We first define some basic functions that correspond to the synapse code.

Let K be the set of all type/state key tuples and E the set of all events. We can then define arbitrary functions:

$$
\begin{align*}
 f &: F \to E \\
 g &: G \to E
\end{align*}
$$

which we call state maps, for $F, G \subseteq K$.

We can then compute the set of all “unconflicted events”:

$$
U_{f,g} = \{x \mid \forall x \in F \cap G, f(x) = g(x)\} \cup (F \triangle G)
$$

i.e. the set of state keys where f and g don’t conflict. Similarly, we define:

$$
u_{f,g} : U_{f,g} \to E
$$

which gets the unconflicted event for a given state key.

We can also define a function on $C_{f,g} = F \cup G \setminus U_{f,g}$:

$$
c_{f,g} : C_{f,g} \to E
$$

which is used to resolve conflicts between f and g. Note that $c_{f,g}$ is either $f(x)$ or $g(x)$.

Now we define:

$$
r_{f,g} : F \cup G \to E
$$

which we call the resolved state of f and g.

Lemma 1. \(\forall x \in U_{f,g} \text{ s.t. } g(x) = g'(x) \text{ then } r_{f,g}(x) = r_{f,g'}(x) \)

We define
\[
\alpha : E \to \mathcal{P}(K)
\]
(6)
to be the mapping of an event to the type/state keys needed to auth the event, and
\[
\alpha_{f,g}(x) = \alpha f(x) \cup \alpha g(x)
\]
(7)
which is the set of auth events required for \(f(x)\) and \(g(x)\). Note that \(\alpha_{f,g}(x) \subset F \cup G\).

Further, we can define
\[
a_{f,g}(x) = \bigcup_{n=0}^{\infty} (\alpha_{f,g})^n(x)
\]
(8)
to be the auth chain of \(f(x)\) and \(g(x)\). This is well defined as there are a finite number of elements in \(F \cup G\) and \(a_{f,g} \to F \cup G\).

If we consider the implementation of \(c_{f,g}\) in Synapse we can see that it depends not only on the values of \(x\), but also on the resolved state of their auth events, i.e. \(r_{f,g}(\alpha_{f,g}(x))\). By “depends on” we mean that if those are the same for different values of \(f\) and \(g\), then the result of \(c_{f,g}(x)\) is the same.

Lemma 2. \(c_{f,g}\) depends only on \(a_{f,g}(x)\)

Proof. \(c_{f,g}(x)\) depends on \(x \in a_{f,g}(x)\), and \(r_{f,g}(\alpha_{f,g}(x))\). Now:
\[
r_{f,g}(\alpha_{f,g}(x)) = u_{f,g}(\alpha_{f,g}(x)) \cup c_{f,g}(\alpha_{f,g}(x))
\]
but by definition \(u_{f,g}(\alpha_{f,g}(x))\) depends only on \(\alpha_{f,g}(x)\), so \(r_{f,g}(\alpha_{f,g}(x))\) depends on \(\alpha_{f,g}(x)\) and \(c_{f,g}(\alpha_{f,g}(x))\).

By induction, \(c_{f,g}(\alpha_{f,g}(x))\) depends on \(a_{f,g}(x)\) and \(c_{f,g}(\alpha_{f,g}(x))\), \(\forall n\). Since \((\alpha_{f,g}(x))\) repeats and we know \(c_{f,g}\) is well defined, we can infer that \(c_{f,g}(x)\) depends only on \(\bigcup_{n=0}^{\infty} (\alpha_{f,g})^n(x) = a_{f,g}(x)\).

By inspecting the actual implementation of \(\alpha\) we can define \(a_{f,g}^{-1}(x)\) to be a function which \(\forall x, x \in a_{f,g}^{-1}(x)\). We can similarly define \(a_{f,g}^{-1}(x)\). Note that \(\forall x, x \in a_{f,g}^{-1}(x)\)

We now consider \(g' : G' \to E\), where \(g(x) = g'(x)\) except for \(x \in G_\delta\), i.e. \(g'\) is a state map based on \(g\).

2
Lemma 3. For \(f, g, g' \) s.t. \(\forall x \notin G_\delta, g(x) = g'(x) \), then \(\forall x \notin a_{f,g}^{-1}(G_\delta), r_{f,g}(x) = r_{f,g'}(x) \).

