantum computers to break but implementable on classical computers. What matters in cryptography
is that the secret keys have enough true randomness (entropy) and that they are generated and stored securely.

Of course, one must avoid DRBGs that are based on problems that are easily solvable with quantum computers,
such as factoring [59] in the case of the Blum-Blum-Shub generator [18]. Most symmetric algorithms are not
affected as the best quantum attacks are still exponential to key size [24].

As an example, the original Intel RNG [44], whose output generation is based on AES-128, can be attacked using
Grover’s algorithm with approximately square-root effort [33]. While even "64-bit" quantum security is extremely
difficult to break, many applications specify a higher security requirement. NIST [51] defines AES-128 to be
"Category 1" equivalent post-quantum security, while AES-256 is "Category 5" (highest). We avoid this possible
future issue by exposing direct access to the entropy source which can derive its security from information-
theoretic assumptions only.

B.6. Suggested GetNoise Test Interface
Compliance testing, characterization, and configuration of entropy sources require access to raw, unconditioned
noise samples. This conceptual test interface is named GetNoise in Section 2.3.2 of NIST SP 800-90B [61].

Since this type of interface is both necessary for security testing and also constitutes a potential backdoor to the
cryptographic key generation process, we define a safety behavior that compliant implementations can have for
temporarily disabling the entropy source seed CSR interface during test.

In order for shared RISC-V self-certification scripts (and drivers) to accommodate the test interface in a secure
fashion, we suggest that it is implemented as a custom, M-mode only CSR, denoted here as mnoise.

This non-normative interface is not intended to be used as a source of randomness or for other production use.
We define the semantics for single bit for this interface, mnoise[31], which is named NOISE_TEST, which will
affect the behavior of seed if implemented.

When NOISE_TEST = 1 in mnoise, the seed CSR must not return anything via ES16; it should be in BIST state
unless the source is DEAD. When NOISE_TEST is again disabled, the entropy source shall return from BIST via an
appropriate zeroization and self-test mechanism.
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The behavior of other input and output bits is largely left to the vendor (as they depend on the technical details
of the physical entropy source), as is the address of the custom mnoise CSR. Other contents and behavior of
the CSR only can be intepreted in the context of mvendorid, marchid, and mimpid CSR identifiers.

When not implemented (e.g., in virtual machines), mnoise can permanently read zero (0x00000000) and ignore
writes. When available, but NOISE_TEST = 0, mnoise can return a nonzero constant (e.g. 0x00000001) but no
noise samples.

Figure 2. Entropy source can’t be read in test mode.

In NOISE_TEST mode, the WAIT and ES16 states are unreachable, and no entropy is output.
Implementation of test interfaces that directly affect ES16 entropy output from the seed CSR interface is
discouraged. Such vendor test interfaces have been exploited in attacks. For example, an ECDSA [48]
signature process without sufficient entropy will not only create an insecure signature but can also reveal
the secret signing key, that can be used for authentication forgeries by attackers. Hence even a temporary
lapse in entropy security may have serious security implications.
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Appendix C: Supplementary Materials
While this document contains the specifications for the RISC-V cryptography extensions, numerous
supplementary materials and example codes have also been developed. All of the materials related to the RISC-V
Cryptography extension live in a Github Repository, located at github.com/riscv/riscv-crypto

• doc/ Contains the source code for this document.

• doc/supp/ Contains supplementary information and recommendations for implementers of software and
hardware.

• benchmarks/ Example software implementations.

• rtl/ Example Verilog implementations of each instruction.

• sail/ Formal model implementations in Sail.
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Appendix D: Supporting Sail Code
This section contains the supporting Sail code referenced by the instruction descriptions throughout the
specification. The Sail Manual is recommended reading in order to best understand the supporting code.

val ror32 : (bits(32), int) -> bits(32)
function ror32(x, y) = {
  (x>>to_bits(5,y)) | (x<<to_bits(5,32-y))
}

val ror64 : (bits(64), int) -> bits(64)
function ror64(x, y) = {
  (x>>to_bits(6,y)) | (x<<to_bits(6,64-y))
}

val rol32 : (bits(32), int) -> bits(32)
function rol32(x, y) = {
  (x<<to_bits(5,y)) | (x>>to_bits(5,32-y))
}

