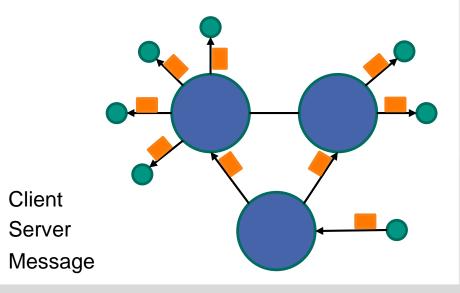


Matrix Decomposition: Analysis of an Access Control Approach on Transaction-based DAGs without Finality

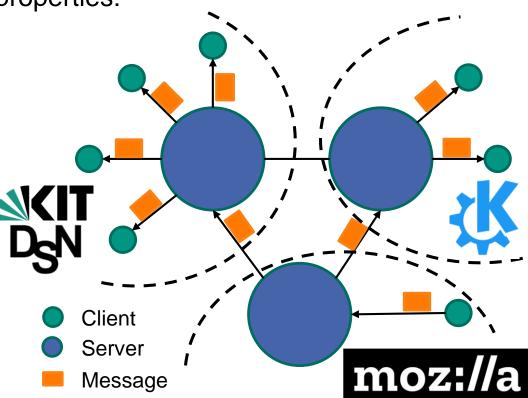
Florian Jacob, Luca Becker, Jan Grashöfer, Hannes Hartenstein

DECENTRALIZED SYSTEMS AND NETWORK SERVICES RESEARCH GROUP (DSN) INSTITUTE OF TELEMATICS, FACULTY OF INFORMATICS


Introduction to Matrix

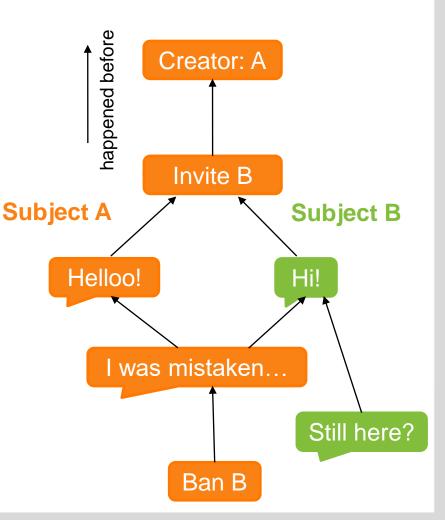
- Middleware for decentralized applications
 - Topic-based publish-subscribe
 - Eventually-consistent attribute storage
- Most prominent use case: decentralized instant messaging
 - French government, Mozilla, German Federal Defense Forces, ...

Servers form a network, cooperate with limited mutual trust


- Replace pure message passing with a replicated data structure
- Broadcast data structure updates
- One federation per topic

Federated Publish-Subscribe Access Control

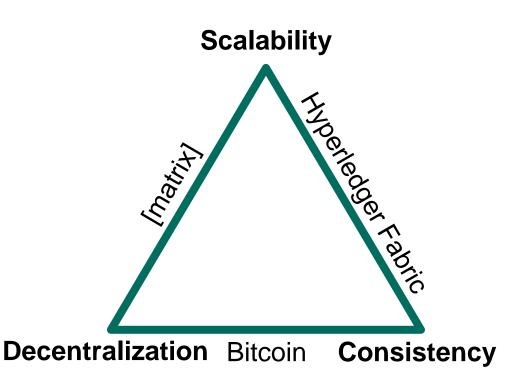
- Is the user allowed to publish the message / update?
- Do other servers accept it, and forward it to their subscribed users?
- Message and attribute store properties:
 - Partial (causal) order
 - Eventual Consistency
 - No Finality, no Consensus
 - Byzantine Participants
- Basis for Authorization Database in Matrix!



DSN Research Group Institute of Telematics, Faculty of Informatics

Message & Attribute Store: Matrix Event Graph

- Per-topic replicated data structure
 - Directed, acyclic graph
 - Causal relation of transactions
- Instant messaging use case:
 - topic \cong chat group / 1:1 chat
 - message \cong text message, file, ...
 - attribute ≅ group description, permission assignments, …
- Properties:
 - Partial (causal) order
 - Eventual Consistency
 - No Finality, no Consensus



4

Why are we putting up with these properties?