Proof. Let \(x \) be s.t. \(r_{f,g}(x) \neq r_{f,g'}(x) \):
\[
\Rightarrow a_{f,g}(x) \neq a_{f,g'}(x) \\
\Rightarrow \exists y \in a_{f,g}(x) \text{ s.t. } g(y) \neq g'(y) \\
\Rightarrow y \in G_\delta \\
\Rightarrow a_{f,g}^{-1}(y) \subseteq a_{f,g'}^{-1}(G_\delta) \\
\Rightarrow x \in a_{f,g'}^{-1}(G_\delta)
\]
\[
\quad \Box
\]

Corollary 4. For \(f, g, g' \) s.t. \(\forall x \notin G_\delta, g(x) = g'(x) \), then \(\forall x \notin C_{f,g} \cap a_{f,g'}^{-1}(G_\delta), r_{f,g}(x) = r_{f,g'}(x) \).

Proof. This follows from the previous result and that if \(x \in U_{f,g} \setminus G_\delta \) then \(r_{f,g}(x) = r_{f,g'}(x) \).

This allows us to reuse most of the results of \(r_{f,g} \) when calculating \(r_{f,g'} \) if \(G_\delta \) is small. In particular we can calculate the delta between the two functions without having to inspect \(U_{f,g} \), which dramatically cuts down the amount of data used to compute deltas of resolved state of large state maps.

However, we can do better than this. We can note that \(r_{f,g}(x) \) only depends on \(r_{f,g}(a_{f,g}(x)) \) for values of \(a_{f,g}(x) \) not in \(U_{f,g} \). Concretely, this means for example that if \(G_\delta \) includes the membership of the sender of a power level event, but the power level event is in \(U_{f,g} \), then we don’t need to recompute all conflicted events—despite the membership event being in every event’s auth chain.

Lemma 5. \(\forall x \text{ s.t. } r_{f,g}(x) \neq r_{f,g'}(x) \) then \(\exists y_1, ..., y_n \text{ s.t. } y_n \in G_\delta, y_i \notin U_{f,g} \text{ and } y_{i+1} \in a_{f,g'}(y_i) \).

Proof. If \(r_{f,g}(x) \neq r_{f,g'}(x) \) then \(\exists y \in G_\delta \text{ s.t. } y \in a_{f,g'}(x) \). By definition of \(a_{f,g'}(x) \), \(\exists y_0, ..., y_n \text{ s.t. } y_0 = x \) and \(y_{i+1} \in a_{f,g'}(y_i) \).

We know that \(r_{f,g'}(x) \) depends on either \(u_{f,g'}(x) \) or \(c_{f,g'}(x) \), but if \(x \in U_{f,g'} \) then there is no dependency on \(x \)'s auth events and so \(y_n = y_0 = x \in G_\delta \). Otherwise, we have \(c_{f,g}(x) \neq c_{f,g'}(x) \), which depends on \(f(x) \), \(g'(x) \) or \(r_{f,g'}(a_{f,g'}(x)) \). If \(x \notin G_\delta \) then we know \(f(x) \) and \(g'(x) \) are the same, and so \(r_{f,g}(a_{f,g}(x)) \neq r_{f,g'}(a_{f,g'}(x)) \) \(\Rightarrow \exists y_1 \in a_{f,g'}(x) \text{ s.t. } r_{f,g}(y_1) \neq r_{f,g'}(y_1) \).

Applying the above to \(y_1 \) then if \(y_1 \in U_{f,g'} \Rightarrow y_1 = y_n \in G_\delta \). By induction \(y_i \notin U_{f,g'} \) for \(i < n \).
Note that we can assume $y_i \notin G_\delta$ as otherwise we would pick $n = i$, and so

If $y_i \notin U_{f,g} \iff y_i \notin U_{f,g'}$

We can use this approach and create an iterative algorithm for computing the set of state keys that need to be recalculated:

Algorithm 1 Calculate state keys needing to be recalculated

\[
to_{\text{recalculate}} \leftarrow \text{empty set of state keys}
\]

\[
pending \leftarrow G_\delta
\]

\[\textbf{while} \ pending \text{ is empty} \textbf{ do}
\]

\[
x \leftarrow \text{pop from pending}
\]

\[\text{if} \ x \notin U_{f,g} \text{ then}
\]

\[\quad \text{add all in } \alpha_{f,g'}^{-1}(x) \text{ to pending}
\]

\[\quad \text{add } x \text{ to } to_{\text{recalculate}}
\]

\[\text{end if}
\]

\[\text{end while}
\]

\[\textbf{return} \ to_{\text{recalculate}}
\]