/* Auxiliary function for performing GF multiplicaiton */
val xt2 : bits(8) -> bits(8)
function xt2(x) = {
  (x << 1) ^ ( match (bit_to_bool(x[7]) ) {
    false => 0x00,
    true  => 0x1B
  })
}

val xt3 : bits(8) -> bits(8)
function xt3(x) = {
  x ^ xt2(x)
}

/* Multiply 8-bit field element by 4-bit value for AES MixCols step */
val gfmul : (bits(8), bits(4)) -> bits(8)
function gfmul( x, y) = {
  (if bit_to_bool(y[0]) then             x    else 0x00) ^
  (if bit_to_bool(y[1]) then xt2(        x)   else 0x00) ^
  (if bit_to_bool(y[2]) then xt2(xt2(    x))  else 0x00) ^
  (if bit_to_bool(y[3]) then xt2(xt2(xt2(x))) else 0x00)
}

/* 8-bit to 32-bit partial AES Mix Colum - forwards */
val aes_mixcolumn_byte_fwd : bits(8) -> bits(32)
function aes_mixcolumn_byte_fwd(so) = {
  gfmul(so, 0x3) @ so @ so @ gfmul(so, 0x2)
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}

/* 8-bit to 32-bit partial AES Mix Colum - inverse*/
val aes_mixcolumn_byte_inv : bits(8) -> bits(32)
function aes_mixcolumn_byte_inv(so) = {
  gfmul(so, 0xb) @ gfmul(so, 0xd) @ gfmul(so, 0x9) @ gfmul(so, 0xe)
}

/* 32-bit to 32-bit AES forward MixColumn */
val aes_mixcolumn_fwd : bits(32) -> bits(32)
function aes_mixcolumn_fwd(x) = {
  let s0 : bits (8) = x[ 7.. 0];
  let s1 : bits (8) = x[15.. 8];
  let s2 : bits (8) = x[23..16];
  let s3 : bits (8) = x[31..24];
  let b0 : bits (8) = xt2(s0) ^ xt3(s1) ^    (s2) ^    (s3);
  let b1 : bits (8) =    (s0) ^ xt2(s1) ^ xt3(s2) ^    (s3);
  let b2 : bits (8) =    (s0) ^    (s1) ^ xt2(s2) ^ xt3(s3);
  let b3 : bits (8) = xt3(s0) ^    (s1) ^    (s2) ^ xt2(s3);
  b3 @ b2 @ b1 @ b0 /* Return value */
}

/* 32-bit to 32-bit AES inverse MixColumn */
val aes_mixcolumn_inv : bits(32) -> bits(32)
function aes_mixcolumn_inv(x) = {
  let s0 : bits (8) = x[ 7.. 0];
  let s1 : bits (8) = x[15.. 8];
  let s2 : bits (8) = x[23..16];
  let s3 : bits (8) = x[31..24];
  let b0 : bits (8) = gfmul(s0,0xE)^gfmul(s1,0xB)^gfmul(s2,0xD)^gfmul(s3,0x9);
  let b1 : bits (8) = gfmul(s0,0x9)^gfmul(s1,0xE)^gfmul(s2,0xB)^gfmul(s3,0xD);
  let b2 : bits (8) = gfmul(s0,0xD)^gfmul(s1,0x9)^gfmul(s2,0xE)^gfmul(s3,0xB);
  let b3 : bits (8) = gfmul(s0,0xB)^gfmul(s1,0xD)^gfmul(s2,0x9)^gfmul(s3,0xE);
  b3 @ b2 @ b1 @ b0 /* Return value */
}

val aes_decode_rcon : bits(4) -> bits(32)
function aes_decode_rcon(r) = {
  match r {
    0x0 => 0x00000001,
    0x1 => 0x00000002,
    0x2 => 0x00000004,
    0x3 => 0x00000008,
    0x4 => 0x00000010,
    0x5 => 0x00000020,
    0x6 => 0x00000040,
    0x7 => 0x00000080,
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    0x8 => 0x0000001b,
    0x9 => 0x00000036,
    0xA => 0x00000000,
    0xB => 0x00000000,
    0xC => 0x00000000,
    0xD => 0x00000000,
    0xE => 0x00000000,
    0xF => 0x00000000
  }
}