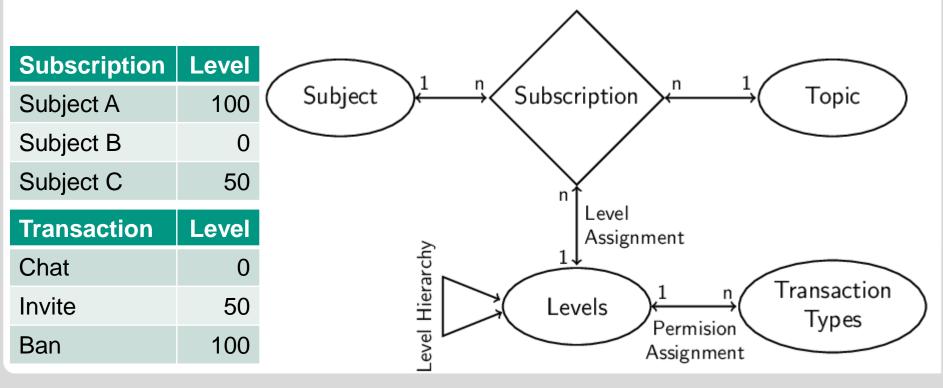
- Matrix is a Distributed Ledger Technology that scales!
- "DCS Trilemma" of Distributed Ledger Technologies [Zhang2018]:
 - Desired Properties:
 - Decentralization
 - Consistency
 - Scalability
 - Conjecture:
 - Cannot achieve all three
 - Gradual tradeoff

[Zhang2018]: Zhang et al., Towards Dependable, Scalable, and Pervasive Distributed Ledgers with Blockchains.

Problem Statement

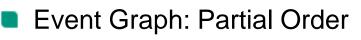
- Unlike conventional DLTs, Matrix does not aim for strict consensus
 - Trades consensus on final total ordering for decentralization and scalability
 - Advantage: no need for consensus mechanisms (e.g. Proof of Work)
 - Consequence: No system-wide consensus on authorization database and access control decisions
- Empirically, access control still works in Matrix
 - How is access control possible in such a setting?
 - Is it sound & secure?

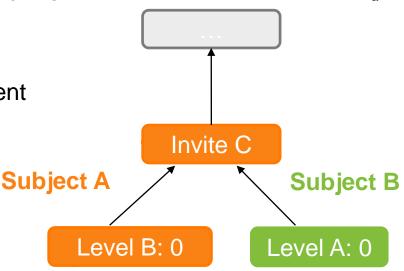
Approach:


- A. Analyze Access Control Model
- B. Analyze Enforcement Mechanism

Assertion: Working communication and data structure

Access Control Model


- LeBAC: Level-based Access Control
 - Assigns levels to subjects and transaction types
 - Variant of Lattice-Based Access Control
 - Specialization: Requires total order on levels
 - **Consequence:** Total order on subjects by permissions


Matrix Decomposition: Analysis of an Access Control Approach on Transactionbased DAGs without Finality

DSN Research Group Institute of Telematics, Faculty of Informatics

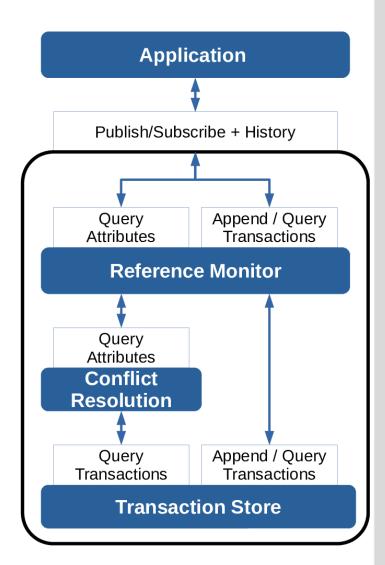
Challenge: Secure Conflict Resolution

- Two level assignments can be concurrent
- Problem: Which to prefer of two concurrent attribute changes?

