State Delta Resolution Algorithm

Erik Johnston

April 2018

We first define some basic functions that correspond to the synapse code.

Let K be the set of all type/state key tuples and E the set of all events. We can then define arbitrary functions:

$$\begin{aligned} f: F \to E \\ g: G \to E \end{aligned} \tag{1}$$

which we call state maps, for $F, G \subset K$.

We can then compute the set of all "unconflicted events":

$$U_{f,g} = \{x \mid \forall x \in F \cap G, \ f(x) = g(x)\} \cup (F \bigtriangleup G)$$

$$(2)$$

i.e. the set of state keys where f and g don't conflict. Similarly, we define:

$$u_{f,g}: U_{f,g} \longrightarrow E$$

$$x \longmapsto \begin{cases} f(x), & \text{if } f \in F \\ g(x), & \text{otherwise} \end{cases}$$
(3)

which gets the unconflicted event for a given state key.

We can also define a function on $C_{f,g} = F \cup G \setminus U_{f,g}$:

$$c_{f,g}: C_{f,g} \to E \tag{4}$$

which is used to resolve conflicts between f and g. Note that $c_{f,g}$ is either f(x) or g(x).

Now we define:

$$r_{f,g}: F \cup G \longrightarrow E$$

$$x \longmapsto \begin{cases} u_{f,g}(x), & \text{if } x \in U_{f,g} \\ c_{f,g}(x), & \text{otherwise} \end{cases}$$
(5)

which we call the resolved state of f and g.

Lemma 1. $\forall x \in U_{f,g}$ s.t. g(x) = g'(x) then $r_{f,g}(x) = r_{f,g'}(x)$

We define

$$\alpha: E \to \mathbb{P}(K) \tag{6}$$

to be the mapping of an event to the type/state keys needed to auth the event, and

$$\alpha_{f,g}(x) = \alpha f(x) \cup \alpha g(x) \tag{7}$$

which is the set of auth events required for f(x) and g(x). Note that $\alpha_{f,g}(x) \subset F \cup G$.

Further, we can define

$$a_{f,g}(x) = \bigcup_{n=0}^{\infty} (\alpha_{f,g})^n(x)$$
(8)

to be the auth chain of f(x) and g(x). This is well defined as there are a finite number of elements in $F \cup G$ and $a_{f,g} \to F \cup G$.

If we consider the implementation of $c_{f,g}$ in Synapse we can see that it depends not only on the values of x, but also on the resolved state of their auth events, i.e. $r_{f,g}(\alpha_{f,g}(x))$. By "depends on" we mean that if those are the same for different values of f and g, then the result of $c_{f,g}(x)$ is the same.

Lemma 2. $c_{f,g}$ depends only on $a_{f,g}(x)$

Proof. $c_{f,g}(x)$ depends on $x \in a_{f,g}(x)$, and $r_{f,g}(\alpha_{f,g}(x))$. Now:

$$r_{f,g}(\alpha_{f,g}(x)) = u_{f,g}(\alpha_{f,g}(x)) \cup c_{f,g}(\alpha_{f,g}(x))$$

but by definition $u_{f,g}(\alpha_{f,g}(x))$ depends only on $\alpha_{f,g}(x)$, so $r_{f,g}(\alpha_{f,g}(x))$ depends on $a_{f,g}(x)$ and $c_{f,g}\alpha_{f,g}(x)$.

By induction, $c_{f,g}\alpha_{f,g}(x)$ depends on $a_{f,g}(x)$ and $c_{f,g}(\alpha_{f,g})^n(x), \forall n$. Since $(\alpha_{f,g})^n(x)$ repeats and we know $c_{f,g}$ is well defined, we can infer that $c_{f,g}(x)$ depends only on $\bigcup_{n=0}^{\infty} (\alpha_{f,g})^n(x) = a_{f,g}(x)$.

By inspecting the actual implementation of α we can define $a_{f,g}^{-1}(x)$ to be a function which $\forall x, x \in a_{f,g}^{-1}a_{f,g}(x)$. We can similarly define $\alpha_{f,g}^{-1}(x)$. Note that $\forall x, x \in a_{f,g}^{-1}(x)$

We now consider $g': G' \to E$, where g(x) = g'(x) except for $x \in G_{\delta}$, i.e. g' is a state map based on g.