/* SM4 SBox - only one sbox for forwards and inverse */
let sm4_sbox_table : list(bits(8)) = [|
0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7, 0x16, 0xB6, 0x14, 0xC2, 0x28,
0xFB, 0x2C, 0x05, 0x2B, 0x67, 0x9A, 0x76, 0x2A, 0xBE, 0x04, 0xC3, 0xAA, 0x44,
0x13, 0x26, 0x49, 0x86, 0x06, 0x99, 0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF, 0x98,
0x7A, 0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62, 0xE4, 0xB3, 0x1C, 0xA9,
0xC9, 0x08, 0xE8, 0x95, 0x80, 0xDF, 0x94, 0xFA, 0x75, 0x8F, 0x3F, 0xA6, 0x47,
0x07, 0xA7, 0xFC, 0xF3, 0x73, 0x17, 0xBA, 0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85,
0x4F, 0xA8, 0x68, 0x6B, 0x81, 0xB2, 0x71, 0x64, 0xDA, 0x8B, 0xF8, 0xEB, 0x0F,
0x4B, 0x70, 0x56, 0x9D, 0x35, 0x1E, 0x24, 0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2,
0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 0x78, 0x87, 0xD4, 0x00, 0x46, 0x57, 0x9F,
0xD3, 0x27, 0x52, 0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E, 0xEA, 0xBF,
0x8A, 0xD2, 0x40, 0xC7, 0x38, 0xB5, 0xA3, 0xF7, 0xF2, 0xCE, 0xF9, 0x61, 0x15,
0xA1, 0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55, 0xAD, 0x93, 0x32, 0x30,
0xF5, 0x8C, 0xB1, 0xE3, 0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60, 0xC0,
0x29, 0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F, 0xD5, 0xDB, 0x37, 0x45, 0xDE, 0xFD,
0x8E, 0x2F, 0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C, 0x5B, 0x51, 0x8D, 0x1B, 0xAF,
0x92, 0xBB, 0xDD, 0xBC, 0x7F, 0x11, 0xD9, 0x5C, 0x41, 0x1F, 0x10, 0x5A, 0xD8,
0x0A, 0xC1, 0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD, 0x2D, 0x74, 0xD0, 0x12, 0xB8,
0xE5, 0xB4, 0xB0, 0x89, 0x69, 0x97, 0x4A, 0x0C, 0x96, 0x77, 0x7E, 0x65, 0xB9,
0xF1, 0x09, 0xC5, 0x6E, 0xC6, 0x84, 0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D,
0x20, 0x79, 0xEE, 0x5F, 0x3E, 0xD7, 0xCB, 0x39, 0x48
|]

let aes_sbox_fwd_table : list(bits(8)) = [|
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe,
0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4,
0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7,
0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3,
0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09,
0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3,
0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe,
0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92,
0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c,
0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19,
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0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,
0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2,
0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5,
0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25,
0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86,
0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e,
0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42,
0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
|]
    
let aes_sbox_inv_table : list(bits(8)) = [|
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81,
0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e,
0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23,
0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66,
0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72,
0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65,
0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46,
0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a,
0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca,
0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91,
0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6,
0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8,
0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f,
0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2,
0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8,
0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93,
0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb,
0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6,
0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
|]

/* Lookup function - takes an index and a list, and retrieves the
 * x'th element of that list.
 */
val sbox_lookup : (bits(8), list(bits(8))) -> bits(8)
function sbox_lookup(x, table) = {
  match (x, table) {
    (0x00, t0::tn) => t0,
    ( y  , t0::tn) => sbox_lookup(x - 0x01,tn)
  }
}

/* Easy function to perform a forward AES SBox operation on 1 byte. */
val aes_sbox_fwd : bits(8) -> bits(8)
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function aes_sbox_fwd(x) = {
    sbox_lookup(x, aes_sbox_fwd_table)
}

/* Easy function to perform an inverse AES SBox operation on 1 byte. */
val aes_sbox_inv : bits(8) -> bits(8)
function aes_sbox_inv(x) = {
    sbox_lookup(x, aes_sbox_inv_table)
}

/* AES SubWord function used in the key expansion
 * - Applies the forward sbox to each byte in the input word.
 */
val aes_subword_fwd : bits(32) -> bits(32)
function aes_subword_fwd(x) = {
  aes_sbox_fwd(x[31..24]) @
  aes_sbox_fwd(x[23..16]) @
  aes_sbox_fwd(x[15.. 8]) @
  aes_sbox_fwd(x[ 7.. 0])
}

