
State Delta Resolution Algorithm

Erik Johnston

April 2018

We first define some basic functions that correspond to the synapse code.

Let K be the set of all type/state key tuples and E the set of all events. We
can then define arbitrary functions:

f : F → E

g : G→ E
(1)

which we call state maps, for F,G ⊂ K.

We can then compute the set of all “unconflicted events”:

Uf,g = {x | ∀x ∈ F ∩G, f(x) = g(x)} ∪ (F 4G) (2)

i.e. the set of state keys where f and g don’t conflict. Similarly, we define:

uf,g : Uf,g −→ E

x 7−→

{
f(x), if f ∈ F
g(x), otherwise

(3)

which gets the unconflicted event for a given state key.

We can also define a function on Cf,g = F ∪G \ Uf,g:

cf,g : Cf,g → E (4)

which is used to resolve conflicts between f and g. Note that cf,g is either f(x)
or g(x).

Now we define:

rf,g : F ∪G −→ E

x 7−→

{
uf,g(x), if x ∈ Uf,g
cf,g(x), otherwise

(5)

which we call the resolved state of f and g.

1



Lemma 1. ∀x ∈ Uf,g s.t. g(x) = g′(x) then rf,g(x) = rf,g′(x)

We define
α : E → P(K) (6)

to be the mapping of an event to the type/state keys needed to auth the event,
and

αf,g(x) = αf(x) ∪ αg(x) (7)

which is the set of auth events required for f(x) and g(x). Note that αf,g(x) ⊂
F ∪G.

Further, we can define

af,g(x) =

∞⋃
n=0

(αf,g)
n(x) (8)

to be the auth chain of f(x) and g(x). This is well defined as there are a finite
number of elements in F ∪G and af,g → F ∪G.

If we consider the implementation of cf,g in Synapse we can see that it
depends not only on the values of x, but also on the resolved state of their auth
events, i.e. rf,g(αf,g(x)). By “depends on” we mean that if those are the same
for different values of f and g, then the result of cf,g(x) is the same.

Lemma 2. cf,g depends only on af,g(x)

Proof. cf,g(x) depends on x ∈ af,g(x), and rf,g(αf,g(x)). Now:

rf,g(αf,g(x)) = uf,g(αf,g(x)) ∪ cf,g(αf,g(x))

but by definition uf,g(αf,g(x)) depends only on αf,g(x), so rf,g(αf,g(x)) depends
on af,g(x) and cf,gαf,g(x).

By induction, cf,gαf,g(x) depends on af,g(x) and cf,g(αf,g)
n(x),∀n. Since

(αf,g)
n(x) repeats and we know cf,g is well defined, we can infer that cf,g(x)

depends only on
⋃∞
n=0(αf,g)

n(x) = af,g(x).

By inspecting the actual implementation of α we can define a−1f,g(x) to be a

function which ∀x, x ∈ a−1f,gaf,g(x). We can similarly define α−1f,g(x). Note that

∀x, x ∈ a−1f,g(x)

We now consider g′ : G′ → E, where g(x) = g′(x) except for x ∈ Gδ, i.e. g′

is a state map based on g.

2



Lemma 3. For f, g, g′ s.t. ∀x /∈ Gδ, g(x) = g′(x), then ∀x /∈ a−1f,g′(Gδ), rf,g(x) =
rf,g′(x).

Proof. Let x be s.t. rf,g(x) 6= rf,g′(x):

⇒ af,g(x) 6= af,g′(x)

⇒ ∃y ∈ af,g(x) s.t. g(y) 6= g′(y)

⇒ y ∈ Gδ
⇒ a−1f,g′(y) ⊆ a−1f,g′(Gδ)

⇒ x ∈ a−1f,g′(Gδ)

Corollary 4. For f, g, g′ s.t. ∀x /∈ Gδ, g(x) = g′(x), then ∀x /∈ Cf,g∩a−1f,g′(Gδ),
rf,g(x) = rf,g′(x)

Proof. This follows from the previous result and that if x ∈ Uf,g \ Gδ then
rf,g(x) = rf,g′(x).

This allows us to reuse most of the results of rf,g when calculating rf,g′ if
Gδ is small. In particular we can calculate the delta between the two functions
without having to inspect Uf,g, which dramatically cuts down the amount of
data used to compute deltas of resolved state of large state maps.

However, we can do better than this. We can note that rf,g(x) only depends
on rf,g(αf,g(x)) for values of αf,g(x) not in Uf,g. Concretely, this means for
example that if Gδ includes the membership of the sender of a power level
event, but the power level event is in Uf,g, then we don’t need to recalculate
all conflicted events—despite the membership event being in every event’s auth
chain.

Lemma 5. ∀x s.t. rf,g(x) 6= rf,g′(x) then ∃y1, ..., yn s.t. yn ∈ Gδ, yi /∈ Uf,g
and yi+1 ∈ αf,g′(yi)

Proof. If rf,g(x) 6= rf,g′(x) then ∃y ∈ Gδ s.t. y ∈ af,g′(x). By definition of
af,g′(x), ∃y0, ..., yn s.t. y0 = x and yi+1 ∈ αf,g′(yi).

We know that rf,g′(x) depends on either uf,g′(x) or cf,g′(x), but if x ∈
Uf,g′ then there is no dependency on x’s auth events and so yn = y0 = x ∈
Gδ. Otherwise, we have cf,g(x) 6= cf,g′(x), which depends on f(x), g′(x) or
rf,g′(αf,g′(x)). If x /∈ Gδ then we know f(x) and g′(x) are the same, and so
rf,g(αf,g′(x)) 6= rf,g′(αf,g′(x))⇒ ∃y1 ∈ αf,g′(x) s.t. rf,g(y1) 6= rf,g′(y1).

Applying the above to y1 then if y1 ∈ Uf,g′ ⇒ y1 = yn ∈ Gδ. By induction
yi /∈ Uf,g′ for i < n.

3



Note that we can assume yi /∈ Gδ as otherwise we would pick n = i, and so
if yi /∈ Uf,g ⇔ yi /∈ Uf,g′

We can use this approach and create an iterative algorithm for computing
the set of state keys that need to be recalculated:

Algorithm 1 Calculate state keys needing to be recalculated

to recalculate← empty set of state keys
pending ← Gδ
while pending is empty do
x← pop from pending
if x /∈ Uf,g then

add all in α−1f,g′(x) to pending
add x to to recalculate

end if
end while
return to recalculate

4