Lemma 3. For f, g, g' s.t. $\forall x \notin G_{\delta}, g(x) = g'(x)$, then $\forall x \notin a_{f,g'}^{-1}(G_{\delta}), r_{f,g}(x) = r_{f,g'}(x)$.

Proof. Let x be s.t. $r_{f,g}(x) \neq r_{f,g'}(x)$:

$$\Rightarrow a_{f,g}(x) \neq a_{f,g'}(x)$$

$$\Rightarrow \exists y \in a_{f,g}(x) \text{ s.t. } g(y) \neq g'(y)$$

$$\Rightarrow y \in G_{\delta}$$

$$\Rightarrow a_{f,g'}^{-1}(y) \subseteq a_{f,g'}^{-1}(G_{\delta})$$

$$\Rightarrow x \in a_{f,g'}^{-1}(G_{\delta})$$

Corollary 4. For f, g, g' s.t. $\forall x \notin G_{\delta}, g(x) = g'(x)$, then $\forall x \notin C_{f,g} \cap a_{f,g'}^{-1}(G_{\delta})$, $r_{f,g}(x) = r_{f,g'}(x)$

Proof. This follows from the previous result and that if $x \in U_{f,g} \setminus G_{\delta}$ then $r_{f,g}(x) = r_{f,g'}(x)$.

This allows us to reuse most of the results of $r_{f,g}$ when calculating $r_{f,g'}$ if G_{δ} is small. In particular we can calculate the delta between the two functions without having to inspect $U_{f,g}$, which dramatically cuts down the amount of data used to compute deltas of resolved state of large state maps.

However, we can do better than this. We can note that $r_{f,g}(x)$ only depends on $r_{f,g}(\alpha_{f,g}(x))$ for values of $\alpha_{f,g}(x)$ not in $U_{f,g}$. Concretely, this means for example that if G_{δ} includes the membership of the sender of a power level event, but the power level event is in $U_{f,g}$, then we don't need to recalculate all conflicted events—despite the membership event being in every event's auth chain.

Lemma 5. $\forall x \ s.t. \ r_{f,g}(x) \neq r_{f,g'}(x) \ then \ \exists y_1, ..., y_n \ s.t. \ y_n \in G_{\delta}, \ y_i \notin U_{f,g}$ and $y_{i+1} \in \alpha_{f,g'}(y_i)$

Proof. If $r_{f,g}(x) \neq r_{f,g'}(x)$ then $\exists y \in G_{\delta}$ s.t. $y \in a_{f,g'}(x)$. By definition of $a_{f,g'}(x), \exists y_0, ..., y_n$ s.t. $y_0 = x$ and $y_{i+1} \in \alpha_{f,g'}(y_i)$.

We know that $r_{f,g'}(x)$ depends on either $u_{f,g'}(x)$ or $c_{f,g'}(x)$, but if $x \in U_{f,g'}$ then there is no dependency on x's auth events and so $y_n = y_0 = x \in G_{\delta}$. Otherwise, we have $c_{f,g}(x) \neq c_{f,g'}(x)$, which depends on f(x), g'(x) or $r_{f,g'}(\alpha_{f,g'}(x))$. If $x \notin G_{\delta}$ then we know f(x) and g'(x) are the same, and so $r_{f,g}(\alpha_{f,g'}(x)) \neq r_{f,g'}(\alpha_{f,g'}(x)) \Rightarrow \exists y_1 \in \alpha_{f,g'}(x)$ s.t. $r_{f,g}(y_1) \neq r_{f,g'}(y_1)$.

Applying the above to y_1 then if $y_1 \in U_{f,g'} \Rightarrow y_1 = y_n \in G_{\delta}$. By induction $y_i \notin U_{f,g'}$ for i < n.

Note that we can assume $y_i \notin G_{\delta}$ as otherwise we would pick n = i, and so if $y_i \notin U_{f,g} \Leftrightarrow y_i \notin U_{f,g'}$

We can use this approach and create an iterative algorithm for computing the set of state keys that need to be recalculated:

Algorithm 1 Calculate state keys needing to be recalculated
$to_recalculate \leftarrow empty set of state keys$
$pending \leftarrow G_{\delta}$
while <i>pending</i> is empty do
$x \leftarrow \text{pop from } pending$
if $x \notin U_{f,g}$ then
add all in $\alpha_{f,g'}^{-1}(x)$ to pending
add x to to_recalculate
end if
end while
return to_recalculate