Conflict Resolution

- Provides authorization database for Reference Monitor
- General concept: Linearization / Topological Ordering of Causal Order
 - Easy: some topological ordering
 - Hard: What is a secure, consistent topological ordering?
- Matrix idea: tied to the access control model
 - For concurrent transactions: Prefer subjects with higher level.

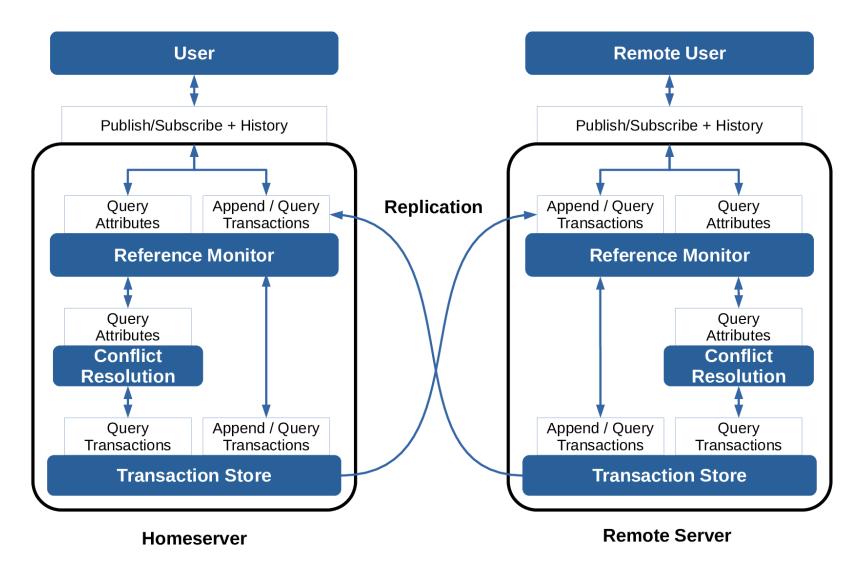
How do we make it secure?


Define ideal functionality:

- Trusted Third Party provides
 - Reference Monitor
 - Conflict Resolution
 - Transaction Store

9

...to potentially malicious users


- Decentralized implementation is secure if:
 - equivalent to central trusted third party for all honest subjects
 - regardless of the presence of an arbitrary number of byzantine faults

Decentralized Implementation

Decomposition Result: When is there Equivalence?

Requirements of the Matrix Approach:

- 1) Out of two subjects, the one with the higher level is the 'honest' one.
- 2) Authorization policies and conflict resolution are deterministic and equivalently implemented by all 'honest' servers.
- 3) Whatever an attacker is doing: authorization policies and conflict resolution:
 - do not allow unauthorized transactions
 - do not allow unauthorized privilege escalation
 - always prefer the 'honest' subject.
- 1) is an axiomatic assumption
- 2) & 3) are the main breakpoints of security

Security Assessment

Fundamental Threats:

- Non-equivalence targets assumption 2)
 - Diverging implementations \rightarrow divergence from trusted third party model
- Incorrect specification targets assumption 3)
 - authorization errors also present in the trusted third party model
- Found four practical security issues
 - Both threat categories affected
 - Mitigations now in place

General Solution:

12

- Specify Conflict Resolution + Authorization Policies in Formal Calculus
 - For first threat: Generate equivalent code for all implementations
 - For second threat: Prove security and correctness

Security Assessment: Discussion

- Access Control based on:
 - Eventual Consistency, Partial Order, No Finality, No Consensus?

Behaves differently than traditional, consensus-based access control:

- Matrix allows for "pluralism of opinions" on current state
 - Every server does its own, independent access control decision
 - instead of following the majority or an assigned leader
- Agreement only if all honest servers exactly adhere to the protocol
- No decision is ever final

 Crucial: Good understanding of consequences, with regard to deployments in sensitive environments
Security without Consensus nor Finality requires Formal Verification

Summary

Matrix Decomposition:

- Level-based Access Control
- Event Graph
 - Partial order, eventual consistency, no finality, no consensus

Conflict Resolution

- Topological Ordering
- Despite those weak guarantees: sound access control

Security Analysis:

- Highly dependent on:
 - secure topological ordering
 - equivalent implementations
 - possible points of attack on concrete implementations

Outlook:

Formal verification of conflict resolution & authorization policies