/* AES Inverse SubWord function.
 * - Applies the inverse sbox to each byte in the input word.
 */
val aes_subword_inv : bits(32) -> bits(32)
function aes_subword_inv(x) = {
  aes_sbox_inv(x[31..24]) @
  aes_sbox_inv(x[23..16]) @
  aes_sbox_inv(x[15.. 8]) @
  aes_sbox_inv(x[ 7.. 0]) 
}

/* Easy function to perform an SM4 SBox operation on 1 byte. */
val sm4_sbox : bits(8) -> bits(8)
function sm4_sbox(x) = {
 sbox_lookup(x, sm4_sbox_table)
}

val aes_get_column : (bits(128), nat) -> bits(32)
function aes_get_column(state,c) = {
 (state >> (to_bits(7,32*c)))[31..0]
}

/* 64-bit to 64-bit function which applies the AES forward sbox to each byte
 * in a 64-bit word.
 */
val aes_apply_fwd_sbox_to_each_byte : bits(64) -> bits(64)
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function aes_apply_fwd_sbox_to_each_byte(x) = {
  aes_sbox_fwd(x[63..56]) @
  aes_sbox_fwd(x[55..48]) @
  aes_sbox_fwd(x[47..40]) @
  aes_sbox_fwd(x[39..32]) @
  aes_sbox_fwd(x[31..24]) @
  aes_sbox_fwd(x[23..16]) @
  aes_sbox_fwd(x[15.. 8]) @
  aes_sbox_fwd(x[ 7.. 0])
}

/* 64-bit to 64-bit function which applies the AES inverse sbox to each byte
 * in a 64-bit word. 
 */
val aes_apply_inv_sbox_to_each_byte : bits(64) -> bits(64)
function aes_apply_inv_sbox_to_each_byte(x) = {
  aes_sbox_inv(x[63..56]) @
  aes_sbox_inv(x[55..48]) @
  aes_sbox_inv(x[47..40]) @
  aes_sbox_inv(x[39..32]) @
  aes_sbox_inv(x[31..24]) @
  aes_sbox_inv(x[23..16]) @
  aes_sbox_inv(x[15.. 8]) @
  aes_sbox_inv(x[ 7.. 0])
}

/*
 * AES full-round transformation functions.
 */

val getbyte : (bits(64), int) -> bits(8)
function getbyte(x, i) = {
  (x >> to_bits(6,i*8))[7..0]
}

val aes_rv64_shiftrows_fwd : (bits(64), bits(64)) -> bits(64)
function aes_rv64_shiftrows_fwd(rs2, rs1) = {
  getbyte(rs1, 3) @
  getbyte(rs2, 6) @
  getbyte(rs2, 1) @
  getbyte(rs1, 4) @
  getbyte(rs2, 7) @
  getbyte(rs2, 2) @
  getbyte(rs1, 5) @
  getbyte(rs1, 0)
}
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val aes_rv64_shiftrows_inv : (bits(64), bits(64)) -> bits(64)
function aes_rv64_shiftrows_inv(rs2, rs1) = {
  getbyte(rs2, 3) @
  getbyte(rs2, 6) @
  getbyte(rs1, 1) @
  getbyte(rs1, 4) @
  getbyte(rs1, 7) @
  getbyte(rs2, 2) @
  getbyte(rs2, 5) @
  getbyte(rs1, 0)
}

/* 128-bit to 128-bit implementation of the forward AES ShiftRows transform. 
 * Byte 0 of state is input column 0, bits  7..0.
 * Byte 5 of state is input column 1, bits 15..8.
 */
val aes_shift_rows_fwd : bits(128) -> bits(128)
function aes_shift_rows_fwd(x) = {
  let ic3 : bits(32) = aes_get_column(x, 3); 
  let ic2 : bits(32) = aes_get_column(x, 2); 
  let ic1 : bits(32) = aes_get_column(x, 1); 
  let ic0 : bits(32) = aes_get_column(x, 0); 
  let oc0 : bits(32) = ic0[31..24] @ ic1[23..16] @ ic2[15.. 8] @ ic3[ 7.. 0];
  let oc1 : bits(32) = ic1[31..24] @ ic2[23..16] @ ic3[15.. 8] @ ic0[ 7.. 0];
  let oc2 : bits(32) = ic2[31..24] @ ic3[23..16] @ ic0[15.. 8] @ ic1[ 7.. 0];
  let oc3 : bits(32) = ic3[31..24] @ ic0[23..16] @ ic1[15.. 8] @ ic2[ 7.. 0];
  (oc3 @ oc2 @ oc1 @ oc0) /* Return value */
}

/* 128-bit to 128-bit implementation of the inverse AES ShiftRows transform.
 * Byte 0 of state is input column 0, bits  7..0.
 * Byte 5 of state is input column 1, bits 15..8.
 */
val aes_shift_rows_inv : bits(128) -> bits(128)
function aes_shift_rows_inv(x) = {
  let ic3 : bits(32) = aes_get_column(x, 3); /* In column 3 */
  let ic2 : bits(32) = aes_get_column(x, 2); 
  let ic1 : bits(32) = aes_get_column(x, 1); 
  let ic0 : bits(32) = aes_get_column(x, 0); 
  let oc0 : bits(32) = ic0[31..24] @ ic3[23..16] @ ic2[15.. 8] @ ic1[ 7.. 0];
  let oc1 : bits(32) = ic1[31..24] @ ic0[23..16] @ ic3[15.. 8] @ ic2[ 7.. 0];
  let oc2 : bits(32) = ic2[31..24] @ ic1[23..16] @ ic0[15.. 8] @ ic3[ 7.. 0];
  let oc3 : bits(32) = ic3[31..24] @ ic2[23..16] @ ic1[15.. 8] @ ic0[ 7.. 0];
  (oc3 @ oc2 @ oc1 @ oc0) /* Return value */
}

/* Applies the forward sub-bytes step of AES to a 128-bit vector
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 * representation of its state.
 */
val aes_subbytes_fwd : bits(128) -> bits(128)
function aes_subbytes_fwd(x) = {
  let oc0 : bits(32) = aes_subword_fwd(aes_get_column(x, 0));
  let oc1 : bits(32) = aes_subword_fwd(aes_get_column(x, 1));
  let oc2 : bits(32) = aes_subword_fwd(aes_get_column(x, 2));
  let oc3 : bits(32) = aes_subword_fwd(aes_get_column(x, 3));
  (oc3 @ oc2 @ oc1 @ oc0) /* Return value */
}

/* Applies the inverse sub-bytes step of AES to a 128-bit vector
 * representation of its state.
 */
val aes_subbytes_inv : bits(128) -> bits(128)
function aes_subbytes_inv(x) = {
  let oc0 : bits(32) = aes_subword_inv(aes_get_column(x, 0));
  let oc1 : bits(32) = aes_subword_inv(aes_get_column(x, 1));
  let oc2 : bits(32) = aes_subword_inv(aes_get_column(x, 2));
  let oc3 : bits(32) = aes_subword_inv(aes_get_column(x, 3));
  (oc3 @ oc2 @ oc1 @ oc0) /* Return value */
}

/* Applies the forward MixColumns step of AES to a 128-bit vector
 * representation of its state.
 */
val aes_mixcolumns_fwd : bits(128) -> bits(128)
function aes_mixcolumns_fwd(x) = {
  let oc0 : bits(32) = aes_mixcolumn_fwd(aes_get_column(x, 0));
  let oc1 : bits(32) = aes_mixcolumn_fwd(aes_get_column(x, 1));
  let oc2 : bits(32) = aes_mixcolumn_fwd(aes_get_column(x, 2));
  let oc3 : bits(32) = aes_mixcolumn_fwd(aes_get_column(x, 3));
  (oc3 @ oc2 @ oc1 @ oc0) /* Return value */
}

/* Applies the inverse MixColumns step of AES to a 128-bit vector
 * representation of its state.
 */
val aes_mixcolumns_inv : bits(128) -> bits(128)
function aes_mixcolumns_inv(x) = {
  let oc0 : bits(32) = aes_mixcolumn_inv(aes_get_column(x, 0));
  let oc1 : bits(32) = aes_mixcolumn_inv(aes_get_column(x, 1));
  let oc2 : bits(32) = aes_mixcolumn_inv(aes_get_column(x, 2));
  let oc3 : bits(32) = aes_mixcolumn_inv(aes_get_column(x, 3));
  (oc3 @ oc2 @ oc1 @ oc0) /* Return value */
}
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